Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Radiology ; 311(2): e233136, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38742971

RESUMEN

Background MR elastography (MRE) has been shown to have excellent performance for noninvasive liver fibrosis staging. However, there is limited knowledge regarding the precision and test-retest repeatability of stiffness measurement with MRE in the multicenter setting. Purpose To determine the precision and test-retest repeatability of stiffness measurement with MRE across multiple centers using the same phantoms. Materials and Methods In this study, three cylindrical phantoms made of polyvinyl chloride gel mimicking different degrees of liver stiffness in humans (phantoms 1-3: soft, medium, and hard stiffness, respectively) were evaluated. Between January 2021 and January 2022, phantoms were circulated between five different centers and scanned with 10 MRE-equipped clinical 1.5-T and 3-T systems from three major vendors, using two-dimensional (2D) gradient-recalled echo (GRE) imaging and/or 2D spin-echo (SE) echo-planar imaging (EPI). Similar MRE acquisition parameters, hardware, and reconstruction algorithms were used at each center. Mean stiffness was measured by a single observer for each phantom and acquisition on a single section. Stiffness measurement precision and same-session test-retest repeatability were assessed using the coefficient of variation (CV) and the repeatability coefficient (RC), respectively. Results The mean precision represented by the CV was 5.8% (95% CI: 3.8, 7.7) for all phantoms and both sequences combined. For all phantoms, 2D GRE achieved a CV of 4.5% (95% CI: 3.3, 5.7) whereas 2D SE EPI achieved a CV of 7.8% (95% CI: 3.1, 12.6). The mean RC of stiffness measurement was 5.8% (95% CI: 3.7, 7.8) for all phantoms and both sequences combined, 4.9% (95% CI: 2.7, 7.0) for 2D GRE, and 7.0% (95% CI: 2.9, 11.2) for 2D SE EPI (all phantoms). Conclusion MRE had excellent in vitro precision and same-session test-retest repeatability in the multicenter setting when similar imaging protocols, hardware, and reconstruction algorithms were used. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Tang in this issue.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fantasmas de Imagen , Diagnóstico por Imagen de Elasticidad/métodos , Diagnóstico por Imagen de Elasticidad/instrumentación , Reproducibilidad de los Resultados , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cirrosis Hepática/diagnóstico por imagen
2.
Magn Reson Med ; 91(5): 1923-1935, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098427

RESUMEN

PURPOSE: To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform. METHODS: A wavelet MRE sequence was developed with motion-encoding gradients based on Haar wavelets. From the phase images' displacement was estimated using an inverse transform. Simulations were performed using a frequency sweep and a transient as ground-truth motions. A PVC phantom was scanned using wavelet MRE and standard MRE with both transient (one and 10 cycles of 90-Hz motion) and steady-state dual-frequency motion (30 and 60 Hz) for comparison. The technique was tested in a human brain, and motion trajectories were estimated for each voxel. RESULTS: In simulation, the displacement information estimated from wavelet MRE closely matched the true motion. In the phantom test, the MRE phase data generated from the displacement information derived from wavelet MRE agreed well with standard MRE data. Testing of wavelet MRE to assess transient motion waveforms in the brain was successful, and the tissue motion observed was consistent with a previous study. CONCLUSION: The uniform and broadband frequency response of wavelet MRE makes it a promising method for imaging transient, multifrequency motion, or motion with unknown frequency content. One potential application is measuring the response of brain tissue undergoing low-amplitude, transient vibrations as a model for the study of traumatic brain injury.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Sonido
3.
Magn Reson Med ; 85(3): 1350-1363, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32970892

RESUMEN

PURPOSE: The purpose is to develop a retrospective correction for subtle slice-to-slice positional inconsistencies that can occur when overlapped slices are acquired for super resolution in T2 -weighted spin-echo multislice imaging. METHODS: Spin-echo acquisition of overlapped slices is typically done using multiple passes. After the passes are assembled into the final slice set, consecutive slices are correlated due to their overlap. Cross correlation was used to measure slice-to-slice displacement. After Z-dependent filtering to preserve true object shape, the displacements were used to correct slice position. The method was tested in a phantom moved slowly (0.16-0.63 mm/pass) under computer control and in vivo in 16 patients having prostate MRI. RESULTS: Over the motion range, the correlation method had an accuracy within 0.03 mm/pass and precision ± 0.20 mm (ie, subpixel). Corrected images visually resemble the true object. Over the patient studies, the mean range of motion in the anterior-posterior direction was 1.63 mm. Motion-corrected axial images and the sagittal reformats were evaluated as significantly superior over those formed without motion correction. CONCLUSION: The retrospective correlation-based motion-correction method provides significant improvement in the slice-to-slice registration necessary for effective super resolution using overlapped slices.


Asunto(s)
Imagen por Resonancia Magnética , Próstata , Humanos , Masculino , Movimiento (Física) , Fantasmas de Imagen , Próstata/diagnóstico por imagen , Estudios Retrospectivos
4.
Magn Reson Med ; 85(2): 945-952, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32738084

RESUMEN

PURPOSE: To develop a novel magnetic resonance elastography (MRE) acquisition using a hybrid radial EPI readout scheme (TURBINE), and to demonstrate its feasibility to obtain wave images and stiffness maps in a phantom and in vivo brain. METHOD: The proposed 3D TURBINE-MRE is based on a spoiled gradient-echo MRE sequence with the EPI readout radially rotating about the phase-encoding axis to sample a full 3D k-space. A polyvinyl chloride phantom and 6 volunteers were scanned on a compact 3T GE scanner with a 32-channel head coil at 80 Hz and 60 Hz external vibration, respectively. For comparison, a standard 2D, multislice, spin-echo (SE) EPI-MRE acquisition was also performed with the same motion encoding and resolution. The TURBINE-MRE images were off-line reconstructed with iterative SENSE algorithm. The regional ROI analysis was performed on the 6 volunteers, and the median stiffness values were compared between SE-EPI-MRE and TURBINE-MRE. RESULTS: The 3D wave-field images and the generated stiffness maps were comparable between TURBINE-MRE and standard SE-EPI-MRE for the phantom and the volunteers. The Bland-Altman plot showed no significant difference in the median regional stiffness values between the two methods. The stiffness measured with the 2 methods had a strong linear relationship with a Pearson correlation coefficient of 0.943. CONCLUSION: We demonstrated the feasibility of the new TURBINE-MRE sequence for acquiring the desired 3D wave-field data and stiffness maps in a phantom and in-vivo brains. This pilot study encourages further exploration of TURBINE-MRE for functional MRE, free-breathing abdominal MRE, and cardiac MRE applications.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagen Eco-Planar , Humanos , Imagen por Resonancia Magnética , Proyectos Piloto , Reproducibilidad de los Resultados
5.
AJR Am J Roentgenol ; 216(2): 552-559, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33236945

RESUMEN

OBJECTIVE. The Adaptive Image Receive (AIR) radiofrequency coil is an emergent technology that is lightweight and flexible and exhibits electrical characteristics that overcome many of the limitations of traditional rigid coil designs. The purpose of this study was to apply the AIR coil for whole-brain imaging and compare the performance of a prototype AIR coil array with the performance of conventional head coils. SUBJECTS AND METHODS. A phantom and 15 healthy adult participants were imaged. A prototype 16-channel head AIR coil was compared with conventional 8-and 32-channel head coils using clinically available MRI sequences. During consensus review, two board-certified neuroradiologists graded the AIR coil compared with an 8-channel coil and a 32-channel coil on a 5-point ordinal scale in multiple categories. One- and two-sided Wilcoxon signed rank tests were performed. Noise covariance matrices and geometry factor (g-factor) maps were calculated. RESULTS. The signal-to-noise ratio, structural sharpness, and overall image quality scores of the prototype 16-channel AIR coil were better than those of the 8-channel coil but were not as good as those of the 32-channel coil. Noise covariance matrices showed stable performance of the AIR coil across participants. The median g-factors for the 16-channel AIR coil were, overall, less than those of the 8-channel coil but were greater than those of the 32-channel coil. CONCLUSION. On average, the prototype 16-channel head AIR coil outperformed a conventional 8-channel head coil but did not perform as well as a conventional 32-channel head coil. This study shows the feasibility of the novel AIR coil technology for imaging the brain and provides insight for future coil design improvements.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuroimagen , Adulto , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Relación Señal-Ruido , Adulto Joven
6.
Magn Reson Med ; 80(6): 2573-2585, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29774594

RESUMEN

PURPOSE: To introduce newly developed MR elastography (MRE)-based dual-saturation imaging and dual-sensitivity motion encoding schemes to directly measure in vivo skull-brain motion, and to study the skull-brain coupling in volunteers with these approaches. METHODS: Six volunteers were scanned with a high-performance compact 3T-MRI scanner. The skull-brain MRE images were obtained with a dual-saturation imaging where the skull and brain motion were acquired with fat- and water-suppression scans, respectively. A dual-sensitivity motion encoding scheme was applied to estimate the heavily wrapped phase in skull by the simultaneous acquisition of both low- and high-sensitivity phase during a single MRE exam. The low-sensitivity phase was used to guide unwrapping of the high-sensitivity phase. The amplitude and temporal phase delay of the rigid-body motion between the skull and brain was measured, and the skull-brain interface was visualized by slip interface imaging (SII). RESULTS: Both skull and brain motion can be successfully acquired and unwrapped. The skull-brain motion analysis demonstrated the motion transmission from the skull to the brain is attenuated in amplitude and delayed. However, this attenuation (%) and delay (rad) were considerably greater with rotation (59 ± 7%, 0.68 ± 0.14 rad) than with translation (92 ± 5%, 0.04 ± 0.02 rad). With SII the skull-brain slip interface was not completely evident, and the slip pattern was spatially heterogeneous. CONCLUSION: This study provides a framework for acquiring in vivo voxel-based skull and brain displacement using MRE that can be used to characterize the skull-brain coupling system for understanding of mechanical brain protection mechanisms, which has potential to facilitate risk management for future injury.


Asunto(s)
Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Cráneo/diagnóstico por imagen , Adulto , Algoritmos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Masculino , Movimiento (Física) , Fantasmas de Imagen , Vibración
7.
Magn Reson Med ; 79(1): 361-369, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28382658

RESUMEN

PURPOSE: The stiffness of a myocardial infarct affects the left ventricular pump function and remodeling. Magnetic resonance elastography (MRE) is a noninvasive imaging technique for measuring soft-tissue stiffness in vivo. The purpose of this study was to investigate the feasibility of assessing in vivo regional myocardial stiffness with high-frequency 3D cardiac MRE in a porcine model of myocardial infarction, and compare the results with ex vivo uniaxial tensile testing. METHODS: Myocardial infarct was induced in a porcine model by embolizing the left circumflex artery. Fourteen days postinfarction, MRE imaging was performed in diastole using an echocardiogram-gated spin-echo echo-planar-imaging sequence with 140-Hz vibrations and 3D MRE processing. The MRE stiffness and tensile modulus from uniaxial testing were compared between the remote and infarcted myocardium. RESULTS: Myocardial infarcts showed increased in vivo MRE stiffness compared with remote myocardium (4.6 ± 0.7 kPa versus 3.0 ± 0.6 kPa, P = 0.02) within the same pig. Ex vivo uniaxial mechanical testing confirmed the in vivo MRE results, showing that myocardial infarcts were stiffer than remote myocardium (650 ± 80 kPa versus 110 ± 20 kPa, P = 0.01). CONCLUSIONS: These results demonstrate the feasibility of assessing in vivo regional myocardial stiffness with high-frequency 3D cardiac MRE. Magn Reson Med 79:361-369, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Corazón/diagnóstico por imagen , Imagenología Tridimensional , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Algoritmos , Animales , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad , Femenino , Interpretación de Imagen Asistida por Computador , Masculino , Presión , Pronóstico , Programas Informáticos , Estrés Mecánico , Porcinos , Resistencia a la Tracción , Sales de Tetrazolio/química , Función Ventricular Izquierda
8.
Magn Reson Med ; 80(1): 231-238, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29194738

RESUMEN

PURPOSE: To implement a reduced field of view (rFOV) technique for cardiac MR elastography (MRE) and to demonstrate the improvement in image quality of both magnitude images and post-processed MRE stiffness maps compared to the conventional full field of view (full-FOV) acquisition. METHODS: With Institutional Review Board approval, 17 healthy volunteers underwent both full-FOV and rFOV cardiac MRE scans using 140-Hz vibrations. Two cardiac radiologists blindly compared the magnitude images and stiffness maps and graded the images based on several image quality attributes using a 5-point ordinal scale. Fisher's combined probability test was performed to assess the overall evaluation. The octahedral shear strain-based signal-to-noise ratio (OSS-SNR) and median stiffness over the left ventricular myocardium were also compared. RESULTS: One volunteer was excluded because of an inconsistent imaging resolution during the exam. In the remaining 16 volunteers (9 males, 7 females), the rFOV scans outperformed the full-FOV scans in terms of subjective image quality and ghosting artifacts in the magnitude images and stiffness maps, as well as the overall preference. The quantitative measurements showed that rFOV had significantly higher OSS-SNR (median: 1.4 [95% confidence interval (CI): 1.2-1.5] vs. 2.1 [95% CI: 1.8-2.4]), P < 0.05) compared to full-FOV. Although no significant change was found in the median myocardial stiffness between the 2 scans, we observed a decrease in the stiffness variation within the myocardium from 2.1 kPa (95% CI: [1.9, 2.3]) to 1.9 kPa (95% CI: [1.7, 2.0]) for full-FOV and rFOV, respectively (P < 0.05) in a subgroup of 7 subjects with ghosting present in the myocardium. CONCLUSION: This pilot volunteer study demonstrated that rFOV cardiac MRE has the capability to reduce ghosting and to improve image quality in both MRE magnitude images and stiffness maps. Magn Reson Med 80:231-238, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Asunto(s)
Imagen Eco-Planar/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Corazón/diagnóstico por imagen , Espectroscopía de Resonancia Magnética/métodos , Adulto , Algoritmos , Artefactos , Femenino , Voluntarios Sanos , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Lípidos , Masculino , Miocardio/patología , Fantasmas de Imagen , Proyectos Piloto , Probabilidad , Ondas de Radio , Radiología , Resistencia al Corte , Relación Señal-Ruido , Estrés Mecánico , Adulto Joven
9.
Magn Reson Med ; 77(1): 351-360, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26778442

RESUMEN

PURPOSE: Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. METHODS: The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). RESULTS: The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. CONCLUSION: This study motivates future evaluation of high-frequency 3D MRE in patient populations. Magn Reson Med 77:351-360, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Estudios de Factibilidad , Femenino , Corazón/diagnóstico por imagen , Humanos , Modelos Cardiovasculares , Fantasmas de Imagen
10.
Magn Reson Med ; 77(3): 1184-1192, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27016276

RESUMEN

PURPOSE: Magnetic resonance elastography (MRE) is a rapidly growing noninvasive imaging technique for measuring tissue mechanical properties in vivo. Previous studies have compared two-dimensional MRE measurements with material properties from dynamic mechanical analysis (DMA) devices that were limited in frequency range. Advanced DMA technology now allows broad frequency range testing, and three-dimensional (3D) MRE is increasingly common. The purpose of this study was to compare 3D MRE stiffness measurements with those of DMA over a wide range of frequencies and shear stiffnesses. METHODS: 3D MRE and DMA were performed on eight different polyvinyl chloride samples over 20-205 Hz with stiffness between 3 and 23 kPa. Driving frequencies were chosen to create 1.1, 2.2, 3.3, 4.4, 5.5, and 6.6 effective wavelengths across the diameter of the cylindrical phantoms. Wave images were analyzed using direct inversion and local frequency estimation algorithm with the curl operator and compared with DMA measurements at each corresponding frequency. Samples with sufficient spatial resolution and with an octahedral shear strain signal-to-noise ratio > 3 were compared. RESULTS: Consistency between the two techniques was measured with the intraclass correlation coefficient (ICC) and was excellent with an overall ICC of 0.99. CONCLUSIONS: 3D MRE and DMA showed excellent consistency over a wide range of frequencies and stiffnesses. Magn Reson Med 77:1184-1192, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.


Asunto(s)
Algoritmos , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad/instrumentación , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/instrumentación , Ensayo de Materiales , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resistencia al Corte , Estrés Mecánico
11.
J Magn Reson Imaging ; 46(5): 1361-1367, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28236336

RESUMEN

PURPOSE: To evaluate if cardiac magnetic resonance elastography (MRE) can measure increased stiffness in patients with cardiac amyloidosis. Myocardial tissue stiffness plays an important role in cardiac function. A noninvasive quantitative imaging technique capable of measuring myocardial stiffness could aid in disease diagnosis, therapy monitoring, and disease prognostic strategies. We recently developed a high-frequency cardiac MRE technique capable of making noninvasive stiffness measurements. MATERIALS AND METHODS: In all, 16 volunteers and 22 patients with cardiac amyloidosis were enrolled in this study after Institutional Review Board approval and obtaining formal written consent. All subjects were imaged head-first in the supine position in a 1.5T closed-bore MR imager. 3D MRE was performed using 5 mm isotropic resolution oblique short-axis slices and a vibration frequency of 140 Hz to obtain global quantitative in vivo left ventricular stiffness measurements. The median stiffness was compared between the two cohorts. An octahedral shear strain signal-to-noise ratio (OSS-SNR) threshold of 1.17 was used to exclude exams with insufficient motion amplitude. RESULTS: Five volunteers and six patients had to be excluded from the study because they fell below the 1.17 OSS-SNR threshold. The myocardial stiffness of cardiac amyloid patients (median: 11.4 kPa, min: 9.2, max: 15.7) was significantly higher (P = 0.0008) than normal controls (median: 8.2 kPa, min: 7.2, max: 11.8). CONCLUSION: This study demonstrates the feasibility of 3D high-frequency cardiac MRE as a contrast-agent-free diagnostic imaging technique for cardiac amyloidosis. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1361-1367.


Asunto(s)
Amiloidosis/diagnóstico por imagen , Ecocardiografía , Diagnóstico por Imagen de Elasticidad , Ventrículos Cardíacos/diagnóstico por imagen , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Miocardio/patología , Anciano , Anciano de 80 o más Años , Amiloidosis/patología , Estudios de Casos y Controles , Medios de Contraste , Módulo de Elasticidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Posicionamiento del Paciente
12.
Radiology ; 272(1): 241-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24635676

RESUMEN

PURPOSE: To determine the feasibility of using real-time fluoroscopic tracking for bolus-chase magnetic resonance (MR) angiography of peripheral vasculature to image three stations from the aortoiliac bifurcation to the pedal arteries. MATERIALS AND METHODS: This prospective study was institutional review board approved and HIPAA compliant. Eight healthy volunteers (three men; mean age, 48 years; age range, 30-81 years) and 13 patients suspected of having peripheral arterial disease (five men; mean age, 67 years; age range, 47-81 years) were enrolled and provided informed consent. All subjects were imaged with the fluoroscopic tracking MR angiographic protocol. Ten patients also underwent a clinical computed tomographic (CT) angiographic runoff examination. Two readers scored the MR angiographic studies for vessel signal intensity and sharpness and presence of confounding artifacts and venous contamination at 35 arterial segments. Mean aggregate scores were assessed. The paired MR angiographic and CT angiographic studies also were scored for visualization of disease, reader confidence, and overall diagnostic quality and were compared by using a Wilcoxon signed rank test. RESULTS: Real-time fluoroscopic tracking performed well technically in all studies. Vessel segments were scored good to excellent in all but the following categories: For vessel signal intensity and sharpness, the abdominal aorta, iliac arteries, distal plantar arteries, and plantar arch were scored as fair to good; and for presence of confounding artifacts, the abdominal aorta and iliac arteries were scored as fair. The MR angiograms and CT angiograms did not differ significantly in any scoring category (reader 1: P = .50, .39, and .39; reader 2: P = .41, .61, and .33, respectively). CT scores were substantially better in 20% (four of 20) and 25% (five of 20) of the pooled evaluations for the visualization of disease and overall image quality categories, respectively, versus 5% (one of 20) for MR scores in both categories. CONCLUSION: Three-station bolus-chase MR angiography with real-time fluoroscopic tracking provided high-spatial-resolution arteriograms of the peripheral vasculature, enabled precise triggering of table motion, and compared well with CT angiograms.


Asunto(s)
Abdomen/irrigación sanguínea , Medios de Contraste , Imagenología Tridimensional , Pierna/irrigación sanguínea , Angiografía por Resonancia Magnética/métodos , Enfermedades Vasculares Periféricas/diagnóstico , Adulto , Anciano , Estudios de Factibilidad , Femenino , Fluoroscopía , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Meglumina/análogos & derivados , Persona de Mediana Edad , Compuestos Organometálicos , Enfermedades Vasculares Periféricas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
13.
Magn Reson Imaging ; 111: 196-201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38723783

RESUMEN

PURPOSE: Development of a technique for measuring the mechanical properties of zygomaticus major (ZM) may aid advances in clinical treatments for correcting abnormal oral posture. The objective of this work was to demonstrate the feasibility of measuring the stiffness of ZM using an MR elastography technique that incorporates a custom local driver and a phase-gradient (PG) inversion. METHODS: 2D MRE investigations were performed for 3 healthy subjects using a vibration frequency of 90 Hz to test the prediction that the stiffness of ZM would be greater in the mouth-open compared to the mouth-closed position. MRE wave images were acquired along the long axis of ZM and processed using a 2D spatial-temporal directional filter applied in the direction of wave propagation along the long axis of the muscle. Stiffness measurements were obtained by applying the PG technique to a 1D-profile drawn in the phase image of the first harmonic of the wave images and a one-tailed paired t-test was used to compare the ZM stiffness between the two mouth postures (p < 0.05). RESULTS: The mean stiffness and standard deviation (SD) of ZM across the three participants in the mouth-closed and mouth-open postures was 6.75 kPa (SD 3.36 kPa) and 15.5 kPa (SD 5.15 kPa), respectively. Changes of ZM stiffness were significantly greater in the mouth-open than the mouth-closed posture (p = 0.038). CONCLUSION: The feasibility of using the PG MRE technique to measure stiffness changes in a small muscle such as ZM for different mouth postures has been demonstrated. Further investigations are required in a larger cohort of participants to investigate the sensitivity and reproducibility of the technique for potential clinical application as well as in health and beauty related studies.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Estudios de Factibilidad , Postura , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Postura/fisiología , Masculino , Adulto , Femenino , Boca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Músculos Faciales/diagnóstico por imagen , Músculos Faciales/fisiología , Reproducibilidad de los Resultados , Adulto Joven
14.
Radiol Cardiothorac Imaging ; 6(3): e230140, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38780427

RESUMEN

Purpose To investigate the feasibility of using quantitative MR elastography (MRE) to characterize the influence of aging and sex on left ventricular (LV) shear stiffness. Materials and Methods In this prospective study, LV myocardial shear stiffness was measured in 109 healthy volunteers (age range: 18-84 years; mean age, 40 years ± 18 [SD]; 57 women, 52 men) enrolled between November 2018 and September 2019, using a 5-minute MRE acquisition added to a clinical MRI protocol. Linear regression models were used to estimate the association of cardiac MRI and MRE characteristics with age and sex; models were also fit to assess potential age-sex interaction. Results Myocardial shear stiffness significantly increased with age in female (age slope = 0.03 kPa/year ± 0.01, P = .009) but not male (age slope = 0.008 kPa/year ± 0.009, P = .38) volunteers. LV ejection fraction (LVEF) increased significantly with age in female volunteers (0.23% ± 0.08 per year, P = .005). LV end-systolic volume (LVESV) decreased with age in female volunteers (-0.20 mL/m2 ± 0.07, P = .003). MRI parameters, including T1, strain, and LV mass, did not demonstrate this interaction (P > .05). Myocardial shear stiffness was not significantly correlated with LVEF, LV stroke volume, body mass index, or any MRI strain metrics (P > .05) but showed significant correlations with LV end-diastolic volume/body surface area (BSA) (slope = -3 kPa/mL/m2 ± 1, P = .004, r2 = 0.08) and LVESV/BSA (-1.6 kPa/mL/m2 ± 0.5, P = .003, r2 = 0.08). Conclusion This study demonstrates that female, but not male, individuals experience disproportionate LV stiffening with natural aging, and these changes can be noninvasively measured with MRE. Keywords: Cardiac, Elastography, Biological Effects, Experimental Investigations, Sexual Dimorphisms, MR Elastography, Myocardial Shear Stiffness, Quantitative Stiffness Imaging, Aging Heart, Myocardial Biomechanics, Cardiac MRE Supplemental material is available for this article. Published under a CC BY 4.0 license.


Asunto(s)
Envejecimiento , Diagnóstico por Imagen de Elasticidad , Ventrículos Cardíacos , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Anciano , Diagnóstico por Imagen de Elasticidad/métodos , Anciano de 80 o más Años , Adolescente , Estudios Prospectivos , Envejecimiento/fisiología , Ventrículos Cardíacos/diagnóstico por imagen , Adulto Joven , Factores Sexuales , Función Ventricular Izquierda/fisiología , Imagen por Resonancia Magnética , Estudios de Factibilidad
15.
J Magn Reson Imaging ; 38(6): 1549-53, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23371244

RESUMEN

PURPOSE: To investigate the feasibility of using MR elastography (MRE) for the evaluation of the stiffness of in vivo aortic wall. MATERIALS AND METHODS: To validate the experimental approach for imaging the aorta in vivo, a gel phantom with an embedded porcine aorta was imaged in the presence of fluid flow within the aorta. The potential changes in the elasticity of the vessel wall with changes in pressure were investigated. The feasibility of performing MRE of abdominal aorta was assessed in five volunteers (age, 22-40 years; body mass index, 21.5-25.2 kg/m(2) ). The pulse-gated cine MRE technique was used to study the wave propagation along the aorta throughout the cardiac cycle and provide estimates of aortic stiffness in diastole. RESULTS: In the phantom study, the wave propagation was well visualized within the porcine aorta embedded in the gel phantom. An increase of the Young's modulus-wall thickness (E*t) product with the increase in static pressure was observed. In the in vivo study, the waves were well visualized within the lumen of abdominal aorta in the five volunteers in diastolic phase, but they were not well visualized during systole. CONCLUSION: MRE is feasible for noninvasively assessing the stiffness of the abdominal aorta and merits further investigation.


Asunto(s)
Aorta Abdominal/anatomía & histología , Aorta Abdominal/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Adulto , Animales , Módulo de Elasticidad/fisiología , Diagnóstico por Imagen de Elasticidad/instrumentación , Estudios de Factibilidad , Humanos , Masculino , Fantasmas de Imagen , Proyectos Piloto , Resistencia al Corte/fisiología , Estrés Mecánico , Porcinos , Rigidez Vascular/fisiología , Adulto Joven
16.
J Magn Reson Imaging ; 34(1): 2-12, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21698702

RESUMEN

Methods are described for generating 3D time-resolved contrast-enhanced magnetic resonance (MR) angiograms of the hands and feet. Given targeted spatial resolution and frame times, it is shown that acceleration of about one order of magnitude or more is necessary. This is obtained by a combination of 2D sensitivity encoding (SENSE) and homodyne (HD) acceleration methods. Image update times from 3.4-6.8 seconds are provided in conjunction with view sharing. Modular receiver coil arrays are described which can be designed to the targeted vascular region. Images representative of the technique are generated in the vasculature of the hands and feet in volunteers and in patient studies.


Asunto(s)
Angiografía/métodos , Medios de Contraste/farmacología , Pie/patología , Mano/patología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Aceleración , Algoritmos , Pie/diagnóstico por imagen , Mano/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Enfermedad de Raynaud/patología , Factores de Tiempo
17.
Med Phys ; 48(2): 781-790, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33294999

RESUMEN

PURPOSE: A 7T magnetic resonance thermometry (MRT) technique was developed to validate the conversion factor between the system-measured transmitted radiofrequency (RF) power into a home-built RF wrist coil with the system-predicted SAR value. The conversion factor for a new RF coil developed for ultra high magnetic field MRI systems is used to ensure that regulatory limits on RF energy deposition in tissue, specifically the local 10g-averaged specific absorption rate (SAR10g ), are not exceeded. MRT can be used to validate this factor by ensuring that MRT-measured SAR values do not exceed those predicted by the system. METHODS: A 14-cm diameter high-pass birdcage RF coil was built to image the wrist at 7T. A high spatial and temporal resolution dual-echo gradient echo MRT technique, incorporating quasi-simultaneous RF-induced heating and temperature change measurements using the proton resonance frequency method, was developed. The technique allowed for high-temperature resolution measurements (~±0.1°C) to be performed every 20 s over a 4-min heating period, with high spatial resolution (2.56 mm3 voxel size) and avoiding phase discontinuities arising from severe magnetic susceptibility-induced B0 inhomogeneities. Magnetic resonance thermometry was performed on a phantom made from polyvinylpyrrolidone to mimic the dielectric properties of muscle tissue at 297.2 MHz. Temperature changes measured with MRT and four fiber optic temperature sensors embedded in the phantom were compared. Electromagnetic simulations of the coil and phantom were developed and validated via comparison of simulated and measured B1 + maps in the phantom. The position of maximum SAR within the coil was determined from simulations, and MRT was performed within a wrist-sized piece of meat positioned at that SAR hotspot location. MRT-measured and system-predicted SAR values for the phantom and meat were compared. RESULTS: Temperature change measurements from MRT matched closely to those from the fiber optic temperature sensors. The simulations were validated via close correlation between the simulated and MRT-measured B1 + and SAR maps. Using a coil conversion factor of 2 kg-1 , MRT-measured point-SAR values did not exceed the system-predicted SAR10g in either the uniform phantom or in the piece of meat mimicking the wrist located at the SAR hotspot location. CONCLUSIONS: A highly accurate MRT technique with high spatial and temporal resolution was developed. This technique can be used to ensure that system-predicted SAR values are not exceeded in practice, thereby providing independent validation of SAR levels delivered by a newly built RF wrist coil. The MRT technique is readily generalizable to perform safety evaluations for other RF coils at 7T.


Asunto(s)
Termometría , Muñeca , Imagen por Resonancia Magnética , Fantasmas de Imagen , Ondas de Radio , Muñeca/diagnóstico por imagen
18.
Magn Reson Med ; 64(4): 1171-81, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20715291

RESUMEN

High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method.


Asunto(s)
Arterias/fisiología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Pierna/fisiología , Angiografía por Resonancia Magnética/métodos , Meglumina/análogos & derivados , Compuestos Organometálicos , Algoritmos , Arterias/anatomía & histología , Medios de Contraste , Humanos , Pierna/irrigación sanguínea , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Magn Reson Med ; 61(3): 678-85, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19132758

RESUMEN

Dynamic MR elastography (MRE) quantitatively maps the stiffness of tissues by imaging propagating shear waves in the tissue. These waves can be produced from intrinsic motion sources (e.g., due to cardiac motion), from external motion sources that produce motion directly at depth in tissue (e.g., amplitude-modulated focused ultrasound), and from external actuators that produce motion at the tissue surface that propagates into the tissue. With external actuator setups, typically only a single transducer is used to create the shear waves, which in some applications might have limitations due to shadowing and attenuation of the waves. To address these limitations, a phased-array acoustic driver system capable of applying independently controlled waveforms to each channel was developed and tested. It was found that the system produced much more uniform illumination of the object, improving the quality of the elastogram. It was also found that the accuracy of the stiffness value of any arbitrary region of interest could be improved by obtaining maximal shear wave illumination with the phased array capability of the system.


Asunto(s)
Acústica/instrumentación , Diagnóstico por Imagen de Elasticidad/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Magn Reson Med ; 62(1): 85-95, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19319897

RESUMEN

Various methods have been used for time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA), many involving view sharing. However, the extent to which the resultant image time series represents the actual dynamic behavior of the contrast bolus is not always clear. Although numerical simulations can be used to estimate performance, an experimental study can allow more realistic characterization. The purpose of this work was to use a computer-controlled motion phantom for study of the temporal fidelity of three-dimensional (3D) time-resolved sequences in depicting a contrast bolus. It is hypothesized that the view order of the acquisition and the selection of views in the reconstruction can affect the positional accuracy and sharpness of the leading edge of the bolus and artifactual signal preceding the edge. Phantom studies were performed using dilute gadolinium-filled vials that were moved along tabletop tracks by a computer-controlled motor. Several view orders were tested using view-sharing and Cartesian sampling. Compactness of measuring the k-space center, consistency of view ordering within each reconstruction frame, and sampling the k-space center near the end of the temporal footprint were shown to be important in accurate portrayal of the leading edge of the bolus. A number of findings were confirmed in an in vivo CE-MRA study.


Asunto(s)
Algoritmos , Arterias/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Arterias/anatomía & histología , Medios de Contraste , Humanos , Angiografía por Resonancia Magnética/instrumentación , Movimiento (Física) , Fantasmas de Imagen , Reproducibilidad de los Resultados , Reología/métodos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA