Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(4): 103050, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813233

RESUMEN

Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Ratones , Humanos , Animales , Ciclooxigenasa 2/metabolismo , Ácido Araquidónico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Fisiológica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inhibidores de la Angiogénesis/farmacología , Movimiento Celular , Proliferación Celular
2.
J Cell Sci ; 134(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34841431

RESUMEN

The main laminin-binding integrins α3ß1, α6ß1 and α6ß4 are co-expressed in the developing kidney collecting duct system. We previously showed that deleting the integrin α3 or α6 subunit in the ureteric bud, which gives rise to the kidney collecting system, caused either a mild or no branching morphogenesis phenotype, respectively. To determine whether these two integrin subunits cooperate in kidney collecting duct development, we deleted α3 and α6 in the developing ureteric bud. The collecting system of the double knockout phenocopied the α3 integrin conditional knockout. However, with age, the mice developed severe inflammation and fibrosis around the collecting ducts, resulting in kidney failure. Integrin α3α6-null collecting duct epithelial cells showed increased secretion of pro-inflammatory cytokines and displayed mesenchymal characteristics, causing loss of barrier function. These features resulted from increased nuclear factor kappa-B (NF-κB) activity, which regulated the Snail and Slug (also known as Snai1 and Snai2, respectively) transcription factors and their downstream targets. These data suggest that laminin-binding integrins play a key role in the maintenance of kidney tubule epithelial cell polarity and decrease pro-inflammatory cytokine secretion by regulating NF-κB-dependent signaling.


Asunto(s)
Integrinas , Túbulos Renales Colectores , Animales , Células Epiteliales , Inflamación/genética , Integrina alfa3beta1 , Integrinas/genética , Laminina/genética , Ratones , FN-kappa B/genética
3.
Prostaglandins Other Lipid Mediat ; 158: 106604, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34922004

RESUMEN

Adipose tissue contains a complex immune environment and is a central contributor to heightened systemic inflammation in obese persons. Epoxyeicosatrienoic acids (EETs) are lipid signaling molecules that decrease inflammation in obese animals, but their effect on inflammation in humans is unknown. The enzyme soluble epoxide hydrolase (sEH) hydrolyzes EETs to less active diols, and we hypothesized that pharmacologic sEH inhibition would decrease adipose inflammation in obese individuals. We treated obese prediabetic adults with the sEH inhibitor GSK2256294 versus placebo in a crossover design, collected subcutaneous abdominal adipose tissue via lipoaspiration and characterized the tissue T cell profile. Treatment with GSK2256294 decreased the percentage of pro-inflammatory T cells producing interferon-gamma (IFNγ), but not interleukin (IL)-17A, and decreased the amount of secreted tumor necrosis factor-alpha (TNFα). Understanding the contribution of the EET/sEH pathway to inflammation in obesity could lead to new strategies to modulate adipose and systemic inflammation.


Asunto(s)
Epóxido Hidrolasas , Linfocitos T , Tejido Adiposo/metabolismo , Animales , Ciclohexilaminas/metabolismo , Epóxido Hidrolasas/metabolismo , Linfocitos T/metabolismo , Triazinas
4.
Am J Physiol Renal Physiol ; 320(3): F342-F350, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356958

RESUMEN

The Vanderbilt O'Brien Kidney Center (VOKC) is one of the eight National Institutes of Health P30-funded centers in the United States. The mission of these core-based centers is to provide technical and conceptual support to enhance and facilitate research in the field of kidney diseases. The goal of the VOKC is to provide support to understand mechanisms and identify potential therapies for acute and chronic kidney disease. The services provided by the VOKC are meant to help the scientific community to have the right support and tools as well as to select the right animal model, statistical analysis, and clinical study design to perform innovative research and translate discoveries into personalized care to prevent, diagnose, and cure kidney disease. To achieve these goals, the VOKC has in place a program to foster collaborative investigation into critical questions of kidney disease, to personalize diagnosis and treatment of kidney disease, and to disseminate information about kidney disease and the benefits of VOKC services and research. The VOKC is complemented by state-of-the-art cores and an education and outreach program whose goals are to provide an educational platform to enhance the study of kidney disease, to publicize information about services available through the VOKC, and to provide information about kidney disease to patients and other interested members of the community. In this review, we highlight the major services and contributions of the VOKC.


Asunto(s)
Investigación Biomédica/organización & administración , Nefrología/organización & administración , Proyectos de Investigación , Animales , Investigación Biomédica/educación , Relaciones Comunidad-Institución , Conducta Cooperativa , Educación Profesional/organización & administración , Educación en Salud/organización & administración , Humanos , Comunicación Interdisciplinaria , Nefrología/educación , Tennessee
5.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L294-L311, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32491951

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal, fibrosing lung disease for which treatment remains suboptimal. Fibrogenic cytokines, including transforming growth factor-ß (TGF-ß), are central to its pathogenesis. Protein tyrosine phosphatase-α (PTPα) has emerged as a key regulator of fibrogenic signaling in fibroblasts. We have reported that mice globally deficient in PTPα (Ptpra-/-) were protected from experimental pulmonary fibrosis, in part via alterations in TGF-ß signaling. The goal of this study was to determine the lung cell types and mechanisms by which PTPα controls fibrogenic pathways and whether these pathways are relevant to human disease. Immunohistochemical analysis of lungs from patients with IPF revealed that PTPα was highly expressed by mesenchymal cells in fibroblastic foci and by airway and alveolar epithelial cells. To determine whether PTPα promotes profibrotic signaling pathways in lung fibroblasts and/or epithelial cells, we generated mice with conditional (floxed) Ptpra alleles (Ptpraf/f). These mice were crossed with Dermo1-Cre or with Sftpc-CreERT2 mice to delete Ptpra in mesenchymal cells and alveolar type II cells, respectively. Dermo1-Cre/Ptpraf/f mice were protected from bleomycin-induced pulmonary fibrosis, whereas Sftpc-CreERT2/Ptpraf/f mice developed pulmonary fibrosis equivalent to controls. Both canonical and noncanonical TGF-ß signaling and downstream TGF-ß-induced fibrogenic responses were attenuated in isolated Ptpra-/- compared with wild-type fibroblasts. Furthermore, TGF-ß-induced tyrosine phosphorylation of TGF-ß type II receptor and of PTPα were attenuated in Ptpra-/- compared with wild-type fibroblasts. The phenotype of cells genetically deficient in PTPα was recapitulated with the use of a Src inhibitor. These findings suggest that PTPα amplifies profibrotic TGF-ß-dependent pathway signaling in lung fibroblasts.


Asunto(s)
Fibroblastos/metabolismo , Pulmón/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Bleomicina/farmacología , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Transducción de Señal/efectos de los fármacos
6.
Development ; 144(22): 4148-4158, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28993400

RESUMEN

Kidney collecting system development requires integrin-dependent cell-extracellular matrix interactions. Integrins are heterodimeric transmembrane receptors consisting of α and ß subunits; crucial integrins in the kidney collecting system express the ß1 subunit. The ß1 cytoplasmic tail has two NPxY motifs that mediate functions by binding to cytoplasmic signaling and scaffolding molecules. Talins, scaffolding proteins that bind to the membrane proximal NPxY motif, are proposed to activate integrins and to link them to the actin cytoskeleton. We have defined the role of talin binding to the ß1 proximal NPxY motif in the developing kidney collecting system in mice that selectively express a Y-to-A mutation in this motif. The mice developed a hypoplastic dysplastic collecting system. Collecting duct cells expressing this mutation had moderate abnormalities in cell adhesion, migration, proliferation and growth factor-dependent signaling. In contrast, mice lacking talins in the developing ureteric bud developed kidney agenesis and collecting duct cells had severe cytoskeletal, adhesion and polarity defects. Thus, talins are essential for kidney collecting duct development through mechanisms that extend beyond those requiring binding to the ß1 integrin subunit NPxY motif.


Asunto(s)
Integrina beta1/metabolismo , Morfogénesis , Talina/metabolismo , Uréter/citología , Uréter/embriología , Uniones Adherentes/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Adhesión Celular , Membrana Celular/metabolismo , Polaridad Celular , Regulación del Desarrollo de la Expresión Génica , Integrina beta1/química , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/embriología , Ratones Endogámicos C57BL , Mutación/genética , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Uréter/metabolismo
7.
Mol Cell Proteomics ; 17(5): 889-900, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29374135

RESUMEN

The lumen of the endoplasmic reticulum (ER) provides an oxidizing environment to aid in the formation of disulfide bonds, which is tightly regulated by both antioxidant proteins and small molecules. On the cytoplasmic side of the ER, cytochrome P450 (P450) proteins have been identified as a superfamily of enzymes that are important in the formation of endogenous chemicals as well as in the detoxication of xenobiotics. Our previous report described oxidative inhibition of P450 Family 4 enzymes via oxidation of the heme-thiolate cysteine to a sulfenic acid (-SOH) (Albertolle, M. E. et al. (2017) J. Biol. Chem. 292, 11230-11242). Further proteomic analyses of murine kidney and liver microsomes led to the finding that a number of other drug-metabolizing enzymes located in the ER are also redox-regulated in this manner. We expanded our analysis of sulfenylated enzymes to human liver and kidney microsomes. Evaluation of the sulfenylation, catalytic activity, and spectral properties of P450s 1A2, 2C8, 2D6, and 3A4 led to the identification of two classes of redox sensitivity in P450 enzymes: heme-thiolate-sensitive and thiol-insensitive. These findings provide evidence for a mammalian P450 regulatory mechanism, which may also be relevant to other drug-metabolizing enzymes. (Data are available via ProteomeXchange with identifier PXD007913.).


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Riñón/enzimología , Microsomas Hepáticos/enzimología , Preparaciones Farmacéuticas/metabolismo , Ácidos Sulfénicos/metabolismo , Animales , Biocatálisis , Cisteína/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Ratones Transgénicos , Oxidación-Reducción , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado , Compuestos de Sulfhidrilo/metabolismo
8.
J Am Soc Nephrol ; 30(9): 1605-1624, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31383731

RESUMEN

BACKGROUND: The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus via a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors. METHODS: To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation. RESULTS: We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and ß-actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis. CONCLUSIONS: These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.


Asunto(s)
Colágeno Tipo IV/genética , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Túbulos Renales Proximales/metabolismo , Actinas/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Transporte Biológico , Línea Celular , Núcleo Celular , Cromatina/metabolismo , Colágeno Tipo I/farmacología , Colágeno Tipo IV/metabolismo , Receptor con Dominio Discoidina 1/genética , Humanos , Túbulos Renales Proximales/patología , Masculino , Ratones , Cadenas Pesadas de Miosina/metabolismo , Señales de Localización Nuclear , Proteína 4 de Unión a Retinoblastoma/metabolismo , Canales de Translocación SEC/metabolismo , Transcripción Genética
9.
J Am Soc Nephrol ; 30(9): 1659-1673, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31292196

RESUMEN

BACKGROUND: Sex differences mediating predisposition to kidney injury are well known, with evidence indicating lower CKD incidence rates and slower decline in renal function in nondiabetic CKD for premenopausal women compared with men. However, signaling pathways involved have not been elucidated to date. The EGF receptor (EGFR) is widely expressed in the kidney in glomeruli and tubules, and persistent and dysregulated EGFR activation mediates progressive renal injury. METHODS: To investigate the sex differences in response to renal injury, we examined EGFR expression in mice, in human kidney tissue, and in cultured cell lines. RESULTS: In wild type mice, renal mRNA and protein EGFR levels were comparable in males and females at postnatal day 7 but were significantly lower in age-matched adult females than in adult males. Similar gender differences in renal EGFR expression were detected in normal adult human kidneys. In Dsk5 mutant mice with a gain-of-function allele that increases basal EGFR kinase activity, males had progressive glomerulopathy, albuminuria, loss of podocytes, and tubulointerstitial fibrosis, but female Dsk5 mice had minimal kidney injury. Oophorectomy had no effect on renal EGFR levels in female Dsk5 mice, while castration protected against the kidney injury in male Dsk5 mice, in association with a reduction in EGFR expression to levels seen in females. Conversely, testosterone increased EGFR expression and renal injury in female Dsk5 mice. Testosterone directly stimulated EGFR expression in cultured kidney cells. CONCLUSIONS: These studies indicate that differential renal EGFR expression plays a role in the sex differences in susceptibility to progressive kidney injury that may be mediated at least in part by testosterone.


Asunto(s)
Receptores ErbB/genética , Receptores ErbB/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Factores de Edad , Alelos , Animales , Castración , Línea Celular , Clorhidrato de Erlotinib/farmacología , Femenino , Mutación con Ganancia de Función , Humanos , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ovariectomía , Podocitos , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/metabolismo , Insuficiencia Renal Crónica/metabolismo , Factores Sexuales , Testosterona/farmacología
10.
Am J Physiol Endocrinol Metab ; 316(6): E1118-E1135, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835508

RESUMEN

Integrin-linked kinase (ILK) is a critical intracellular signaling node for integrin receptors. Its role in liver development is complex, as ILK deletion at E10.5 (before hepatocyte differentiation) results in biochemical and morphological differences that resolve as mice age. Nevertheless, mice with ILK depleted specifically in hepatocytes are protected from the hepatic insulin resistance during obesity. Despite the potential importance of hepatocyte ILK to metabolic health, it is unknown how ILK controls hepatic metabolism or glucoregulation. The present study tested the role of ILK in hepatic metabolism and glucoregulation by deleting it specifically in hepatocytes, using a cre-lox system that begins expression at E15.5 (after initiation of hepatocyte differentiation). These mice develop the most severe morphological and glucoregulatory abnormalities at 6 wk, but these gradually resolve with age. After identifying when the deletion of ILK caused a severe metabolic phenotype, in depth studies were performed at this time point to define the metabolic programs that coordinate control of glucoregulation that are regulated by ILK. We show that 6-wk-old ILK-deficient mice have higher glucose tolerance and decreased net glycogen synthesis. Additionally, ILK was shown to be necessary for transcription of mitochondrial-related genes, oxidative metabolism, and maintenance of cellular energy status. Thus, ILK is required for maintaining hepatic transcriptional and metabolic programs that sustain oxidative metabolism, which are required for hepatic maintenance of glucose homeostasis.


Asunto(s)
Glucemia/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factores de Edad , Animales , Diferenciación Celular , Respiración de la Célula , Metabolismo Energético , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis , Inflamación , Hígado/embriología , Hígado/patología , Cirrosis Hepática , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo
11.
J Biol Chem ; 292(27): 11230-11242, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28533430

RESUMEN

Cytochrome P450 (P450, CYP) 4A11 is a human fatty acid ω-hydroxylase that catalyzes the oxidation of arachidonic acid to the eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE), which plays important roles in regulating blood pressure regulation. Variants of P450 4A11 have been associated with high blood pressure and resistance to anti-hypertensive drugs, and 20-HETE has both pro- and antihypertensive properties relating to increased vasoconstriction and natriuresis, respectively. These physiological activities are likely influenced by the redox environment, but the mechanisms are unclear. Here, we found that reducing agents (e.g. dithiothreitol and tris(2-carboxyethyl)phosphine) strongly enhanced the catalytic activity of P450 4A11, but not of 10 other human P450s tested. Conversely, added H2O2 attenuated P450 4A11 catalytic activity. Catalytic roles of five of the potentially eight implicated Cys residues of P450 4A11 were eliminated by site-directed mutagenesis. Using an isotope-coded dimedone/iododimedone-labeling strategy and mass spectrometry of peptides, we demonstrated that the heme-thiolate cysteine (Cys-457) is selectively sulfenylated in an H2O2 concentration-dependent manner. This sulfenylation could be reversed by reducing agents, including dithiothreitol and dithionite. Of note, we observed heme ligand cysteine sulfenylation of P450 4A11 ex vivo in kidneys and livers derived from CYP4A11 transgenic mice. We also detected sulfenylation of murine P450 4a12 and 4b1 heme peptides in kidneys. To our knowledge, reversible oxidation of the heme thiolate has not previously been observed in P450s and may have relevance for 20-HETE-mediated functions.


Asunto(s)
Citocromo P-450 CYP4A/química , Ditiotreitol/química , Hemo/química , Peróxido de Hidrógeno/química , Animales , Catálisis , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Ditiotreitol/metabolismo , Hemo/genética , Hemo/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ácidos Hidroxieicosatetraenoicos/biosíntesis , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/genética , Riñón/enzimología , Hígado/enzimología , Ratones , Ratones Transgénicos , Oxidación-Reducción , Ratas
12.
Diabetologia ; 60(6): 1066-1075, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28352940

RESUMEN

AIMS/HYPOTHESIS: Insulin resistance is frequently associated with hypertension and type 2 diabetes. The cytochrome P450 (CYP) arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose homeostasis. However, the direct contribution of endogenous EET production on insulin sensitivity has not been previously investigated. In this study, we tested the hypothesis that endogenous CYP2C-derived EETs alter insulin sensitivity by analysing mice lacking CYP2C44, a major EET producing enzyme, and by testing the association of plasma EETs with insulin sensitivity in humans. METHODS: We assessed insulin sensitivity in wild-type (WT) and Cyp2c44 -/- mice using hyperinsulinaemic-euglycaemic clamps and isolated skeletal muscle. Insulin secretory function was assessed using hyperglycaemic clamps and isolated islets. Vascular function was tested in isolated perfused mesenteric vessels. Insulin sensitivity and secretion were assessed in humans using frequently sampled intravenous glucose tolerance tests and plasma EETs were measured by mass spectrometry. RESULTS: Cyp2c44 -/- mice showed decreased glucose tolerance (639 ± 39.5 vs 808 ± 37.7 mmol/l × min for glucose tolerance tests, p = 0.004) and insulin sensitivity compared with WT controls (hyperinsulinaemic clamp glucose infusion rate average during terminal 30 min 0.22 ± 0.02 vs 0.33 ± 0.01 mmol kg-1 min-1 in WT and Cyp2c44 -/- mice respectively, p = 0.003). Although glucose uptake was diminished in Cyp2c44 -/- mice in vivo (gastrocnemius Rg 16.4 ± 2.0 vs 6.2 ± 1.7 µmol 100 g-1 min-1, p < 0.01) insulin-stimulated glucose uptake was unchanged ex vivo in isolated skeletal muscle. Capillary density was similar but vascular KATP-induced relaxation was impaired in isolated Cyp2c44 -/- vessels (maximal response 39.3 ± 6.5% of control, p < 0.001), suggesting that impaired vascular reactivity produces impaired insulin sensitivity in vivo. Similarly, plasma EETs positively correlated with insulin sensitivity in human participants. CONCLUSIONS/INTERPRETATION: CYP2C-derived EETs contribute to insulin sensitivity in mice and in humans. Interventions to increase circulating EETs in humans could provide a novel approach to improve insulin sensitivity and treat hypertension.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/genética , Familia 2 del Citocromo P450/genética , Familia 2 del Citocromo P450/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Arterias Mesentéricas/metabolismo , Ratones
14.
Kidney Int ; 91(3): 552-560, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773427

RESUMEN

Tubulointerstitial fibrosis, tubular atrophy, and peritubular capillary rarefaction are major hallmarks of chronic kidney disease. The tubulointerstitium consists of multiple cell components including tubular epithelial, mesenchymal (fibroblasts and pericytes), endothelial, and inflammatory cells. Crosstalk among these cell components is a key component in the pathogenesis of this complex disease. After severe or recurrent injury, the renal tubular epithelial cells undergo changes in structure and cell cycle that are accompanied by altered expression and production of cytokines. These cytokines contribute to the initiation of the fibrotic response by favoring activation of fibroblasts, recruitment of inflammatory cells, and loss of endothelial cells. This review focuses on how augmented growth factor and cytokine production induces epithelial crosstalk with cells in the interstitium to promote progressive tubulointerstitial fibrosis after renal injury.


Asunto(s)
Comunicación Celular , Citocinas/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal , Animales , Citocinas/inmunología , Fibrosis , Humanos , Riñón/inmunología , Riñón/patología , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/patología
15.
J Cell Sci ; 128(23): 4293-305, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26490995

RESUMEN

The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales/embriología , Proteína de Unión al GTP cdc42/metabolismo , Animales , Citoesqueleto/genética , Células Epiteliales/citología , Ratones , Proteína de Unión al GTP cdc42/genética
16.
Development ; 141(7): 1480-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24574008

RESUMEN

Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers.


Asunto(s)
Vasos Sanguíneos/fisiología , Comunicación Celular/genética , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/inervación , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Vasos Sanguíneos/embriología , Células Cultivadas , Embrión de Mamíferos , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Femenino , Islotes Pancreáticos/embriología , Ratones , Ratones Transgénicos , Factor A de Crecimiento Endotelial Vascular/genética
17.
Mol Cell ; 34(6): 641-51, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19560417

RESUMEN

In several growth factor receptors, the intracellular juxtamembrane (JM) region participates in autoinhibitory interactions that must be disrupted for tyrosine kinase activation. Using alanine scanning mutagenesis and crystallographic approaches, we define a domain within the JM region of the epidermal growth factor receptor (EGFR) that instead plays an activating--rather than autoinhibitory--role. Mutations in the C-terminal 19 residues of the EGFR JM region abolish EGFR activation. In a crystal structure of an asymmetric dimer of the tyrosine kinase domain, the JM region of an acceptor monomer makes extensive contacts with the C lobe of a donor monomer, thus stabilizing the dimer. We describe how an uncharacterized lung cancer mutation in this JM activation domain (V665M) constitutively activates EGFR by augmenting its capacity to act as an acceptor in the asymmetric dimer. This JM mutant promotes cellular transformation by EGFR in vitro and is tumorigenic in a xenograft assay.


Asunto(s)
Receptores ErbB/química , Animales , Sitios de Unión , Células COS , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular , Transformación Celular Neoplásica/genética , Chlorocebus aethiops , Cristalografía por Rayos X , Dimerización , Receptores ErbB/genética , Receptores ErbB/fisiología , Humanos , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Células 3T3 NIH , Fosforilación , Estructura Terciaria de Proteína , Tirosina/química , Tirosina/metabolismo
18.
Molecules ; 22(9)2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28925954

RESUMEN

The discovery of selective inhibitors of biological target proteins is the primary goal of many drug discovery campaigns. However, this goal has proven elusive, especially for inhibitors targeting the well-conserved orthosteric adenosine triphosphate (ATP) binding pocket of kinase enzymes. The human kinome is large and it is rather difficult to profile early lead compounds against around 500 targets to gain an upfront knowledge on selectivity. Further, selectivity can change drastically during derivatization of an initial lead compound. Here, we have introduced a computational model to support the profiling of compounds early in the drug discovery pipeline. On the basis of the extensive profiled activity of 70 kinase inhibitors against 379 kinases, including 81 tyrosine kinases, we developed a quantitative structure-activity relation (QSAR) model using artificial neural networks, to predict the activity of these kinase inhibitors against the panel of 379 kinases. The model's performance in predicting activity ranges from 0.6 to 0.8 depending on the kinase, from the area under the curve (AUC) of the receiver operating characteristics (ROC). The profiler is available online at http://www.meilerlab.org/index.php/servers/show?s_id=23.


Asunto(s)
Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Adenosina Trifosfato/química , Área Bajo la Curva , Sitios de Unión , Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Redes Neurales de la Computación , Unión Proteica , Conformación Proteica , Proteínas Tirosina Quinasas/química , Relación Estructura-Actividad Cuantitativa , Curva ROC , Programas Informáticos
19.
J Proteome Res ; 15(3): 815-25, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26784366

RESUMEN

The risk of developing post-traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help to improve treatment outcomes. Increased expression of integrin α1ß1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA; however, the impact of the integrin α1ß1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild-type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following (1)H nuclear magnetic resonance spectroscopy, we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice and the integrin α1-null versus wild-type mouse genotype. Our results show the sex-dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA, and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site-specific factors such as surgery.


Asunto(s)
Clorhidrato de Erlotinib/farmacología , Integrina alfa1/genética , Metaboloma , Osteoartritis de la Rodilla/sangre , Animales , Receptores ErbB , Clorhidrato de Erlotinib/uso terapéutico , Femenino , Masculino , Meniscos Tibiales/cirugía , Metaboloma/efectos de los fármacos , Metaboloma/genética , Ratones , Ratones Noqueados , Osteoartritis de la Rodilla/tratamiento farmacológico , Especies Reactivas de Oxígeno , Canales de Potencial de Receptor Transitorio
20.
J Biol Chem ; 290(10): 6546-57, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25593319

RESUMEN

Hepatic insulin resistance is associated with increased collagen. Integrin α1ß1 is a collagen-binding receptor expressed on hepatocytes. Here, we show that expression of the α1 subunit is increased in hepatocytes isolated from high fat (HF)-fed mice. To determine whether the integrin α1 subunit protects against impairments in hepatic glucose metabolism, we analyzed glucose tolerance and insulin sensitivity in HF-fed integrin α1-null (itga1(-/-)) and wild-type (itga1(+/+)) littermates. Using the insulin clamp, we found that insulin-stimulated hepatic glucose production was suppressed by ∼50% in HF-fed itga1(+/+) mice. In contrast, it was not suppressed in HF-fed itga1(-/-) mice, indicating severe hepatic insulin resistance. This was associated with decreased hepatic insulin signaling in HF-fed itga1(-/-) mice. Interestingly, hepatic triglyceride and diglyceride contents were normalized to chow-fed levels in HF-fed itga1(-/-) mice. This indicates that hepatic steatosis is dissociated from insulin resistance in HF-fed itga1(-/-) mice. The decrease in hepatic lipid accumulation in HF-fed itga1(-/-) mice was associated with altered free fatty acid metabolism. These studies establish a role for integrin signaling in facilitating hepatic insulin action while promoting lipid accumulation in mice challenged with a HF diet.


Asunto(s)
Hígado Graso/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/genética , Integrina alfa1/biosíntesis , Animales , Dieta Alta en Grasa , Hígado Graso/patología , Hepatocitos/metabolismo , Humanos , Insulina/metabolismo , Integrina alfa1/genética , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA