Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(6): e3002661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829909

RESUMEN

Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications. We show that hemichordate chromosomes (1N = 23) exhibit remarkable chromosome-scale macrosynteny when compared to other deuterostomes and can be derived from 24 deuterostome ancestral linkage groups (ALGs). These deuterostome ALGs in turn match previously inferred bilaterian ALGs, consistent with a relatively short transition from the last common bilaterian ancestor to the origin of deuterostomes. Based on this deuterostome ALG complement, we deduced chromosomal rearrangement events that occurred in different lineages. For example, a fusion-with-mixing event produced an Ambulacraria-specific ALG that subsequently split into 2 chromosomes in extant hemichordates, while this homologous ALG further fused with another chromosome in sea urchins. Orthologous genes distributed in these rearranged chromosomes are enriched for functions in various developmental processes. We found that the deeply conserved Hox clusters are located in highly rearranged chromosomes and that maintenance of the clusters are likely due to lower densities of transposable elements within the clusters. We also provide evidence that the deuterostome-specific pharyngeal gene cluster was established via the combination of 3 pre-assembled microsyntenic blocks. We suggest that since chromosomal rearrangement events and formation of new gene clusters may change the regulatory controls of developmental genes, these events may have contributed to the evolution of diverse body plans among deuterostomes.


Asunto(s)
Cromosomas , Evolución Molecular , Genoma , Filogenia , Animales , Cromosomas/genética , Genoma/genética , Sintenía , Ligamiento Genético , Cordados/genética
2.
Nature ; 563(7732): 501-507, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429615

RESUMEN

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Asunto(s)
Aedes/genética , Infecciones por Arbovirus/virología , Arbovirus , Genoma de los Insectos/genética , Genómica/normas , Control de Insectos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus/aislamiento & purificación , Variaciones en el Número de Copia de ADN/genética , Virus del Dengue/aislamiento & purificación , Femenino , Variación Genética/genética , Genética de Población , Glutatión Transferasa/genética , Resistencia a los Insecticidas/efectos de los fármacos , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes/genética , Piretrinas/farmacología , Estándares de Referencia , Procesos de Determinación del Sexo/genética
3.
Nature ; 546(7659): 524-527, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28605751

RESUMEN

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


Asunto(s)
Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Imagen Individual de Molécula/métodos , Zea mays/genética , Centrómero/genética , Cromosomas de las Plantas/genética , Mapeo Contig , Productos Agrícolas/genética , Elementos Transponibles de ADN/genética , ADN Intergénico/genética , Genes de Plantas/genética , Anotación de Secuencia Molecular , Óptica y Fotónica , Filogenia , ARN Mensajero/análisis , ARN Mensajero/genética , Estándares de Referencia , Sorghum/genética
4.
Psychother Res ; 32(2): 223-237, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33955816

RESUMEN

Objective: The purpose of this paper is to describe an approach to dynamical systems (DS) using a set of differential equations, and how an application of these equations can be used to address a critical element of the therapeutic relationship. Using APA's Three Approaches to Psychotherapy with a Female Client: The Next Generation and Three Approaches to Psychotherapy with a Male Client: The Next Generation videos, DS models were created for each of the six sessions with expert clinicians (Judith Beck, Leslie Greenberg, and Nancy McWilliams) from the three theoretical approaches. Method: A second-by-second observational coding system of the emotional exchanges of the therapists and clients was used as the data for the equations. Results: DS modeling allowed for a side-by-side comparison between the three approaches as well as between the two clients. Examining the graphs created by plotting the results of the DS equations (in particular, phase-space portraits) revealed that there were similarities among the three theoretical approaches, and there were notable differences between the two clients. Conclusions: DS modelling can provide researchers and clinicians with a powerful tool to investigate the complex phenomenon that is psychotherapy.


Asunto(s)
Relaciones Profesional-Paciente , Psicoterapia , Femenino , Humanos , Masculino , Psicoterapia/métodos
5.
Ann Hum Genet ; 84(2): 125-140, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31711268

RESUMEN

The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes.


Asunto(s)
Biomarcadores/análisis , Variación Genética , Genoma Humano , Haploidia , Mola Hidatiforme/genética , Análisis de Secuencia de ADN/métodos , Análisis de la Célula Individual/métodos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , Embarazo
6.
Genome Res ; 27(5): 677-685, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27895111

RESUMEN

In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that >89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF > 1%). We estimate that this theoretical human diploid differs by as much as ∼16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ∼59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.


Asunto(s)
Mapeo Contig/métodos , Genoma Humano , Variación Estructural del Genoma , Haploidia , Análisis de Secuencia de ADN/métodos , Mapeo Contig/normas , Proyecto Genoma Humano , Humanos , Análisis de Secuencia de ADN/normas
7.
Genome Res ; 27(5): 849-864, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28396521

RESUMEN

The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health.


Asunto(s)
Mapeo Contig/métodos , Genoma Humano , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Mapeo Contig/normas , Genómica/normas , Haploidia , Haplotipos , Humanos , Polimorfismo Genético , Estándares de Referencia , Análisis de Secuencia de ADN/normas
8.
Nat Methods ; 13(12): 1050-1054, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27749838

RESUMEN

While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


Asunto(s)
Diploidia , Genoma Fúngico/genética , Genoma de Planta/genética , Genómica/métodos , Polimorfismo de Nucleótido Simple/genética , Algoritmos , Arabidopsis/genética , Basidiomycota/genética , ADN de Hongos/genética , ADN de Plantas/genética , Haplotipos , Heterocigoto , Humanos , Análisis de Secuencia de ADN , Vitis/genética
9.
BMC Genomics ; 18(1): 95, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100185

RESUMEN

BACKGROUND: The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. RESULTS: By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual. CONCLUSIONS: The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.


Asunto(s)
Gadus morhua/genética , Genómica/métodos , Secuencias Repetidas en Tándem/genética , Animales , Heterocigoto , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
10.
Genome Res ; 23(1): 121-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23064752

RESUMEN

The human fragile X mental retardation 1 (FMR1) gene contains a (CGG)(n) trinucleotide repeat in its 5' untranslated region (5'UTR). Expansions of this repeat result in a number of clinical disorders with distinct molecular pathologies, including fragile X syndrome (FXS; full mutation range, greater than 200 CGG repeats) and fragile X-associated tremor/ataxia syndrome (FXTAS; premutation range, 55-200 repeats). Study of these diseases has been limited by an inability to sequence expanded CGG repeats, particularly in the full mutation range, with existing DNA sequencing technologies. Single-molecule, real-time (SMRT) sequencing provides an approach to sequencing that is fundamentally different from other "next-generation" sequencing platforms, and is well suited for long, repetitive DNA sequences. We report the first sequence data for expanded CGG-repeat FMR1 alleles in the full mutation range that reveal the confounding effects of CGG-repeat tracts on both cloning and PCR. A unique feature of SMRT sequencing is its ability to yield real-time information on the rates of nucleoside addition by the tethered DNA polymerase; for the CGG-repeat alleles, we find a strand-specific effect of CGG-repeat DNA on the interpulse distance. This kinetic signature reveals a novel aspect of the repeat element; namely, that the particular G bias within the CGG/CCG-repeat element influences polymerase activity in a manner that extends beyond simple nearest-neighbor effects. These observations provide a baseline for future kinetic studies of repeat elements, as well as for studies of epigenetic and other chemical modifications thereof.


Asunto(s)
Alelos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Análisis de Secuencia de ADN/métodos , Regiones no Traducidas 5' , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Mutación , Expansión de Repetición de Trinucleótido/genética
12.
N Engl J Med ; 364(1): 33-42, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21142692

RESUMEN

BACKGROUND: Although cholera has been present in Latin America since 1991, it had not been epidemic in Haiti for at least 100 years. Recently, however, there has been a severe outbreak of cholera in Haiti. METHODS: We used third-generation single-molecule real-time DNA sequencing to determine the genome sequences of 2 clinical Vibrio cholerae isolates from the current outbreak in Haiti, 1 strain that caused cholera in Latin America in 1991, and 2 strains isolated in South Asia in 2002 and 2008. Using primary sequence data, we compared the genomes of these 5 strains and a set of previously obtained partial genomic sequences of 23 diverse strains of V. cholerae to assess the likely origin of the cholera outbreak in Haiti. RESULTS: Both single-nucleotide variations and the presence and structure of hypervariable chromosomal elements indicate that there is a close relationship between the Haitian isolates and variant V. cholerae El Tor O1 strains isolated in Bangladesh in 2002 and 2008. In contrast, analysis of genomic variation of the Haitian isolates reveals a more distant relationship with circulating South American isolates. CONCLUSIONS: The Haitian epidemic is probably the result of the introduction, through human activity, of a V. cholerae strain from a distant geographic source. (Funded by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.).


Asunto(s)
Cólera/microbiología , Genes Bacterianos , Vibrio cholerae/clasificación , Vibrio cholerae/genética , Cólera/epidemiología , Mapeo Cromosómico , Brotes de Enfermedades , Heces/microbiología , Variación Genética , Genoma Bacteriano , Haití/epidemiología , Historia del Siglo XVIII , Humanos , Filogenia , Análisis de Secuencia de ADN , Serotipificación , Vibrio cholerae/aislamiento & purificación , Vibrio cholerae O1/genética
13.
N Engl J Med ; 365(8): 709-17, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21793740

RESUMEN

BACKGROUND: A large outbreak of diarrhea and the hemolytic-uremic syndrome caused by an unusual serotype of Shiga-toxin-producing Escherichia coli (O104:H4) began in Germany in May 2011. As of July 22, a large number of cases of diarrhea caused by Shiga-toxin-producing E. coli have been reported--3167 without the hemolytic-uremic syndrome (16 deaths) and 908 with the hemolytic-uremic syndrome (34 deaths)--indicating that this strain is notably more virulent than most of the Shiga-toxin-producing E. coli strains. Preliminary genetic characterization of the outbreak strain suggested that, unlike most of these strains, it should be classified within the enteroaggregative pathotype of E. coli. METHODS: We used third-generation, single-molecule, real-time DNA sequencing to determine the complete genome sequence of the German outbreak strain, as well as the genome sequences of seven diarrhea-associated enteroaggregative E. coli serotype O104:H4 strains from Africa and four enteroaggregative E. coli reference strains belonging to other serotypes. Genomewide comparisons were performed with the use of these enteroaggregative E. coli genomes, as well as those of 40 previously sequenced E. coli isolates. RESULTS: The enteroaggregative E. coli O104:H4 strains are closely related and form a distinct clade among E. coli and enteroaggregative E. coli strains. However, the genome of the German outbreak strain can be distinguished from those of other O104:H4 strains because it contains a prophage encoding Shiga toxin 2 and a distinct set of additional virulence and antibiotic-resistance factors. CONCLUSIONS: Our findings suggest that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli O104:H4 strain that caused the German outbreak. More broadly, these findings highlight the way in which the plasticity of bacterial genomes facilitates the emergence of new pathogens.


Asunto(s)
Brotes de Enfermedades , Infecciones por Escherichia coli/microbiología , Genoma Bacteriano , Síndrome Hemolítico-Urémico/microbiología , Escherichia coli Shiga-Toxigénica/genética , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Diarrea/epidemiología , Diarrea/microbiología , Infecciones por Escherichia coli/epidemiología , Heces/microbiología , Femenino , Alemania/epidemiología , Síndrome Hemolítico-Urémico/epidemiología , Humanos , Persona de Mediana Edad , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación
14.
Psychotherapy (Chic) ; 60(3): 283-294, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36931813

RESUMEN

This article outlines the evidence base for the use of paradoxical interventions (PIs) in individual psychotherapy. Often misunderstood, PIs have shown long-term (distal) impacts on clinical outcomes, yet a review of the existing literature on these interventions illustrates a trending decline in consideration and use within both research and applied settings. Definitions of PIs and their constituent elements are presented along with clinical examples. We conducted one meta-analysis comparing PIs with a placebo or control and another comparing PIs to other therapeutic methods. PIs demonstrated a large effect (d = 1.1, k = 17 studies) compared to controls and a medium effect size (d = .49, k = 17 studies) compared to other therapeutic methods. We included a review of several case studies using PIs as well. Among the salient findings, there is a lack of assessment measure to track the implementation of PIs in session or a method to track their in-session effects. Further, there is a dearth of contemporary quantitative experimental research and development of PIs. We further advocate for the development and integration of PI training and supervision into clinical education and posteducation programs, given the current data demonstrating clinical utility. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Psicoterapia , Humanos , Escolaridad
15.
Front Psychiatry ; 14: 980739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113548

RESUMEN

Introduction: The therapeutic relationship continues to be one of the most important factors in therapeutic outcomes. Given the place of emotion in the definition of the therapeutic relationship, as well as the demonstrated positive impact that emotional expression has on therapeutic process and outcome, it stands to reason that studying the emotional exchange between the therapist and client further would be warranted. Methods: This study used a validated observational coding system--the Specific Affect Coding System (SPAFF) and a theoretical mathematical model to analyze behaviors which make up the therapeutic relationship. Specifically, the researchers used to codify relationship-building behaviors between an expert therapist and his client over the course of six sessions. Dynamical systems mathematical modeling was also employed to create "phase space portraits" depicting the relational dynamics between the master therapist and his client over six sessions. Results: Statistical analysis was used to compare SPAFF codes and model parameters between the expert therapist and his client. The expert therapist showed stability in affect codes over six sessions while the client's affect codes appeared to be more flexible over time, though model parameters remained stable across the six sessions. Finally, phase space portraits depicted the evolution of the affective dynamics between the master therapist and his client as the relationship matured. Discussion: The clinician's ability to stay emotionally positive and relatively stable across the six sessions (relative to the client) was noteworthy. It formed the basis for a stable base from which she could explore alternative methods to relate to others that she had allowed to dictate her actions, which is in keeping with previous research on the role of therapist facilitation of the therapeutic relationship, emotional expression within the therapeutic relationship, and influence of these on client outcomes. These results provide a valuable foundation for future research on emotional expression as a key component of the therapeutic relationship in psychotherapy.

16.
Psychother Res ; 22(1): 40-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22087547

RESUMEN

Mathematical models, such as the one developed by Gottman et al. (1998, 2000, 2002) to understand the interaction between husbands and wives, can provide novel insights into the dynamics of the therapeutic relationship. A set of nonlinear equations were used to model the changing emotional state of a therapist and client. The results suggest: (1) The person that is most responsive to the other achieves the most positive state, (2) the emotional state of the client oscillates before reaching its final state, (3) therapy is least successful when the therapist starts from a negative state, and (4) there is an inverse relationship between models that change only the influence parameter and models that change only the inertia parameter, creating a series of four basic models to work with. These theoretical models require further, empirical investigation to test the derived parameters. If validated, or revised based on observations of therapist-client relationships in development, they could provide specific direction in creating successful therapeutic relationships for training clinicians and those already in practice.


Asunto(s)
Trastornos Mentales/terapia , Modelos Psicológicos , Dinámicas no Lineales , Relaciones Médico-Paciente , Psicoterapia , Afecto , Humanos , Resultado del Tratamiento
17.
Plant Genome ; 14(1): e20072, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33605092

RESUMEN

Hop (Humulus lupulus L. var Lupulus) is a diploid, dioecious plant with a history of cultivation spanning more than one thousand years. Hop cones are valued for their use in brewing and contain compounds of therapeutic interest including xanthohumol. Efforts to determine how biochemical pathways responsible for desirable traits are regulated have been challenged by the large (2.8 Gb), repetitive, and heterozygous genome of hop. We present a draft haplotype-phased assembly of the Cascade cultivar genome. Our draft assembly and annotation of the Cascade genome is the most extensive representation of the hop genome to date. PacBio long-read sequences from hop were assembled with FALCON and partially phased with FALCON-Unzip. Comparative analysis of haplotype sequences provides insight into selective pressures that have driven evolution in hop. We discovered genes with greater sequence divergence enriched for stress-response, growth, and flowering functions in the draft phased assembly. With improved resolution of long terminal retrotransposons (LTRs) due to long-read sequencing, we found that hop is over 70% repetitive. We identified a homolog of cannabidiolic acid synthase (CBDAS) that is expressed in multiple tissues. The approaches we developed to analyze the draft phased assembly serve to deepen our understanding of the genomic landscape of hop and may have broader applicability to the study of other large, complex genomes.


Asunto(s)
Humulus , Diploidia , Genoma de Planta , Genómica , Haplotipos , Humulus/genética
18.
Nat Commun ; 12(1): 1935, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911078

RESUMEN

Haplotype-resolved genome assemblies are important for understanding how combinations of variants impact phenotypes. To date, these assemblies have been best created with complex protocols, such as cultured cells that contain a single-haplotype (haploid) genome, single cells where haplotypes are separated, or co-sequencing of parental genomes in a trio-based approach. These approaches are impractical in most situations. To address this issue, we present FALCON-Phase, a phasing tool that uses ultra-long-range Hi-C chromatin interaction data to extend phase blocks of partially-phased diploid assembles to chromosome or scaffold scale. FALCON-Phase uses the inherent phasing information in Hi-C reads, skipping variant calling, and reduces the computational complexity of phasing. Our method is validated on three benchmark datasets generated as part of the Vertebrate Genomes Project (VGP), including human, cow, and zebra finch, for which high-quality, fully haplotype-resolved assemblies are available using the trio-based approach. FALCON-Phase is accurate without having parental data and performance is better in samples with higher heterozygosity. For cow and zebra finch the accuracy is 97% compared to 80-91% for human. FALCON-Phase is applicable to any draft assembly that contains long primary contigs and phased associate contigs.


Asunto(s)
Mapeo Contig/métodos , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Animales , Bovinos , Haplotipos/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Pez Cebra/genética
19.
Nat Biotechnol ; 39(3): 309-312, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33288905

RESUMEN

Haplotype-resolved or phased genome assembly provides a complete picture of genomes and their complex genetic variations. However, current algorithms for phased assembly either do not generate chromosome-scale phasing or require pedigree information, which limits their application. We present a method named diploid assembly (DipAsm) that uses long, accurate reads and long-range conformation data for single individuals to generate a chromosome-scale phased assembly within 1 day. Applied to four public human genomes, PGP1, HG002, NA12878 and HG00733, DipAsm produced haplotype-resolved assemblies with minimum contig length needed to cover 50% of the known genome (NG50) up to 25 Mb and phased ~99.5% of heterozygous sites at 98-99% accuracy, outperforming other approaches in terms of both contiguity and phasing completeness. We demonstrate the importance of chromosome-scale phased assemblies for the discovery of structural variants (SVs), including thousands of new transposon insertions, and of highly polymorphic and medically important regions such as the human leukocyte antigen (HLA) and killer cell immunoglobulin-like receptor (KIR) regions. DipAsm will facilitate high-quality precision medicine and studies of individual haplotype variation and population diversity.


Asunto(s)
Cromosomas Humanos , Genoma Humano , Haplotipos , Algoritmos , Heterocigoto , Humanos , Polimorfismo de Nucleótido Simple
20.
Sci Data ; 7(1): 399, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203859

RESUMEN

The PacBio® HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10-25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomes Mus musculus and Zea mays, as well as two complex genomes, octoploid Fragaria × ananassa and the diploid anuran Rana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Ratones/genética , Zea mays/genética , Animales , Fragaria/genética , Genoma de Planta , Metagenoma , Ranidae/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA