Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Compr Rev Food Sci Food Saf ; 21(6): 4738-4775, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36124883

RESUMEN

Starch is a major contributor to the carbohydrate portion of our diet. When it is present with water, it undergoes several transformations during heating and/or cooling making it an essential structure-forming component in starch-rich food systems (e.g., bread and cake). Time domain proton nuclear magnetic resonance (TD 1 H NMR) is a useful technique to study starch-water interactions by evaluation of molecular mobility and water distribution. The data obtained correspond to changes in starch structure and the state of water during or resulting from processing. When this technique was first applied to starch(-rich) foods, significant challenges were encountered during data interpretation of complex food systems (e.g., cake or biscuit) due to the presence of multiple constituents (proteins, carbohydrates, lipids, etc.). This article discusses the principles of TD 1 H NMR and the tools applied that improved characterization and interpretation of TD NMR data. More in particular, the major differences in proton distribution of various dough and cooked/baked food systems are examined. The application of variable-temperature TD 1 H NMR is also discussed as it demonstrates exceptional ability to elucidate the molecular dynamics of starch transitions (e.g., gelatinization, gelation) in dough/batter systems during heating/cooling. In conclusion, TD NMR is considered a valuable tool to understand the behavior of starch and water that relate to the characteristics and/or quality of starchy food products. Such insights are crucial for food product optimization and development in response to the needs of the food industry.


Asunto(s)
Protones , Almidón , Almidón/química , Triticum/química , Espectroscopía de Resonancia Magnética/métodos , Agua/química
2.
NPJ Sci Food ; 7(1): 52, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758781

RESUMEN

Successful sucrose replacement in cake systems requires thorough understanding of its functionality. Time-domain 1H NMR showed that water in the viscous aqueous phase isolated from cake batter by ultracentrifugation [i.e. the batter liquor (BL)] exhibits low mobility by its low T2 relaxation time (T2,D RT). This is due to its interactions with sucrose or sucrose replacers. The T2,D RT itself is positively related with the effective volumetric hydrogen bond density of sucrose or sucrose replacers. Sucrose additionally co-determines the quantity and viscosity of cake BL and thereby how much air the batter contains at the end of mixing. Like sucrose, maltitol and oligofructose provide adequate volumes of BL with low water mobility and thus sufficient air in the batter, while the rather insoluble mannitol and inulin do not. Differential scanning calorimetry and rapid viscosity analysis revealed, however, that, in contrast to sucrose and maltitol, oligofructose fails to provide appropriate timings of starch gelatinisation and protein denaturation, resulting in poor cake texture. The shortcomings of mannitol and oligofructose in terms of respectively ensuring appropriate gas content in batter and biopolymer transitions during baking can be overcome by using mixtures thereof. This work shows that successful sucrose substitutes or substitute mixtures must provide sufficient BL with low water mobility and ensure appropriate timings of starch and protein biopolymer transitions during baking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA