Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Genes Dev ; 34(11-12): 751-766, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32273287

RESUMEN

Human cancers with activating RAS mutations are typically highly aggressive and treatment-refractory, yet RAS mutation itself is insufficient for tumorigenesis, due in part to profound metabolic stress induced by RAS activation. Here we show that loss of REDD1, a stress-induced metabolic regulator, is sufficient to reprogram lipid metabolism and drive progression of RAS mutant cancers. Redd1 deletion in genetically engineered mouse models (GEMMs) of KRAS-dependent pancreatic and lung adenocarcinomas converts preneoplastic lesions into invasive and metastatic carcinomas. Metabolic profiling reveals that REDD1-deficient/RAS mutant cells exhibit enhanced uptake of lysophospholipids and lipid storage, coupled to augmented fatty acid oxidation that sustains both ATP levels and ROS-detoxifying NADPH. Mechanistically, REDD1 loss triggers HIF-dependent activation of a lipid storage pathway involving PPARγ and the prometastatic factor CD36. Correspondingly, decreased REDD1 expression and a signature of REDD1 loss predict poor outcomes selectively in RAS mutant but not RAS wild-type human lung and pancreas carcinomas. Collectively, our findings reveal the REDD1-mediated stress response as a novel tumor suppressor whose loss defines a RAS mutant tumor subset characterized by reprogramming of lipid metabolism, invasive and metastatic progression, and poor prognosis. This work thus provides new mechanistic and clinically relevant insights into the phenotypic heterogeneity and metabolic rewiring that underlies these common cancers.


Asunto(s)
Metabolismo de los Lípidos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas ras/genética , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones SCID , Mutación , Oxidación-Reducción
2.
Trends Biochem Sci ; 39(8): 347-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25037503

RESUMEN

The pentose phosphate pathway (PPP), which branches from glycolysis at the first committed step of glucose metabolism, is required for the synthesis of ribonucleotides and is a major source of NADPH. NADPH is required for and consumed during fatty acid synthesis and the scavenging of reactive oxygen species (ROS). Therefore, the PPP plays a pivotal role in helping glycolytic cancer cells to meet their anabolic demands and combat oxidative stress. Recently, several neoplastic lesions were shown to have evolved to facilitate the flux of glucose into the PPP. This review summarizes the fundamental functions of the PPP, its regulation in cancer cells, and its importance in cancer cell metabolism and survival.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo , Vía de Pentosa Fosfato , Animales , Glucólisis , Humanos
3.
Cancer Discov ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39326063

RESUMEN

Fibrolamellar carcinoma (FLC) is a liver cancer of adolescents and young adults characterized by fusions of the genes encoding the protein kinase A catalytic subunit, PRKACA, and heat shock protein, DNAJB1. The chimeric DNAJB1-PRKACA protein has increased kinase activity and is essential for FLC xenograft growth. Here, we explore the critical oncogenic pathways controlled by DNAJB1-PRKACA using patient-derived FLC models, engineered systems, and patient samples. We show that a core function of DNAJB1-PRKACA is the phosphorylation and inactivation of Salt-inducible kinases (SIKs). This leads to deregulation of the CRTC2 transcriptional co-activator and p300 acetyltransferase, resulting in transcriptional reprogramming and increased global histone acetylation, driving malignant growth. Our studies establish a central oncogenic mechanism of DNAJB1-PRKACA and suggest the potential of targeting CRTC2/p300 in FLC. Notably, these findings link this rare cancer's signature fusion oncoprotein to more common cancer gene alterations involving STK11 and GNAS, which also function via SIK suppression.

4.
bioRxiv ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38293110

RESUMEN

Copper (Cu) is an essential trace element required for mitochondrial respiration. Late-stage clear cell renal cell carcinoma (ccRCC) accumulates Cu and allocates it to mitochondrial cytochrome c oxidase. We show that Cu drives coordinated metabolic remodeling of bioenergy, biosynthesis and redox homeostasis, promoting tumor growth and progression of ccRCC. Specifically, Cu induces TCA cycle-dependent oxidation of glucose and its utilization for glutathione biosynthesis to protect against H 2 O 2 generated during mitochondrial respiration, therefore coordinating bioenergy production with redox protection. scRNA-seq determined that ccRCC progression involves increased expression of subunits of respiratory complexes, genes in glutathione and Cu metabolism, and NRF2 targets, alongside a decrease in HIF activity, a hallmark of ccRCC. Spatial transcriptomics identified that proliferating cancer cells are embedded in clusters of cells with oxidative metabolism supporting effects of metabolic states on ccRCC progression. Our work establishes novel vulnerabilities with potential for therapeutic interventions in ccRCC. Accumulation of copper is associated with progression and relapse of ccRCC and drives tumor growth.Cu accumulation and allocation to cytochrome c oxidase (CuCOX) remodels metabolism coupling energy production and nucleotide biosynthesis with maintenance of redox homeostasis.Cu induces oxidative phosphorylation via alterations in the mitochondrial proteome and lipidome necessary for the formation of the respiratory supercomplexes. Cu stimulates glutathione biosynthesis and glutathione derived specifically from glucose is necessary for survival of Cu Hi cells. Biosynthesis of glucose-derived glutathione requires activity of glutamyl pyruvate transaminase 2, entry of glucose-derived pyruvate to mitochondria via alanine, and the glutamate exporter, SLC25A22. Glutathione derived from glucose maintains redox homeostasis in Cu-treated cells, reducing Cu-H 2 O 2 Fenton-like reaction mediated cell death. Progression of human ccRCC is associated with gene expression signature characterized by induction of ETC/OxPhos/GSH/Cu-related genes and decrease in HIF/glycolytic genes in subpopulations of cancer cells. Enhanced, concordant expression of genes related to ETC/OxPhos, GSH, and Cu characterizes metabolically active subpopulations of ccRCC cells in regions adjacent to proliferative subpopulations of ccRCC cells, implicating oxidative metabolism in supporting tumor growth.

5.
Elife ; 122023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692000

RESUMEN

Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a range of genetic changes that activate PKA in human cancer. Two signaling networks were identified downstream of PKA: RAS/MAPK components and an Aurora Kinase A (AURKA)/glycogen synthase kinase (GSK3) sub-network with activity toward MYC oncoproteins. Findings were validated in two PKA-dependent cancer models: a novel, patient-derived fibrolamellar carcinoma (FLC) line that expresses a DNAJ-PKAc fusion and a PKA-addicted melanoma model with a mutant type I PKA regulatory subunit. We identify PKA signals that can influence both de novo translation and stability of the proto-oncogene c-MYC. However, the primary mechanism of PKA effects on MYC in our cell models was translation and could be blocked with the eIF4A inhibitor zotatifin. This compound dramatically reduced c-MYC expression and inhibited FLC cell line growth in vitro. Thus, targeting PKA effects on translation is a potential treatment strategy for FLC and other PKA-driven cancers.


Asunto(s)
Carcinoma Hepatocelular , Proteínas Quinasas Dependientes de AMP Cíclico , Humanos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Carcinoma Hepatocelular/genética , Transducción de Señal , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral
6.
Nat Commun ; 13(1): 899, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173161

RESUMEN

Hexokinase 2 (HK2), which catalyzes the first committed step in glucose metabolism, is induced in cancer cells. HK2's role in tumorigenesis has been attributed to its glucose kinase activity. Here, we describe a kinase independent HK2 activity, which contributes to metastasis. HK2 binds and sequesters glycogen synthase kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3ß to facilitate GSK3ß phosphorylation and inhibition by PKA. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). Phosphorylation by GSK3ß targets proteins for degradation. Consistently, HK2 increases the level and stability of GSK3 targets, MCL1, NRF2, and particularly SNAIL. In addition to GSK3 inhibition, HK2 kinase activity mediates SNAIL glycosylation, which prohibits its phosphorylation by GSK3. Finally, in mouse models of breast cancer metastasis, HK2 deficiency decreases SNAIL protein levels and inhibits SNAIL-mediated epithelial mesenchymal transition and metastasis.


Asunto(s)
Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hexoquinasa/metabolismo , Neoplasias/patología , Proteínas de Anclaje a la Quinasa A/metabolismo , Células A549 , Animales , Células CHO , Carcinogénesis/patología , Línea Celular Tumoral , Cricetulus , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Desoxiglucosa/farmacología , Transición Epitelial-Mesenquimal/fisiología , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glicosilación , Células HCT116 , Células HEK293 , Hexoquinasa/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Metástasis de la Neoplasia/patología , Fosforilación/efectos de los fármacos , Ratas , Factores de Transcripción de la Familia Snail/metabolismo
7.
World J Hepatol ; 13(3): 343-361, 2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33815677

RESUMEN

BACKGROUND: BIR repeat-containing ubiquitin conjugating enzyme (BRUCE) is a liver tumor suppressor, which is downregulated in a large number of patients with liver diseases. BRUCE facilitates DNA damage repair to protect the mouse liver against the hepatocarcinogen diethylnitrosamine (DEN)-dependent acute liver injury and carcinogenesis. While there exists an established pathologic connection between fibrosis and hepatocellular carcinoma (HCC), DEN exposure alone does not induce robust hepatic fibrosis. Further studies are warranted to identify new suppressive mechanisms contributing to DEN-induced fibrosis and HCC. AIM: To investigate the suppressive mechanisms of BRUCE in hepatic fibrosis and HCC development. METHODS: Male C57/BL6/J control mice [loxp/Loxp; albumin-cre (Alb-cre)-] and BRUCE Alb-Cre KO mice (loxp/Loxp; Alb-Cre+) were injected with a single dose of DEN at postnatal day 15 and sacrificed at different time points to examine liver disease progression. RESULTS: By using a liver-specific BRUCE knockout (LKO) mouse model, we found that BRUCE deficiency, in conjunction with DEN exposure, induced hepatic fibrosis in both premalignant as well as malignant stages, thus recapitulating the chronic fibrosis background often observed in HCC patients. Activated in fibrosis and HCC, ß-catenin activity depends on its stabilization and subsequent translocation to the nucleus. Interestingly, we observed that livers from BRUCE KO mice demonstrated an increased nuclear accumulation and elevated activity of ß-catenin in the three stages of carcinogenesis: Pre-malignancy, tumor initiation, and HCC. This suggests that BRUCE negatively regulates ß-catenin activity during liver disease progression. ß-catenin can be activated by phosphorylation by protein kinases, such as protein kinase A (PKA), which phosphorylates it at Ser-675 (pSer-675-ß-catenin). Mechanistically, BRUCE and PKA were colocalized in the cytoplasm of hepatocytes where PKA activity is maintained at the basal level. However, in BRUCE deficient mouse livers or a human liver cancer cell line, both PKA activity and pSer-675-ß-catenin levels were observed to be elevated. CONCLUSION: Our data support a "BRUCE-PKA-ß-catenin" signaling axis in the mouse liver. The BRUCE interaction with PKA in hepatocytes suppresses PKA-dependent phosphorylation and activation of ß-catenin. This study implicates BRUCE as a novel negative regulator of both PKA and ß-catenin in chronic liver disease progression. Furthermore, BRUCE-liver specific KO mice serve as a promising model for understanding hepatic fibrosis and HCC in patients with aberrant activation of PKA and ß-catenin.

8.
Dev Cell ; 50(3): 261-263, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31386860

RESUMEN

Macropinocytosis coordinates non-specific uptake of macromolecules and fluid. Cancers employ macropinocytosis to obtain nutrients to support their metabolic homeostasis. In this issue of Developmental Cell, Lee et al. (2019) report that glutamine deprivation boosts macropinocytosis via EGFR signaling induction, providing a fine-tuned mechanism by which cancers adapt to nutrient supply.


Asunto(s)
Glutamina , Pinocitosis , Aminoácidos , Receptores ErbB , Transducción de Señal
9.
Cell Metab ; 29(2): 238-240, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30612899

RESUMEN

Cancer cells must adapt to metabolic stress during tumor progression. In this issue of Cell Metabolism, Eichner et al. (2019) report that lung cancer development in genetically engineered mice requires the energy sensor AMP-activated protein kinase (AMPK). Their findings suggest that AMPK-mediated induction of lysosomal function supports cancer cell fitness, particularly during the early stages of tumorigenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias Pulmonares , Animales , Carcinogénesis , Proliferación Celular , Lisosomas , Ratones
10.
Cancer Discov ; 9(8): 1064-1079, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31109923

RESUMEN

ATP-competitive fibroblast growth factor receptor (FGFR) kinase inhibitors, including BGJ398 and Debio 1347, show antitumor activity in patients with intrahepatic cholangiocarcinoma (ICC) harboring activating FGFR2 gene fusions. Unfortunately, acquired resistance develops and is often associated with the emergence of secondary FGFR2 kinase domain mutations. Here, we report that the irreversible pan-FGFR inhibitor TAS-120 demonstrated efficacy in 4 patients with FGFR2 fusion-positive ICC who developed resistance to BGJ398 or Debio 1347. Examination of serial biopsies, circulating tumor DNA (ctDNA), and patient-derived ICC cells revealed that TAS-120 was active against multiple FGFR2 mutations conferring resistance to BGJ398 or Debio 1347. Functional assessment and modeling the clonal outgrowth of individual resistance mutations from polyclonal cell pools mirrored the resistance profiles observed clinically for each inhibitor. Our findings suggest that strategic sequencing of FGFR inhibitors, guided by serial biopsy and ctDNA analysis, may prolong the duration of benefit from FGFR inhibition in patients with FGFR2 fusion-positive ICC. SIGNIFICANCE: ATP-competitive FGFR inhibitors (BGJ398, Debio 1347) show efficacy in FGFR2-altered ICC; however, acquired FGFR2 kinase domain mutations cause drug resistance and tumor progression. We demonstrate that the irreversible FGFR inhibitor TAS-120 provides clinical benefit in patients with resistance to BGJ398 or Debio 1347 and overcomes several FGFR2 mutations in ICC models.This article is highlighted in the In This Issue feature, p. 983.


Asunto(s)
Adenosina Trifosfato/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Adulto , Anciano , Línea Celular Tumoral , Colangiocarcinoma/diagnóstico , ADN Tumoral Circulante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/química , Pirimidinas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Tomografía Computarizada por Rayos X
11.
Dev Cell ; 45(6): 665-666, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29920272

RESUMEN

The factors determining longevity of different animals are incompletely defined. In this issue of Developmental Cell, Anzi et al. (2018) show that distinct strategies for postnatal pancreatic growth operate in different mammals and correlate with lifespan, with short-lived species exhibiting increasing pancreatic cell size and long-lived animals increasing cell number.


Asunto(s)
Longevidad , Mamíferos , Envejecimiento , Animales , Tamaño de la Célula
12.
Elife ; 72018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29687779

RESUMEN

Akt activation in human cancers exerts chemoresistance, but pan-Akt inhibition elicits adverse consequences. We exploited the consequences of Akt-mediated mitochondrial and glucose metabolism to selectively eradicate and evade chemoresistance of prostate cancer displaying hyperactive Akt. PTEN-deficient prostate cancer cells that display hyperactivated Akt have high intracellular reactive oxygen species (ROS) levels, in part, because of Akt-dependent increase of oxidative phosphorylation. High intracellular ROS levels selectively sensitize cells displaying hyperactive Akt to ROS-induced cell death enabling a therapeutic strategy combining a ROS inducer and rapamycin in PTEN-deficient prostate tumors in mouse models. This strategy elicited tumor regression, and markedly increased survival even after the treatment was stopped. By contrast, exposure to antioxidant increased prostate tumor progression. To increase glucose metabolism, Akt activation phosphorylated HK2 and induced its expression. Indeed, HK2 deficiency in mouse models of Pten-deficient prostate cancer elicited a marked inhibition of tumor development and extended lifespan.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Proteína Oncogénica v-akt/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Sirolimus/administración & dosificación , Animales , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Modelos Biológicos , Trasplante de Neoplasias , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Sirolimus/farmacología , Resultado del Tratamiento
13.
Cancer Res ; 78(16): 4445-4451, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29871934

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) is a primary liver cancer epidemiologically linked with liver injury, which has poorly understood incipient stages and lacks early diagnostics and effective therapies. While iCCA is conventionally thought to arise from the biliary tract, studies have suggested that both hepatocytes and biliary cells (cholangiocytes) may give rise to iCCA. Consistent with the plasticity of these cell lineages, primary liver carcinomas exhibit a phenotypic range from hepatocellular carcinoma (HCC) to iCCA, with intermediates along this spectrum. Here, we generated mouse models to examine the consequence of targeting mutant Kras and Tp53, common alterations in human iCCA, to different adult liver cell types. Selective induction of these mutations in the SOX9+ population, predominantly consisting of mature cholangiocytes, resulted in iCCA emerging from premalignant biliary intraepithelial neoplasia (BilIN). In contrast, adult hepatocytes were relatively refractory to these mutations and formed rare HCC. In this context, injury accelerated hepatocyte-derived tumorigenesis and promoted a phenotypic switch to iCCA. BilIN precursor lesions were absent in the hepatocyte-derived iCCA models, pointing toward distinct and direct emergence of a malignant cholangiocytic phenotype from injured, oncogenically primed hepatocytes. Tp53 loss enhanced the reprogramming of hepatocytes to cholangiocytes, which may represent a mechanism facilitating formation of hepatocyte-derived iCCA. Overall, our work shows iCCA driven by Kras and Tp53 may originate from both mature cholangiocytes and hepatocytes, and factors such as chronic liver injury and underlying genetic mutations determine the path of progression and resulting cancer phenotype.Significance: The histopathogenesis of biliary tract cancer, driven by Tp53 and Kras mutations, can be differentially impacted by the cell of origin within the mature liver as well by major epidemiologic risk factors. Cancer Res; 78(16); 4445-51. ©2018 AACR.


Asunto(s)
Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética , Animales , Sistema Biliar/metabolismo , Sistema Biliar/patología , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Linaje de la Célula/genética , Reprogramación Celular/genética , Colangiocarcinoma/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Mutación , Neoplasias/genética , Neoplasias/patología , Factor de Transcripción SOX9/genética
14.
Nat Commun ; 9(1): 2539, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946147

RESUMEN

In the originally published version of this Article, the colours of the bars in Fig. 4b were inadvertently switched during the production process, such that 'HK2-Dox' and 'HK2+Dox' were depicted in red and 'Nt-Dox' and 'Nt+Dox' were depicted in blue. These errors have now been corrected in both the PDF and HTML versions of the Article.

15.
Nat Commun ; 9(1): 446, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386513

RESUMEN

Hepatocellular carcinoma (HCC) cells are metabolically distinct from normal hepatocytes by expressing the high-affinity hexokinase (HK2) and suppressing glucokinase (GCK). This is exploited to selectively target HCC. Hepatic HK2 deletion inhibits tumor incidence in a mouse model of hepatocarcinogenesis. Silencing HK2 in human HCC cells inhibits tumorigenesis and increases cell death, which cannot be restored by GCK or mitochondrial binding deficient HK2. Upon HK2 silencing, glucose flux to pyruvate and lactate is inhibited, but TCA fluxes are maintained. Serine uptake and glycine secretion are elevated suggesting increased requirement for one-carbon contribution. Consistently, vulnerability to serine depletion increases. The decrease in glycolysis is coupled to elevated oxidative phosphorylation, which is diminished by metformin, further increasing cell death and inhibiting tumor growth. Neither HK2 silencing nor metformin alone inhibits mTORC1, but their combination inhibits mTORC1 in an AMPK-independent and REDD1-dependent mechanism. Finally, HK2 silencing synergizes with sorafenib to inhibit tumor growth.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Hexoquinasa/metabolismo , Neoplasias Hepáticas/enzimología , Terapia Molecular Dirigida , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis , Carcinoma Hepatocelular/tratamiento farmacológico , Glucólisis , Células Hep G2 , Hexoquinasa/antagonistas & inhibidores , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Análisis de Flujos Metabólicos , Metformina/farmacología , Metformina/uso terapéutico , Ratones Desnudos , Niacinamida/análogos & derivados , Niacinamida/farmacología , Niacinamida/uso terapéutico , Fosforilación Oxidativa , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Sorafenib , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Nat Cell Biol ; 20(7): 811-822, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29941929

RESUMEN

G protein αs (GNAS) mediates receptor-stimulated cAMP signalling, which integrates diverse environmental cues with intracellular responses. GNAS is mutationally activated in multiple tumour types, although its oncogenic mechanisms remain elusive. We explored this question in pancreatic tumourigenesis where concurrent GNAS and KRAS mutations characterize pancreatic ductal adenocarcinomas (PDAs) arising from intraductal papillary mucinous neoplasms (IPMNs). By developing genetically engineered mouse models, we show that GnasR201C cooperates with KrasG12D to promote initiation of IPMN, which progress to invasive PDA following Tp53 loss. Mutant Gnas remains critical for tumour maintenance in vivo. This is driven by protein-kinase-A-mediated suppression of salt-inducible kinases (Sik1-3), associated with induction of lipid remodelling and fatty acid oxidation. Comparison of Kras-mutant pancreatic cancer cells with and without Gnas mutations reveals striking differences in the functions of this network. Thus, we uncover Gnas-driven oncogenic mechanisms, identify Siks as potent tumour suppressors, and demonstrate unanticipated metabolic heterogeneity among Kras-mutant pancreatic neoplasms.


Asunto(s)
Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Reprogramación Celular/genética , Cromograninas/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Metabolismo de los Lípidos/genética , Mutación , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Cromograninas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Represión Enzimática , Ácidos Grasos/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes ras , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Mutantes , Ratones Transgénicos , Oxidación-Reducción , Neoplasias Pancreáticas/patología , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Factores de Tiempo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Clin Transl Gastroenterol ; 8(4): e86, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383565

RESUMEN

Pancreatic ductal adenocarcinoma (PDA), one of the most lethal cancers worldwide, is associated with two main types of morphologically distinct precursors-pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN). Although the progression of PanIN into invasive cancer has been well characterized, there remains an urgent need to understand the biology of IPMNs, which are larger radiographically detectable cystic tumors. IPMNs comprise a number of subtypes with heterogeneous histopathologic and clinical features. Although frequently remaining benign, a significant proportion exhibits malignant progression. Unfortunately, there are presently no accurate prognosticators for assessing cancer risk in individuals with IPMN. Moreover, the fundamental mechanisms differentiating PanIN and IPMN remain largely obscure, as do those that distinguish IPMN subtypes. Recent studies, however, have identified distinct genetic profiles between PanIN and IPMN, providing a framework to better understand the diversity of the precursors for PDA. Here, we review the clinical, biological, and genetic properties of IPMN and discuss various models for progression of these tumors to invasive PDA.

18.
Bioresour Technol ; 96(8): 949-53, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15627566

RESUMEN

Modified solid-state fermentation (MSSF) of tannin-rich substrate yielding tannase and gallic acid was carried out using a co-culture of the filamentous fungi, Rhizopus oryzae (RO IIT RB-13, NRRL 21498) and Aspergillus foetidus (GMRB013 MTCC 3557). Powdered fruits of Terminalia chebula and powdered pod cover of Caesalpinia digyna was used in the process and the different process parameters for maximum production of tannase and gallic acid by co-culture method were optimized through media engineering. MSSF was carried out at the optimum conditions of 30 degrees C and 80% relative humidity. The optimal pH and incubation period was 5.0 and 48 h respectively. Through the co-culture technique the maximum yield of tannase and gallic acid was found to be 41.3 U/ml and 94.8% respectively.


Asunto(s)
Reactores Biológicos , Ácido Gálico/análisis , Taninos/metabolismo , Fermentación , Hongos , Concentración de Iones de Hidrógeno
19.
Cell Rep ; 12(4): 610-21, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26190111

RESUMEN

Akt is frequently activated in human cancers. However, it is unknown whether systemic inhibition of a single Akt isoform could regress cancer progression in cancers that are not driven by Akt activation. We systemically deleted Akt1 after tumor onset in p53(-/-) mice, which develop tumors independently of Akt activation. Systemic Akt1 deletion regresses thymic lymphoma in p53(-/-) mice emulating p53 restoration. Furthermore, pharmacological inhibition of Akt selectively kills thymic lymphoma cells and not primary thymocytes. Mechanistically, Akt1 inhibition in p53(-/-) thymic lymphoma inhibits Skp2 expression and induces FasL, which is the primary cause of cell death. Skp2 exerts resistance to cell death by antagonizing the induction of FasL and reducing FAS expression, which is linked to cyclin D1 expression. The results established a paradigm whereby systemic Akt1 inhibition is sufficient to regress tumors that are not driven by Akt activation and a mechanism of cell survival by Skp2.


Asunto(s)
Longevidad , Linfoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Timocitos/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis , Línea Celular Tumoral , Proteína Ligando Fas/metabolismo , Humanos , Linfoma/patología , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Timocitos/patología , Proteína p53 Supresora de Tumor/metabolismo
20.
Cancer Res ; 73(12): 3771-82, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23610444

RESUMEN

Colon cancer is one of the deadliest cancers worldwide because of its metastasis to other essential organs. Metastasis of colon cancer involves a complex set of events, including epithelial-to-mesenchymal transition (EMT) that increases invasiveness of the tumor cells. Here, we show that the xeroderma pigmentosum group E (XPE) gene product, damaged DNA-binding protein (DDB)-2, is downregulated in high-grade colon cancers, and it plays a dominant role in the suppression of EMT of the colon cancer cells. Depletion of DDB2 promotes mesenchymal phenotype, whereas expression of DDB2 promotes epithelial phenotype. DDB2 constitutively represses genes that are the key activators of EMT, indicating that DDB2 is a master regulator of EMT of the colon cancer cells. Moreover, we observed evidence that DDB2 functions as a barrier for EMT induced by hypoxia and TGF-ß. Also, we provide evidence that DDB2 inhibits metastasis of colon cancer. The results presented here identify a transcriptional regulatory pathway of DDB2 that is directly linked to the mechanisms that suppress metastasis of colon cancer.


Asunto(s)
Neoplasias del Colon/genética , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Animales , Western Blotting , Cadherinas/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proteínas de Unión al ADN/metabolismo , Células HCT116 , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Desnudos , Ratones SCID , Invasividad Neoplásica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA