Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(8): e17440, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39185562

RESUMEN

The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR-derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient-dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next-generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public-private partnerships in a pre-competitive space.


Asunto(s)
Seguridad Alimentaria , Fitomejoramiento , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad/genética , Pandemias , Fungicidas Industriales , Ambiente
2.
Field Crops Res ; 290: 108756, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36597471

RESUMEN

This study reports on the adoption and impacts of CGIAR-related maize varieties in 18 major maize-producing countries in sub-Saharan Africa (SSA) during 1995-2015. Of the 1345 maize varieties released during this timeframe, approximately 60% had a known CGIAR parentage. About 34% (9.5 million ha) of the total maize area in 2015 was cultivated with 'new' CGIAR-related maize varieties released between 1995 and 2015. In the same year, an additional 13% of the maize area was cultivated with 'old' CGIAR-related maize varieties released before 1995. The aggregate annual economic benefit of using new CGIAR-related maize germplasm for yield increase in SSA was estimated at US$1.1-1.6 billion in 2015, which we attributed equally to co-investments by CGIAR funders, public-sector national research and extension programs, and private sector partners. Given that the annual global investment in CGIAR maize breeding at its maximum was US$30 million, the benefit-cost ratios for the CGIAR investment and CGIAR-attributable portion of economic benefits varied from 12:1-17:1, under the assumption of a 5-year lag in the research investment to yield returns. The study also discusses the methodological challenges involved in large-scale impact assessments. Post-2015 CGIAR tropical maize breeding efforts have had a strong emphasis on stress tolerance.

3.
BMC Plant Biol ; 22(1): 542, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418954

RESUMEN

BACKGROUND: Maize lethal necrosis (MLN) disease is a significant constraint for maize producers in sub-Saharan Africa (SSA). The disease decimates the maize crop, in some cases, causing total crop failure with far-reaching impacts on regional food security. RESULTS: In this review, we analyze the impacts of MLN in Africa, finding that resource-poor farmers and consumers are the most vulnerable populations. We examine the molecular mechanism of MLN virus transmission, role of vectors and host plant resistance identifying a range of potential opportunities for genetic and phytosanitary interventions to control MLN. We discuss the likely exacerbating effects of climate change on the MLN menace and describe a sobering example of negative genetic association between tolerance to heat/drought and susceptibility to viral infection. We also review role of microRNAs in host plant response to MLN causing viruses as well as heat/drought stress that can be carefully engineered to develop resistant varieties using novel molecular techniques. CONCLUSIONS: With the dual drivers of increased crop loss due to MLN and increased demand of maize for food, the development and deployment of simple and safe technologies, like resistant cultivars developed through accelerated breeding or emerging gene editing technologies, will have substantial positive impact on livelihoods in the region. We have summarized the available genetic resources and identified a few large-effect QTLs that can be further exploited to accelerate conversion of existing farmer-preferred varieties into resistant cultivars.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/fisiología , África del Sur del Sahara , Necrosis , Factores Socioeconómicos
4.
J Nutr ; 150(11): 2912-2923, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32455433

RESUMEN

BACKGROUND: Vitamin A (VA) deficiency is a public health problem in some countries. Fortification, supplementation, and increased provitamin A consumption through biofortification are efficacious, but monitoring is needed due to risk of excessive VA intake when interventions overlap. OBJECTIVES: Two studies in 28-36-d-old male Mongolian gerbils simulated exposure to multiple VA interventions to determine the effects of provitamin A carotenoid consumption from biofortified maize and carrots and preformed VA fortificant on status. METHODS: Study 1 was a 2 × 2 × 2 factorial design (n = 85) with high-ß-carotene maize, orange carrots, and VA fortification at 50% estimated gerbil needs, compared with white maize and white carrot controls. Study 2 was a 2 × 3 factorial design (n = 66) evaluating orange carrot and VA consumption through fortification at 100% and 200% estimated needs. Both studies utilized 2-wk VA depletion, baseline evaluation, 9-wk treatments, and liver VA stores by HPLC. Intestinal scavenger receptor class B member 1 (Scarb1), ß-carotene 15,15'-dioxygenase (Bco1), ß-carotene 9',10'-oxygenase (Bco2), intestine-specific homeobox (Isx), and cytochrome P450 26A1 isoform α1 (Cyp26a1) expression was analyzed by qRT-PCR in study 2. RESULTS: In study 1, liver VA concentrations were significantly higher in orange carrot (0.69 ± 0.12 µmol/g) and orange maize groups (0.52 ± 0.21 µmol/g) compared with baseline (0.23 ± 0.069 µmol/g) and controls. Liver VA concentrations from VA fortificant alone (0.11 ± 0.053 µmol/g) did not differ from negative control. In study 2, orange carrot significantly enhanced liver VA concentrations (0.85 ± 0.24 µmol/g) relative to baseline (0.43 ± 0.14 µmol/g), but VA fortificant alone (0.42 ± 0.21 µmol/g) did not. Intestinal Scarb1 and Bco1 were negatively correlated with increasing liver VA concentrations (P < 0.01, r2 = 0.25-0.27). Serum retinol concentrations did not differ. CONCLUSIONS: Biofortified carrots and maize without fortification prevented VA deficiency in gerbils. During adequate provitamin A dietary intake, preformed VA intake resulted in excessive liver stores in gerbils, despite downregulation of carotenoid absorption and cleavage gene expression.


Asunto(s)
Carotenoides/administración & dosificación , Carotenoides/farmacocinética , Hígado/química , Vitamina A/administración & dosificación , Vitamina A/farmacocinética , Alimentación Animal , Animales , Biofortificación , Carotenoides/efectos adversos , Carotenoides/metabolismo , Daucus carota , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Gerbillinae , Hígado/metabolismo , Masculino , Vitamina A/efectos adversos , Zea mays
5.
J Nutr ; 147(3): 337-345, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28148686

RESUMEN

Background: Vitamin A (VA) and zinc deficiencies are prevalent. Maize is a common staple, and milling affects nutrient and nutrient-modifier profiles.Objective: We investigated the interaction of maize milling methods (i.e., whole grain compared with refined) in male Mongolian gerbils aged 29-35 d with conventionally bred provitamin A-biofortified (orange) or white maize on VA and zinc status.Methods: Study 1 (n = 67) was a 2 × 3 milling (whole compared with refined) by VA [no-vitamin A placebo group (VA-), orange, and VA-supplemented group (VA+)] design, with 4 wk of VA depletion followed by six 4-wk treatments (n = 10/treatment). Study 2 (n = 33) was a 2 × 2 milling-by-zinc [no-zinc placebo group (Zn-) compared with zinc-supplemented group (Zn+)] design, including 2 wk of VA depletion followed by four 3-wk treatments (n = 8-9/treatment). For study 1, positive and negative control groups were given supplemental VA at equimolar amounts to ß-carotene equivalents consumed by the orange groups (74 ± 5 nmol/d) or placebo, respectively. For study 2, positive and negative control groups were given 152 µg Zn/d or placebo, respectively.Results: Milling significantly affected zinc concentration, providing 44-45% (whole grain) or 9-14% (refined) NRC requirements. In study 1, orange maize improved liver VA concentrations (mean ± SD: 0.28 ± 0.08 µmol/g) compared with the white maize groups (0.072 ± 0.054 µmol/g). Provitamin A bioefficacy was similar. In study 2, neither zinc nor milling influenced liver retinol. Refined Zn- gerbils weighed less than others by day 14 (46.6 ± 7.1 compared with 56.5 ± 3.5 g, respectively; P < 0.0001). Milling affected pancreas zinc concentrations (refined Zn-: 21.1 ± 1.8 µg Zn/g; whole Zn-: 32.5 ± 5.8 µg Zn/g).Conclusions: Whole-grain intake improved zinc and did not affect provitamin A bioefficacy. Other factors affected by milling (e.g., shelf life, preference, aflatoxin fractioning) need to be considered to maximize health.


Asunto(s)
Manipulación de Alimentos/métodos , Zea mays/química , Zinc/metabolismo , beta Caroteno/administración & dosificación , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Alimentos Fortificados , Gerbillinae , Hígado/metabolismo , Masculino , Estado Nutricional , Vitamina A/metabolismo , Zea mays/metabolismo , Zinc/sangre , beta Caroteno/análisis , beta Caroteno/metabolismo
6.
J Nutr ; 146(7): 1290-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27281810

RESUMEN

BACKGROUND: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensive. OBJECTIVES: We investigated changes in serum retinol relative differences of isotope amount ratios of (13)C/(12)C (δ(13)C) caused by natural (13)C fractionation in C3 compared with C4 plants as a biomarker to detect provitamin A efficacy from biofortified (orange) maize and high-carotene carrots. METHODS: The design was a 2 × 2 × 2 maize (orange compared with white) by carrot (orange compared with white) by a VA fortificant (VA+ compared with VA-) in weanling male Mongolian gerbils (n = 55), which included a 14-d VA depletion period and a 62-d treatment period (1 baseline and 8 treatment groups; n = 5-7/group). Liver VA and serum retinol were quantified, purified by HPLC, and analyzed by GC combustion isotope ratio mass spectrometry for (13)C. RESULTS: Treatments affected liver VA concentrations (0.048 ± 0.039 to 0.79 ± 0.24 µmol/g; P < 0.0001) but not overall serum retinol concentrations (1.38 ± 0.22 µmol/L). Serum retinol and liver VA δ(13)C were significantly correlated (R(2) = 0.92; P < 0.0001). Serum retinol δ(13)C differentiated control groups that consumed white maize and white carrots (-27.1 ± 1.2 δ(13)C‰) from treated groups that consumed orange maize and white carrots (-21.6 ± 1.4 δ(13)C‰ P < 0.0001) and white maize and orange carrots (-30.6 ± 0.7 δ(13)C‰ P < 0.0001). A prediction model demonstrated the relative contribution of orange maize to total dietary VA for groups that consumed VA from mixed sources. CONCLUSIONS: Provitamin A efficacy and quantitative estimation of the relative contribution to dietary VA were demonstrated with the use of serum retinol δ(13)C. This method could be used for maize efficacy or effectiveness studies and with other C4 crops biofortified with provitamin A carotenoids (e.g., millet, sorghum). Advantages include no extrinsic tracer dose, 1 blood sample, and higher sensitivity than serum retinol concentrations alone.


Asunto(s)
Carbono/metabolismo , Carotenoides/metabolismo , Provitaminas/metabolismo , Vitamina A/sangre , Zea mays/metabolismo , Animales , Biomarcadores/sangre , Isótopos de Carbono , Carotenoides/química , Daucus carota , Alimentos Fortificados , Gerbillinae , Humanos , Masculino , Plantas Modificadas Genéticamente , Provitaminas/química , Vitamina A/metabolismo
7.
Theor Appl Genet ; 128(5): 851-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25690716

RESUMEN

KEY MESSAGE: Genome-wide association analysis in CIMMYT's association panel revealed new favorable native genomic variations in/nearby important genes such as hydroxylases and CCD1 that have potential for carotenoid biofortification in maize. Genome-wide association studies (GWAS) have been used extensively to identify allelic variation for genes controlling important agronomic and nutritional traits in plants. Provitamin A (proVA) enhancing alleles of lycopene epsilon cyclase (LCYE) and ß-carotene hydroxylase 1 (CRTRB1), previously identified through candidate-gene based GWAS, are currently used in CIMMYT's maize breeding program. The objective of this study was to identify genes or genomic regions controlling variation for carotenoid concentrations in grain for CIMMYT's carotenoid association mapping panel of 380 inbred maize lines, using high-density genome-wide platforms with ~476,000 SNP markers. Population structure effects were minimized by adjustments using principal components and kinship matrix with mixed models. Genome-wide linkage disequilibrium (LD) analysis indicated faster LD decay (3.9 kb; r (2) = 0.1) than commonly reported for temperate germplasm, and therefore the possibility of achieving higher mapping resolution with our mostly tropical diversity panel. GWAS for various carotenoids identified CRTRB1, LCYE and other key genes or genomic regions that govern rate-critical steps in the upstream pathway, such as DXS1, GGPS1, and GGPS2 that are known to play important roles in the accumulation of precursor isoprenoids as well as downstream genes HYD5, CCD1, and ZEP1, which are involved in hydroxylation and carotenoid degradation. SNPs at or near all of these regions were identified and may be useful target regions for carotenoid biofortification breeding efforts in maize; for example a genomic region on chromosome 2 explained ~16% of the phenotypic variance for ß-carotene independently of CRTRB1, and a variant of CCD1 that resulted in reduced ß-cryptoxanthin degradation was found in lines that have previously been observed to have low proVA degradation rates.


Asunto(s)
Carotenoides/biosíntesis , Zea mays/genética , Alelos , Mapeo Cromosómico , Genes de Plantas , Estudios de Asociación Genética , Marcadores Genéticos , Liasas Intramoleculares/genética , Modelos Lineales , Desequilibrio de Ligamiento , Oxigenasas de Función Mixta/genética , Análisis de Componente Principal
8.
J Nutr ; 143(7): 1141-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23719225

RESUMEN

The relationship of dietary vitamin A transfer from mother to fetus is not well understood. The difference in swine offspring liver reserves was investigated between single-dose vitamin A provided to the mother post-conception compared with continuous provitamin A carotenoid dietary intake from biofortified (enhanced provitamin A) orange maize (OM) fed during gestation and lactation. Vitamin A-depleted sows were fed OM (n = 5) or white maize (WM) + 1.05 mmol retinyl palmitate administered at the beginning of gestation (n = 6). Piglets (n = 102) were killed at 0, 10, 20, and 28 d after birth. Piglets from sows fed OM had higher liver retinol reserves (P < 0.0001) and a combined mean concentration from d 10 to 28 of 0.11 ± 0.030 µmol/g. Piglets from sows fed WM had higher serum retinol concentrations (0.56 ± 0.25 µmol/L; P = 0.0098) despite lower liver retinol concentrations of 0.068 ± 0.026 µmol/g from d 10 to 28. Milk was collected at 0, 5, 10, 20, and 28 d. Sows fed OM had a higher milk retinol concentration (1.36 ± 1.30 µmol/L; P = 0.038), than those fed WM (0.93 ±1.03 µmol/L). Sow livers were collected at the end of the study (n = 3/group) and had identical retinol concentrations (0.22 ± 0.05 µmol/g). Consumption of daily provitamin A carotenoids by sows during gestation and lactation increased liver retinol status in weanling piglets, illustrating the potential for provitamin A carotenoid consumption from biofortified staple foods to improve vitamin A reserves. Biofortified OM could have a measurable impact on vitamin A status in deficient populations if widely adopted.


Asunto(s)
Dieta/veterinaria , Lactancia/efectos de los fármacos , Deficiencia de Vitamina A/metabolismo , Vitamina A/análogos & derivados , Alimentación Animal/análisis , Animales , Animales Lactantes , Diterpenos , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Leche , Ésteres de Retinilo , Porcinos , Vitamina A/administración & dosificación , Vitamina A/sangre , Zea mays
9.
Theor Appl Genet ; 126(2): 389-99, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23052023

RESUMEN

Vitamin A deficiency (VAD) compromises immune function and is the leading cause of preventable blindness in children in many developing countries. Biofortification, or breeding staple food crops that are rich in micronutrients, provides a sustainable way to fight VAD and other micronutrient malnutrition problems. Polymorphisms, with associated molecular markers, have recently been identified for two loci, LcyE (lycopene epsilon cyclase) and CrtRB1 (ß-carotene hydroxylase 1) that govern critical steps in the carotenoid biosynthetic pathway in maize endosperm, thereby enabling the opportunity to integrate marker-assisted selection (MAS) into carotenoid breeding programs. We validated the effects of 3 polymorphisms (LcyE5'TE, LcyE3'Indel and CrtRB1-3'TE) in 26 diverse tropical genetic backgrounds. CrtRB1-3'TE had a two-ten fold effect on enhancing beta-carotene (BC) and total provitamin A (proA) content. Reduced-function, favorable polymorphisms within LcyE resulted in 0-30 % reduction in the ratio of alpha- to beta-branch carotenoids, and increase in proA content (sometimes statistically significant). CrtRB1-3'TE had large, significant effect on enhancing BC and total ProA content, irrespective of genetic constitution for LcyE5'TE. Genotypes with homozygous favorable CrtRB1-3'TE alleles had much less zeaxanthin and an average of 25 % less total carotenoid than other genotypes, suggesting that feedback inhibition may be reducing the total flux into the carotenoid pathway. Because this feedback inhibition was most pronounced in the homozygous favorable LcyE (reduced-function) genotypes, and because maximum total proA concentrations were achieved in genotypes with homozygous unfavorable or heterozygous LcyE, we recommend not selecting for both reduced-function genes in breeding programs. LcyE exhibited significant segregation distortion (SD) in all the eight, while CrtRB1 in five of eight digenic populations studied, with favorable alleles of both the genes frequently under-represented. MAS using markers reported herein can efficiently increase proA carotenoid concentration in maize.


Asunto(s)
Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/genética , Oxigenasas de Función Mixta/genética , Polimorfismo Genético/genética , Vitamina A/metabolismo , Zea mays/genética , Alelos , Biomarcadores/análisis , Genética de Población
10.
Theor Appl Genet ; 126(11): 2879-95, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24042570

RESUMEN

KEY MESSAGE: Genetic control of maize grain carotenoid profiles is coordinated through several loci distributed throughout three secondary metabolic pathways, most of which exhibit additive, and more importantly, pleiotropic effects. The genetic basis for the variation in maize grain carotenoid concentrations was investigated in two F2:3 populations, DEexp × CI7 and A619 × SC55, derived from high total carotenoid and high ß-carotene inbred lines. A comparison of grain carotenoid concentrations from population DEexp × CI7 grown in different environments revealed significantly higher concentrations and greater trait variation in samples harvested from a subtropical environment relative to those from a temperate environment. Genotype by environment interactions was significant for most carotenoid traits. Using phenotypic data in additive, environment-specific genetic models, quantitative trait loci (QTL) were identified for absolute and derived carotenoid traits in each population, including those specific to the isomerization of ß-carotene. A multivariate approach for these correlated traits was taken, using carotenoid trait principal components (PCs) that jointly accounted for 97 % or more of trait variation. Component loadings for carotenoid PCs were interpreted in the context of known substrate-product relationships within the carotenoid pathway. Importantly, QTL for univariate and multivariate traits were found to cluster in close proximity to map locations of loci involved in methyl-erythritol, isoprenoid and carotenoid metabolism. Several of these genes, including lycopene epsilon cyclase, carotenoid cleavage dioxygenase1 and beta-carotene hydroxylase, were mapped in the segregating populations. These loci exhibited pleiotropic effects on α-branch carotenoids, total carotenoid profile and ß-branch carotenoids, respectively. Our results confirm that several QTL are involved in the modification of carotenoid profiles, and suggest genetic targets that could be used for the improvement of total carotenoid and ß-carotene in future breeding populations.


Asunto(s)
Carotenoides/genética , Variación Genética , Semillas/genética , Zea mays/genética , Vías Biosintéticas/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Genes de Plantas/genética , Redes y Vías Metabólicas/genética , Análisis de Componente Principal , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable
11.
Sci Rep ; 13(1): 13422, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591891

RESUMEN

Biological nitrification inhibition (BNI) is a plant function where root systems release antibiotic compounds (BNIs) specifically aimed at suppressing nitrifiers to limit soil-nitrate formation in the root zone. Little is known about BNI-activity in maize (Zea mays L.), the most important food, feed, and energy crop. Two categories of BNIs are released from maize roots; hydrophobic and hydrophilic BNIs, that determine BNI-capacity in root systems. Zeanone is a recently discovered hydrophobic compound with BNI-activity, released from maize roots. The objectives of this study were to understand/quantify the relationship between zeanone activity and hydrophobic BNI-capacity. We assessed genetic variability among 250 CIMMYT maize lines (CMLs) characterized for hydrophobic BNI-capacity and zeanone activity, towards developing genetic markers linked to this trait in maize. CMLs with high BNI-capacity and ability to release zeanone from roots were identified. GWAS was performed using 27,085 SNPs (with unique positions on the B73v.4 reference genome, and false discovery rate = 10), and phenotypic information for BNI-capacity and zeanone production from root systems. Eighteen significant markers were identified; three associated with specific BNI-activity (SBNI), four with BNI-activity per plant (BNIPP), another ten were common between SBNI and BNIPP, and one with zeanone release. Further, 30 annotated genes were associated with the significant SNPs; most of these genes are involved in pathways of "biological process", and one (AMT5) in ammonium regulation in maize roots. Although the inbred lines in this study were not developed for BNI-traits, the identification of markers associated with BNI-capacity suggests the possibility of using these genomic tools in marker-assisted selection to improve hydrophobic BNI-capacity in maize.


Asunto(s)
Nitrificación , Zea mays , Zea mays/genética , Fitomejoramiento , Antibacterianos , Polimorfismo de Nucleótido Simple
12.
Mol Plant ; 16(10): 1590-1611, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37674314

RESUMEN

Climate change poses daunting challenges to agricultural production and food security. Rising temperatures, shifting weather patterns, and more frequent extreme events have already demonstrated their effects on local, regional, and global agricultural systems. Crop varieties that withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximize risk avoidance, productivity, and profitability under climate-changed environments. We surveyed 588 expert stakeholders to predict current and novel traits that may be essential for future pearl millet, sorghum, maize, groundnut, cowpea, and common bean varieties, particularly in sub-Saharan Africa. We then review the current progress and prospects for breeding three prioritized future-essential traits for each of these crops. Experts predict that most current breeding priorities will remain important, but that rates of genetic gain must increase to keep pace with climate challenges and consumer demands. Importantly, the predicted future-essential traits include innovative breeding targets that must also be prioritized; for example, (1) optimized rhizosphere microbiome, with benefits for P, N, and water use efficiency, (2) optimized performance across or in specific cropping systems, (3) lower nighttime respiration, (4) improved stover quality, and (5) increased early vigor. We further discuss cutting-edge tools and approaches to discover, validate, and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision, accuracy, and speed. We conclude that the greatest challenge to developing crop varieties to win the race between climate change and food security might be our innovativeness in defining and boldness to breed for the traits of tomorrow.


Asunto(s)
Cambio Climático , Fabaceae , Abastecimiento de Alimentos , Fitomejoramiento , Productos Agrícolas/genética , Seguridad Alimentaria
13.
Food Nutr Bull ; 33(1): 63-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22624299

RESUMEN

BACKGROUND: Vitamin A deficiency is associated with poor health outcomes related to reproduction, growth, vision, and immunity. Biofortification of staple crops is a novel strategy for combating vitamin A deficiency in high-risk populations where staple food intakes are high. African populations are proposed beneficiaries of maize (Zea mays) biofortified with provitamin A carotenoids, often called "orange maize" because of its distinctive deep yellow-orange kernels. The color facilitates ready recognition but presents a cultural challenge to maize-consuming populations, including those in much of Africa, who traditionally eat white varieties. OBJECTIVE: This study explores the intake patterns of, as well as adaptation to, traditional foods made with provitamin A-biofortified maize compared with white maize in rural Zambian children 3 to 5 years of age (n = 189) during a 3-month feeding trial. METHODS: The subjects were fed a breakfast of maize porridge (sweet mush), a lunch of maize nshima (stiff mush) with various side dishes, and an afternoon snack based on a 6-day rotating menu. The trial was conducted in 2010. The orange maize used in the trial came from three different sources. O1 maize was from the 2009 harvest and was stored in a freezer until use in 2010. O2 maize was also from the 2009 harvest and was stored in a cold room until 2010. O3 ("fresh") maize was from the 2010 harvest and was fed immediately after harvest in week 9 of the study and then stored in a freezer until milling for the final four weeks. RESULTS: Consumption of menu items, except snacks, was influenced by week (p < .0084). The intakes of porridge and nshima made with orange maize equaled those of porridge and nshima made with white maize from week 2 onward. The intakes of porridge and nshima prepared from O1 and O2 did not differ, but intakes became significantly higher when meals made from O3 were introduced (p < .014 for porridge and p < or = .013 for nshima). CONCLUSIONS: These results demonstrate quick adaptation to orange maize, a preference for recently harvested maize, and an optimistic outlook for similar adaptation patterns in other biofortified-maize target countries.


Asunto(s)
Carotenoides/metabolismo , Dieta , Preferencias Alimentarias , Alimentos Modificados Genéticamente , Pigmentos Biológicos/metabolismo , Semillas/metabolismo , Zea mays/metabolismo , Carotenoides/administración & dosificación , Conducta Infantil/etnología , Preescolar , Servicios de Salud Comunitaria , Condimentos/análisis , Dieta/etnología , Grano Comestible/química , Comida Rápida/análisis , Manipulación de Alimentos , Preferencias Alimentarias/etnología , Servicios de Alimentación , Promoción de la Salud , Humanos , Salud Rural , Semillas/química , Deficiencia de Vitamina A/prevención & control , Zambia , Zea mays/química
15.
Int J Vitam Nutr Res ; 80(4-5): 336-50, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21462118

RESUMEN

Micronutrient malnutrition, or “hidden hunger,” afflicts a large part of the world’s population, with vitamin A deficiency among the most prevalent public health problems. Provitamin A carotenoids in plant foods are a source of vitamin A for humans; however, several factors, including species of carotenoids, host status, and effectors of absorption can negatively, positively, or in yet undetermined ways affect the bioavailability of these compounds. Staple foods biofortified with provitamin A carotenoids have shown more efficient bioconversion to retinol than generally observed for vegetables (e. g., 3 - 6 versus 10 - 80 beta-carotene to 1 µg retinol). Staple foods such as maize, rice, and cassava, are generally more accessible than meat or vegetable sources of retinol or provitamin A carotenoids to poor consumers, who are most likely to suffer micronutrient malnutrition. Interdisciplinary teamwork, including plant breeders, nutritionists, government and local agencies, seed companies, and communities, is needed to avail biofortified crops to needy populations. Key steps include developing, validating the nutritional effects of, providing nutrition education concerning, and promoting the use of biofortified crops. Provitamin A carotenoid biofortification of sweet potato, maize, cassava, and rice are at different stages along this continuum. Close linkages between agriculture, nutrition, and health, are essential in the quest to eradicate hunger among the poor.


Asunto(s)
Absorción Intestinal , Vitamina A/metabolismo , Vitamina A/farmacocinética , Disponibilidad Biológica , Carotenoides/metabolismo , Carotenoides/farmacocinética , Alimentos Fortificados , Humanos , Manihot , Oryza , Zea mays
16.
Nat Plants ; 6(10): 1231-1241, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33051616

RESUMEN

Climate-resilient crops and crop varieties have been recommended as a way for farmers to cope with or adapt to climate change, but despite the apparent benefits, rates of adoption by smallholder farmers are highly variable. Here we present a scoping review, using PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols), examining the conditions that have led to the adoption of climate-resilient crops over the past 30 years in lower- and middle-income countries. The descriptive analysis performed on 202 papers shows that small-scale producers adopted climate-resilient crops and varieties to cope with abiotic stresses such as drought, heat, flooding and salinity. The most prevalent trait in our dataset was drought tolerance, followed by water-use efficiency. Our analysis found that the most important determinants of adoption of climate-resilient crops were the availability and effectiveness of extension services and outreach, followed by education levels of heads of households, farmers' access to inputs-especially seeds and fertilizers-and socio-economic status of farming families. About 53% of studies reported that social differences such as sex, age, marital status and ethnicity affected the adoption of varieties or crops as climate change-adaptation strategies. On the basis of the collected evidence, this study presents a series of pathways and interventions that could contribute to higher adoption rates of climate-resilient crops and reduce dis-adoption.


Asunto(s)
Aclimatación , Cambio Climático , Productos Agrícolas/fisiología , Países en Desarrollo , Humanos , Renta
17.
Nat Commun ; 11(1): 4572, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917907

RESUMEN

Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs.


Asunto(s)
Variación Genética , Genoma de Planta , Triticum/genética , Alelos , Domesticación , Genotipo , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Tetraploidía
18.
Front Plant Sci ; 10: 30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30778360

RESUMEN

Aflatoxin contamination of maize grain and products causes serious health problems for consumers worldwide, and especially in low- and middle-income countries where monitoring and safety standards are inconsistently implemented. Vitamin A deficiency (VAD) also compromises the health of millions of maize consumers in several regions of the world including large parts of sub-Saharan Africa. We investigated whether provitamin A (proVA) enriched maize can simultaneously contribute to alleviate both of these health concerns. We studied aflatoxin accumulation in grain of 120 maize hybrids formed by crossing 3 Aspergillus flavus resistant and three susceptible lines with 20 orange maize lines with low to high carotenoids concentrations. The hybrids were grown in replicated, artificially-inoculated field trials at five environments. Grain of hybrids with larger concentrations of beta-carotene (BC), beta-cryptoxanthin (BCX) and total proVA had significantly less aflatoxin contamination than hybrids with lower carotenoids concentrations. Aflatoxin contamination had negative genetic correlation with BCX (-0.28, p < 0.01), BC (-0.18, p < 0.05), and proVA (-0.23, p < 0.05). The relative ease of breeding for increased proVA carotenoid concentrations as compared to breeding for aflatoxin resistance in maize suggests using the former as a component of strategies to combat aflatoxin contamination problems for maize. Our findings indicate that proVA enriched maize can be particularly beneficial where the health burdens of exposure to aflatoxin and prevalence of VAD converge with high rates of maize consumption.

19.
Annu Rev Phytopathol ; 57: 165-188, 2019 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-31150590

RESUMEN

Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications totackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.


Asunto(s)
Tecnología de Genética Dirigida , Edición Génica , Productos Agrícolas , Plantas Modificadas Genéticamente , Biología Sintética
20.
J Agric Food Chem ; 66(36): 9391-9398, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30130402

RESUMEN

Biofortification is a strategy to reduce micronutrient malnutrition. The aim of this study was to investigate whether consumption of biofortified fresh maize can supply nutritionally meaningful amounts of provitamin A carotenoids (PVA), zinc, lysine, and tryptophan. The accumulation patterns for PVA and tocochromanol compounds in developing grain of 23 PVA hybrids was studied, and nutritionally meaningful amounts of those compounds were found in grain by milk stage, when fresh maize is eaten. The highest PVA and tocochromanol accumulation occurred by physiological maturity. The percent apparent retention in boiled fresh maize was 92%, 117%, 99%, and 66% for PVA, zinc, lysine, and tryptophan, respectively. Consumption of 0.5 to 2 ears of fresh maize daily could supply 33-62.2%, 11-24% and more than 85% of the estimated average requirement of PVA, tryptophan, and zinc, respectively. The results indicate that eating biofortified fresh maize can contribute to improved micronutrient nutrition.


Asunto(s)
Carotenoides/análisis , Alimentos Fortificados/análisis , Micronutrientes/análisis , Semillas/crecimiento & desarrollo , Vitamina E/análisis , Zea mays/química , Carotenoides/metabolismo , Culinaria , Humanos , Micronutrientes/metabolismo , Valor Nutritivo , Extractos Vegetales/análisis , Extractos Vegetales/metabolismo , Semillas/química , Semillas/metabolismo , Vitamina E/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA