Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 352-369.e23, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33357448

RESUMEN

Repetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication. FBXO44/SUV39H1 inhibition reactivated REs, leading to DNA replication stress and stimulation of MAVS/STING antiviral pathways and interferon (IFN) signaling in cancer cells to promote decreased tumorigenicity, increased immunogenicity, and enhanced immunotherapy response. FBXO44 expression inversely correlated with replication stress, antiviral pathways, IFN signaling, and cytotoxic T cell infiltration in human cancers, while a FBXO44-immune gene signature correlated with improved immunotherapy response in cancer patients. FBXO44/SUV39H1 were dispensable in normal cells. Collectively, FBXO44/SUV39H1 are crucial repressors of RE transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in cancer cells.


Asunto(s)
Replicación del ADN/genética , Proteínas F-Box/metabolismo , Neoplasias/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Adulto , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Roturas del ADN de Doble Cadena , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad , Interferones/metabolismo , Lisina/metabolismo , Masculino , Metilación , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Neoplasias/inmunología , Nucleosomas/metabolismo , Transducción de Señal , Transcripción Genética , Resultado del Tratamiento
2.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761532

RESUMEN

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Asunto(s)
Cromosomas Humanos/genética , Elementos de Facilitación Genéticos , Amplificación de Genes , Oncogenes , Acetilación , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Cromatina/metabolismo , ADN de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Relacionados con las Neoplasias , Sitios Genéticos , Glioblastoma/genética , Glioblastoma/patología , Histonas/metabolismo , Humanos , Neuroglía/metabolismo
3.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392959

RESUMEN

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979586

RESUMEN

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Receptores ErbB , Ferroptosis , Glioblastoma , Humanos , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Receptores ErbB/genética , Ferroptosis/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , ARN Mensajero/genética
5.
Genes Dev ; 37(3-4): 86-102, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36732025

RESUMEN

Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción , Células Madre Neoplásicas/patología , Péptidos y Proteínas de Señalización Intracelular/genética
6.
Mol Cell ; 82(6): 1123-1139.e8, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35182481

RESUMEN

A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/ß, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.


Asunto(s)
Proteínas F-Box , Proteína 7 que Contiene Repeticiones F-Box-WD , Neoplasias , Animales , Línea Celular Tumoral , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas de Homeodominio/genética , Humanos , Evasión Inmune , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Tirosina Fosfatasas/genética , Ubiquitina/metabolismo
7.
Nature ; 617(7962): 818-826, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198486

RESUMEN

Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.


Asunto(s)
Histonas , Lisina , Neoplasias , Procesamiento Proteico-Postraduccional , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/deficiencia , Lisina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , ARN Bicatenario/inmunología , Humanos , Animales , Ratones , Interferón Tipo I/inmunología
8.
Mol Cell ; 81(13): 2686-2687, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214442

RESUMEN

Liu et al. (2021) demonstrate that CHKα2 is capable of promoting lipolysis of lipid droplets through mechanisms that require sequential steps of post-translational modifications after glucose deprivation. Intriguingly, the oxidation of fatty acids derived from lipid droplets is essential for the survival of tumor cells that informs clinical outcome among glioblastoma patients.


Asunto(s)
Glioblastoma , Lipólisis , Ácidos Grasos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Oxidación-Reducción
9.
Cell ; 153(1): 139-52, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23540695

RESUMEN

Glioblastomas (GBMs) are highly vascular and lethal brain tumors that display cellular hierarchies containing self-renewing tumorigenic glioma stem cells (GSCs). Because GSCs often reside in perivascular niches and may undergo mesenchymal differentiation, we interrogated GSC potential to generate vascular pericytes. Here, we show that GSCs give rise to pericytes to support vessel function and tumor growth. In vivo cell lineage tracing with constitutive and lineage-specific fluorescent reporters demonstrated that GSCs generate the majority of vascular pericytes. Selective elimination of GSC-derived pericytes disrupts the neovasculature and potently inhibits tumor growth. Analysis of human GBM specimens showed that most pericytes are derived from neoplastic cells. GSCs are recruited toward endothelial cells via the SDF-1/CXCR4 axis and are induced to become pericytes predominantly by transforming growth factor ß. Thus, GSCs contribute to vascular pericytes that may actively remodel perivascular niches. Therapeutic targeting of GSC-derived pericytes may effectively block tumor progression and improve antiangiogenic therapy.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Células Madre Neoplásicas/patología , Pericitos/patología , Animales , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Diferenciación Celular , Células Endoteliales/patología , Glioblastoma/irrigación sanguínea , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Factor de Crecimiento Transformador beta/metabolismo , Trasplante Heterólogo
11.
Genes Dev ; 33(11-12): 591-609, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31160393

RESUMEN

Glioblastoma ranks among the most lethal of all human cancers. Glioblastomas display striking cellular heterogeneity, with stem-like glioblastoma stem cells (GSCs) at the apex. Although the original identification of GSCs dates back more than a decade, the purification and characterization of GSCs remains challenging. Despite these challenges, the evidence that GSCs play important roles in tumor growth and response to therapy has grown. Like normal stem cells, GSCs are functionally defined and distinguished from their differentiated tumor progeny at core transcriptional, epigenetic, and metabolic regulatory levels, suggesting that no single therapeutic modality will be universally effective against a heterogenous GSC population. Glioblastomas induce a systemic immunosuppression with mixed responses to oncoimmunologic modalities, suggesting the potential for augmentation of response with a deeper consideration of GSCs. Unfortunately, the GSC literature has been complicated by frequent use of inferior cell lines and a lack of proper functional analyses. Collectively, glioblastoma offers a reliable cancer to study cancer stem cells to better model the human disease and inform improved biologic understanding and design of novel therapeutics.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Glioblastoma/patología , Glioblastoma/fisiopatología , Células Madre Neoplásicas/fisiología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Diferenciación Celular , Epigénesis Genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Microambiente Tumoral
12.
EMBO J ; 41(7): e109187, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35191554

RESUMEN

Hypoxia regulates tumor angiogenesis, metabolism, and therapeutic response in malignant cancers including glioblastoma, the most lethal primary brain tumor. The regulation of HIF transcriptional factors by the ubiquitin-proteasome system is critical in the hypoxia response, but hypoxia-inducible deubiquitinases that counteract the ubiquitination remain poorly defined. While the activation of ERK1/2 also plays an important role in hypoxia response, the relationship between ERK1/2 activation and HIF regulation remains elusive. Here, we identified USP33 as essential deubiquitinase that stabilizes HIF-2alpha protein in an ERK1/2-dependent manner to promote hypoxia response in cancer cells. USP33 is preferentially induced in glioma stem cells by hypoxia and interacts with HIF-2alpha, leading to its stabilization through deubiquitination. The activation of ERK1/2 upon hypoxia promoted HIF-2alpha phosphorylation, enhancing its interaction with USP33. Silencing of USP33 disrupted glioma stem cells maintenance, reduced tumor vascularization, and inhibited glioblastoma growth. Our findings highlight USP33 as an essential regulator of hypoxia response in cancer stem cells, indicating a novel potential therapeutic target for brain tumor treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neoplasias Encefálicas , Glioma , Células Madre Neoplásicas , Ubiquitina Tiolesterasa , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula , Glioma/patología , Humanos , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
13.
Cell ; 146(2): 187-8, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21784240

RESUMEN

Investigating the family tree of a tumor to identify its cellular origins is a daunting task. Liu et al. (2011) now use an elegant lineage tracing technique (MADM) to visualize glioma from its earliest stages. They show that mutations originally induced in neural stem cells lie dormant and only trigger malignant transformation following differentiation into oligodendrocyte precursor cells.

14.
Cell ; 146(1): 53-66, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729780

RESUMEN

Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.


Asunto(s)
Proliferación Celular , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Autoantígenos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Óxido Nítrico/metabolismo , Células Tumorales Cultivadas
15.
Proc Natl Acad Sci U S A ; 120(2): e2214829120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595671

RESUMEN

Hepatocellular carcinoma (HCC) remains a global health challenge whose incidence is growing worldwide. Previous evidence strongly supported the notion that the circadian clock controls physiological homeostasis of the liver and plays a key role in hepatocarcinogenesis. Despite the progress, cellular and molecular mechanisms underpinning this HCC-clock crosstalk remain unknown. Addressing this knowledge gap, we show here that although the human HCC cells Hep3B, HepG2, and Huh7 displayed variations in circadian rhythm profiles, all cells relied on the master circadian clock transcription factors, BMAL1 and CLOCK, for sustained cell growth. Down-regulating Bmal1 or Clock in the HCC cells induced apoptosis and arrested cell cycle at the G2/M phase. Mechanistically, we found that inhibiting Bmal1/Clock induced dysregulation of the cell cycle regulators Wee1 and p21 which cooperatively contribute to tumor cell death. Bmal1/Clock knockdown caused downregulation of Wee1 that led to apoptosis activation and upregulation of p21 which arrested the cell cycle at the G2/M phase. Collectively, our results suggest that the circadian clock regulators BMAL1 and CLOCK promote HCC cell proliferation by controlling Wee1 and p21 levels, thereby preventing apoptosis and cell cycle arrest. Our findings shed light on cellular impact of the clock proteins for maintaining HCC oncogenesis and provide proof-of-principle for developing cancer therapy based on modulation of the circadian clock.


Asunto(s)
Carcinoma Hepatocelular , Relojes Circadianos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Relojes Circadianos/genética , Proliferación Celular , Ciclo Celular , División Celular , Apoptosis
16.
Stem Cells ; 41(8): 762-774, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37280108

RESUMEN

Glioblastoma stem cells (GSCs) have unique properties of self-renewal and tumor initiation that make them potential therapeutic targets. Development of effective therapeutic strategies against GSCs requires both specificity of targeting and intracranial penetration through the blood-brain barrier. We have previously demonstrated the use of in vitro and in vivo phage display biopanning strategies to isolate glioblastoma targeting peptides. Here we selected a 7-amino acid peptide, AWEFYFP, which was independently isolated in both the in vitro and in vivo screens and demonstrated that it was able to target GSCs over differentiated glioma cells and non-neoplastic brain cells. When conjugated to Cyanine 5.5 and intravenously injected into mice with intracranially xenografted glioblastoma, the peptide localized to the site of the tumor, demonstrating intracranial tumor targeting specificity. Immunoprecipitation of the peptide with GSC proteins revealed Cadherin 2 as the glioblastoma cell surface receptor targeted by the peptides. Peptide targeting of Cadherin 2 on GSCs was confirmed through ELISA and in vitro binding analysis. Interrogation of glioblastoma databases demonstrated that Cadherin 2 expression correlated with tumor grade and survival. These results confirm that phage display can be used to isolate unique tumor-targeting peptides specific for glioblastoma. Furthermore, analysis of these cell specific peptides can lead to the discovery of cell specific receptor targets that may serve as the focus of future theragnostic tumor-homing modalities for the development of precision strategies for the treatment and diagnosis of glioblastomas.


Asunto(s)
Cadherinas , Técnicas de Visualización de Superficie Celular , Glioblastoma , Péptidos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células Madre Neoplásicas , Humanos , Animales , Ratones , Trasplante de Neoplasias , Péptidos/uso terapéutico , Cadherinas/antagonistas & inhibidores , Terapia Molecular Dirigida , Modelos Animales de Enfermedad
17.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850013

RESUMEN

Sex can be an important determinant of cancer phenotype, and exploring sex-biased tumor biology holds promise for identifying novel therapeutic targets and new approaches to cancer treatment. In an established isogenic murine model of glioblastoma (GBM), we discovered correlated transcriptome-wide sex differences in gene expression, H3K27ac marks, large Brd4-bound enhancer usage, and Brd4 localization to Myc and p53 genomic binding sites. These sex-biased gene expression patterns were also evident in human glioblastoma stem cells (GSCs). These observations led us to hypothesize that Brd4-bound enhancers might underlie sex differences in stem cell function and tumorigenicity in GBM. We found that male and female GBM cells exhibited sex-specific responses to pharmacological or genetic inhibition of Brd4. Brd4 knockdown or pharmacologic inhibition decreased male GBM cell clonogenicity and in vivo tumorigenesis while increasing both in female GBM cells. These results were validated in male and female patient-derived GBM cell lines. Furthermore, analysis of the Cancer Therapeutic Response Portal of human GBM samples segregated by sex revealed that male GBM cells are significantly more sensitive to BET (bromodomain and extraterminal) inhibitors than are female cells. Thus, Brd4 activity is revealed to drive sex differences in stem cell and tumorigenic phenotypes, which can be abrogated by sex-specific responses to BET inhibition. This has important implications for the clinical evaluation and use of BET inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Nucleares/metabolismo , Factores Sexuales , Factores de Transcripción/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/genética , Histonas/metabolismo , Humanos , Masculino , Ratones , Proteínas Nucleares/fisiología , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Caracteres Sexuales , Factores de Transcripción/fisiología , Proteína p53 Supresora de Tumor/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846242

RESUMEN

Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.


Asunto(s)
Glioblastoma/metabolismo , Microglía/metabolismo , Temozolomida/farmacología , Adulto , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Resistencia a Antineoplásicos/fisiología , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Interleucina-11/inmunología , Interleucina-11/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Microglía/fisiología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal/efectos de los fármacos , Temozolomida/metabolismo , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/fisiología
19.
Nature ; 547(7663): 355-359, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28678782

RESUMEN

Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of 'cancer dependencies' not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Terapia Molecular Dirigida/tendencias , Factores de Elongación Transcripcional/antagonistas & inhibidores , Factores de Elongación Transcripcional/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones , Interferencia de ARN , Transcripción Genética , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Nucleic Acids Res ; 49(13): 7361-7374, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181729

RESUMEN

N6-methyladenosine (m6A) is a common modification on endogenous RNA transcripts in mammalian cells. Technologies to precisely modify the RNA m6A levels at specific transcriptomic loci empower interrogation of biological functions of epitranscriptomic modifications. Here, we developed a bidirectional dCasRx epitranscriptome editing platform composed of a nuclear-localized dCasRx conjugated with either a methyltransferase, METTL3, or a demethylase, ALKBH5, to manipulate methylation events at targeted m6A sites. Leveraging this platform, we specifically and efficiently edited m6A modifications at targeted sites, reflected in gene expression and cell proliferation. We employed the dCasRx epitranscriptomic editor system to elucidate the molecular function of m6A-binding proteins YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3), revealing that YTHDFs promote m6A-mediated mRNA degradation. Collectively, our dCasRx epitranscriptome perturbation platform permits site-specific m6A editing for delineating of functional roles of individual m6A modifications in the mammalian epitranscriptome.


Asunto(s)
Adenosina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Metiltransferasas/metabolismo , ARN Mensajero/metabolismo , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Proteínas Asociadas a CRISPR/genética , Proliferación Celular , Células Cultivadas , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Metiltransferasas/genética , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA