Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Metab Eng ; 72: 1-13, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35051627

RESUMEN

The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range of pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.


Asunto(s)
Antocianinas , Ingeniería Metabólica , Sistemas CRISPR-Cas , Cromosomas/genética , Cromosomas/metabolismo , Redes y Vías Metabólicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
FEMS Yeast Res ; 22(1)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35137036

RESUMEN

While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD+ redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD+-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha.


Asunto(s)
NAD , Saccharomyces cerevisiae , Glicerol/metabolismo , NAD/metabolismo , Oxígeno/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales
3.
Metab Eng ; 67: 347-364, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303845

RESUMEN

Current large-scale, anaerobic industrial processes for ethanol production from renewable carbohydrates predominantly rely on the mesophilic yeast Saccharomyces cerevisiae. Use of thermotolerant, facultatively fermentative yeasts such as Kluyveromyces marxianus could confer significant economic benefits. However, in contrast to S. cerevisiae, these yeasts cannot grow in the absence of oxygen. Responses of K. marxianus and S. cerevisiae to different oxygen-limitation regimes were analyzed in chemostats. Genome and transcriptome analysis, physiological responses to sterol supplementation and sterol-uptake measurements identified absence of a functional sterol-uptake mechanism as a key factor underlying the oxygen requirement of K. marxianus. Heterologous expression of a squalene-tetrahymanol cyclase enabled oxygen-independent synthesis of the sterol surrogate tetrahymanol in K. marxianus. After a brief adaptation under oxygen-limited conditions, tetrahymanol-expressing K. marxianus strains grew anaerobically on glucose at temperatures of up to 45 °C. These results open up new directions in the development of thermotolerant yeast strains for anaerobic industrial applications.


Asunto(s)
Kluyveromyces , Saccharomyces cerevisiae , Anaerobiosis , Fermentación , Kluyveromyces/genética , Saccharomyces cerevisiae/genética
4.
FEMS Yeast Res ; 21(5)2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34100921

RESUMEN

All known facultatively fermentative yeasts require molecular oxygen for growth. Only in a small number of yeast species, these requirements can be circumvented by supplementation of known anaerobic growth factors such as nicotinate, sterols and unsaturated fatty acids. Biosynthetic oxygen requirements of yeasts are typically small and, unless extensive precautions are taken to minimize inadvertent entry of trace amounts of oxygen, easily go unnoticed in small-scale laboratory cultivation systems. This paper discusses critical points in the design of anaerobic yeast cultivation experiments in anaerobic chambers and laboratory bioreactors. Serial transfer or continuous cultivation to dilute growth factors present in anaerobically pre-grown inocula, systematic inclusion of control strains and minimizing the impact of oxygen diffusion through tubing are identified as key elements in experimental design. Basic protocols are presented for anaerobic-chamber and bioreactor experiments.


Asunto(s)
Reactores Biológicos , Levaduras , Anaerobiosis , Fermentación , Oxígeno
5.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32561581

RESUMEN

Biosynthesis of sterols, which are considered essential components of virtually all eukaryotic membranes, requires molecular oxygen. Anaerobic growth of the yeast Saccharomyces cerevisiae therefore strictly depends on sterol supplementation of synthetic growth media. Neocallimastigomycota are a group of strictly anaerobic fungi which, instead of containing sterols, contain the pentacyclic triterpenoid "sterol surrogate" tetrahymanol, which is formed by cyclization of squalene. Here, we demonstrate that expression of the squalene-tetrahymanol cyclase gene TtTHC1 from the ciliate Tetrahymena thermophila enables synthesis of tetrahymanol by S. cerevisiae Moreover, expression of TtTHC1 enabled exponential growth of anaerobic S. cerevisiae cultures in sterol-free synthetic media. After deletion of the ERG1 gene from a TtTHC1-expressing S. cerevisiae strain, native sterol synthesis was abolished and sustained sterol-free growth was demonstrated under anaerobic as well as aerobic conditions. Anaerobic cultures of TtTHC1-expressing S. cerevisiae on sterol-free medium showed lower specific growth rates and biomass yields than ergosterol-supplemented cultures, while their ethanol yield was higher. This study demonstrated that acquisition of a functional squalene-tetrahymanol cyclase gene offers an immediate growth advantage to S. cerevisiae under anaerobic, sterol-limited conditions and provides the basis for a metabolic engineering strategy to eliminate the oxygen requirements associated with sterol synthesis in yeasts.IMPORTANCE The laboratory experiments described in this report simulate a proposed horizontal gene transfer event during the evolution of strictly anaerobic fungi. The demonstration that expression of a single heterologous gene sufficed to eliminate anaerobic sterol requirements in the model eukaryote Saccharomyces cerevisiae therefore contributes to our understanding of how sterol-independent eukaryotes evolved in anoxic environments. This report provides a proof of principle for a metabolic engineering strategy to eliminate sterol requirements in yeast strains that are applied in large-scale anaerobic industrial processes. The sterol-independent yeast strains described in this report provide a valuable platform for further studies on the physiological roles and impacts of sterols and sterol surrogates in eukaryotic cells.


Asunto(s)
Expresión Génica , Liasas/genética , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Tetrahymena thermophila/genética , Evolución Biológica , Transferencia de Gen Horizontal , Liasas/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Esteroles/metabolismo
6.
FEMS Yeast Res ; 19(6)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31425603

RESUMEN

In Saccharomyces cerevisiae, acyl-coenzyme A desaturation by Ole1 requires molecular oxygen. Tween 80, a poly-ethoxylated sorbitan-oleate ester, is therefore routinely included in anaerobic growth media as a source of unsaturated fatty acids (UFAs). During optimization of protocols for anaerobic bioreactor cultivation of this yeast, we consistently observed growth of the laboratory strain S. cerevisiae CEN.PK113-7D in media that contained the anaerobic growth factor ergosterol, but lacked UFAs. To minimize oxygen contamination, additional experiments were performed in an anaerobic chamber. After anaerobic precultivation without ergosterol and Tween 80, strain CEN.PK113-7D and a congenic ole1Δ strain both grew during three consecutive batch-cultivation cycles on medium that contained ergosterol, but not Tween 80. During these three cycles, no UFAs were detected in biomass of cultures grown without Tween 80, while contents of C10 to C14 saturated fatty acids were higher than in biomass from Tween 80-supplemented cultures. In contrast to its UFA-independent anaerobic growth, aerobic growth of the ole1Δ strain strictly depended on Tween 80 supplementation. This study shows that the requirement of anaerobic cultures of S. cerevisiae for UFA supplementation is not absolute and provides a basis for further research on the effects of lipid composition on yeast viability and robustness.


Asunto(s)
Anaerobiosis , Suplementos Dietéticos/análisis , Ácidos Grasos Insaturados/análisis , Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Biomasa , Reactores Biológicos , Medios de Cultivo , Ergosterol/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Lípidos/análisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Estearoil-CoA Desaturasa/genética
7.
Bioorg Med Chem ; 23(14): 4013-25, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25737085

RESUMEN

Structure-affinity relationship (SAR) and structure-kinetics relationship (SKR) studies were combined to investigate a series of biphenyl anthranilic acid agonists for the HCA2 receptor. In total, 27 compounds were synthesized and twelve of them showed higher affinity than nicotinic acid. Two compounds, 6g (IC50=75nM) and 6z (IC50=108nM) showed a longer residence time profile compared to nicotinic acid, exemplified by their kinetic rate index (KRI) values of 1.31 and 1.23, respectively. The SAR study resulted in the novel 2-F, 4-OH derivative (6x) with an IC50 value of 23nM as the highest affinity HCA2 agonist of the biphenyl series, although it showed a similar residence time as nicotinic acid. The SAR and SKR data suggest that an early compound selection based on binding kinetics is a promising addition to the lead optimization process.


Asunto(s)
Agonistas Nicotínicos/química , Receptores Acoplados a Proteínas G/agonistas , Relación Estructura-Actividad , ortoaminobenzoatos/química , Unión Competitiva , Técnicas de Química Sintética , Evaluación Preclínica de Medicamentos/métodos , Células HEK293/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Cinética , Niacina/metabolismo , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo
8.
Methods Mol Biol ; 2513: 255-270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35781210

RESUMEN

Evolutionary engineering of microbes provides a powerful tool for untargeted optimization of (engineered) cell factories and identification of genetic targets for further research. Directed evolution is an intrinsically time-intensive effort, and automated methods can significantly reduce manual labor. Here, design considerations for various evolutionary engineering methods are described, and generic workflows for batch-, chemostat-, and accelerostat-based evolution in automated bioreactors are provided. These methods can be used to evolve yeast cultures for >1000 generations and are designed to require minimal manual intervention.


Asunto(s)
Microbiología Industrial , Levaduras , Reactores Biológicos , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Levaduras/genética
9.
mBio ; 12(3): e0096721, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34154398

RESUMEN

Neocallimastigomycetes are unique examples of strictly anaerobic eukaryotes. This study investigates how these anaerobic fungi bypass reactions involved in synthesis of pyridine nucleotide cofactors and coenzyme A that, in canonical fungal pathways, require molecular oxygen. Analysis of Neocallimastigomycetes proteomes identified a candidate l-aspartate-decarboxylase (AdcA) and l-aspartate oxidase (NadB) and quinolinate synthase (NadA), constituting putative oxygen-independent bypasses for coenzyme A synthesis and pyridine nucleotide cofactor synthesis. The corresponding gene sequences indicated acquisition by ancient horizontal gene transfer (HGT) events involving bacterial donors. To test whether these enzymes suffice to bypass corresponding oxygen-requiring reactions, they were introduced into fms1Δ and bna2Δ Saccharomyces cerevisiae strains. Expression of nadA and nadB from Piromyces finnis and adcA from Neocallimastix californiae conferred cofactor prototrophy under aerobic and anaerobic conditions. This study simulates how HGT can drive eukaryotic adaptation to anaerobiosis and provides a basis for elimination of auxotrophic requirements in anaerobic industrial applications of yeasts and fungi. IMPORTANCE NAD (NAD+) and coenzyme A (CoA) are central metabolic cofactors whose canonical biosynthesis pathways in fungi require oxygen. Anaerobic gut fungi of the Neocallimastigomycota phylum are unique eukaryotic organisms that adapted to anoxic environments. Analysis of Neocallimastigomycota genomes revealed that these fungi might have developed oxygen-independent biosynthetic pathways for NAD+ and CoA biosynthesis, likely acquired through horizontal gene transfer (HGT) from prokaryotic donors. We confirmed functionality of these putative pathways under anaerobic conditions by heterologous expression in the yeast Saccharomyces cerevisiae. This approach, combined with sequence comparison, offers experimental insight on whether HGT events were required and/or sufficient for acquiring new traits. Moreover, our results demonstrate an engineering strategy for enabling S. cerevisiae to grow anaerobically in the absence of the precursor molecules pantothenate and nicotinate, thereby contributing to alleviate oxygen requirements and to move closer to prototrophic anaerobic growth of this industrially relevant yeast.


Asunto(s)
Coenzima A/biosíntesis , Hongos/metabolismo , Redes y Vías Metabólicas , Nucleótidos/metabolismo , Oxígeno/metabolismo , Piridinas/metabolismo , Saccharomyces cerevisiae/genética , Anaerobiosis , Hongos/genética , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Neocallimastix/genética , Piromyces/genética , Proteoma , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA