Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Genet ; 104(5): 607-609, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491870

RESUMEN

Pedigree showing the autosomal dominant inheritance pattern of CSNK21 variants in families presenting with OCNDS. (A) Maternal inheritance to two daughters in Family 1, (B) Paternal inheritance to a daughter in Family 2, and (C) Maternal inheritance to two sons in Family 3.

2.
Brain ; 145(12): 4232-4245, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35139179

RESUMEN

RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors.


Asunto(s)
Megalencefalia , Trastornos del Neurodesarrollo , Proteína de Unión al GTP rac1 , Animales , Ratones , Megalencefalia/genética , Trastornos del Neurodesarrollo/genética , Neuronas , Células 3T3 NIH , Transducción de Señal/genética
3.
Genet Med ; 24(2): 255-261, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906464

RESUMEN

Genomic testing, including single-nucleotide variation (formerly single-nucleotide polymorphism)-based chromosomal microarray and exome and genome sequencing, can detect long regions of homozygosity (ROH) within the genome. Genomic testing can also detect possible uniparental disomy (UPD). Platforms that can detect ROH and possible UPD have matured since the initial American College of Medical Genetics and Genomics (ACMG) standard was published in 2013, and the detection of ROH and UPD by these platforms has shown utility in diagnosis of patients with genetic/genomic disorders. The presence of these segments, when distributed across multiple chromosomes, may indicate a familial relationship between the proband's parents. This technical standard describes the detection of possible consanguinity and UPD by genomic testing, as well as the factors confounding the inference of a specific parental relationship or UPD. Current bioethical and legal issues regarding detection and reporting of consanguinity are also discussed.


Asunto(s)
Genética Médica , Disomía Uniparental , Consanguinidad , Genómica , Homocigoto , Humanos , Polimorfismo de Nucleótido Simple/genética , Estados Unidos
4.
Genet Med ; 24(1): 179-191, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906456

RESUMEN

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Anomalías Musculoesqueléticas , Haploinsuficiencia , Humanos , Discapacidad Intelectual/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Anomalías Musculoesqueléticas/genética , Fenotipo
5.
Am J Med Genet A ; 176(12): 2791-2797, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30216695

RESUMEN

Phelan-McDermid syndrome (PMS, OMIM 606232) is a heterozygous contiguous gene microdeletion syndrome occurring at the distal region of chromosome 22q13. This deletion encompasses the SHANK3 gene at 22q13.33, which is thought to be the critical gene for the neurodevelopmental features seen in this syndrome. PMS is typically characterized by intellectual disability, autism spectrum disorder, absent to severely delayed speech, neonatal hypotonia, and dysmorphic features. Two patients presenting with classic clinical features of PMS have been reported to have interstitial microdeletions in the 22q13.2 region that map proximal to the SHANK3 gene (0.54 and 0.72 Mb, respectively). Here, we describe a 13-month-old girl with a de novo 1.16 Mb interstitial deletion in the 22q13.2 region who presented with global developmental delay, subtle dysmorphic features, and immunodeficiency. This deletion overlaps with the two previously published cases and five cases from the DECIPHER database. All eight patients share features common to patients with PMS including developmental delay and language delay, which suggests that this represents a previously unrecognized microdeletion syndrome in the 22q13.2 region. Our patient's deletion encompasses the TCF20 and TNFRSF13C genes, which are thought to play causative roles in the patient's neurodevelopmental and immunological features, respectively.


Asunto(s)
Receptor del Factor Activador de Células B/genética , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Fenotipo , Factores de Transcripción/genética , Alelos , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Hibridación Genómica Comparativa , Análisis Citogenético , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Mutación
7.
Cancer Prev Res (Phila) ; 17(1): 19-28, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37913800

RESUMEN

We sought to explore the intrafamilial communication and cascade genetic testing (CGT) experiences of patients with hereditary cancer from diverse, medically underserved populations and their relatives. Participants included patients receiving oncology care at an urban, safety net hospital in Texas or comprehensive cancer center in Alabama and their first-degree relatives. In-depth semi-structured qualitative interviews were completed wherein patients shared their experiences with genetic counseling (GC), genetic testing (GT), and communicating their results to relatives. Relatives shared their experiences receiving information from the patient and considering CGT. Interviews were transcribed, coded, and themes were identified. Of 25 participating patients, most recalled key aspects of GC and their GT results. Most (80%) patients shared their results with relatives, but only some relatives underwent CGT; patients reported low perceived susceptibility to hereditary cancer as a common barrier to CGT for their relatives. Of 16 participating relatives, most reported feeling distress upon learning the patient's GT results. Relatives were fearful of learning their own CGT results but identified prevention and early detection as CGT benefits. Interviews identified opportunities during family communication to improve relatives' perceived susceptibility to hereditary cancer. Tailored resources may support patients and relatives experiencing distress and fear during GT. PREVENTION RELEVANCE: This study of intrafamilial communication and cascade genetic testing experiences of patients with hereditary cancer and their relatives from diverse, medically underserved populations identified relatives' perceived susceptibility to hereditary cancer risks, distress, and fear as frequent reactions and barriers to testing. These results may inform future hereditary cancer prevention efforts.


Asunto(s)
Área sin Atención Médica , Neoplasias , Humanos , Pruebas Genéticas , Comunicación , Asesoramiento Genético , Neoplasias/diagnóstico , Neoplasias/genética , Predisposición Genética a la Enfermedad
8.
JIMD Rep ; 64(2): 138-145, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873089

RESUMEN

GM3 synthase deficiency (GM3SD) is caused by biallelic variants in ST3GAL5. The ganglioside GM3, enriched in neuronal tissues, is a component of lipid rafts and regulates numerous signaling pathways. Affected individuals with GM3SD exhibit global developmental delay, progressive microcephaly, and dyskinetic movements. Hearing loss and altered skin pigmentation are also common. Most of the reported variants in ST3GAL5 are found in motifs conserved across all sialyltransferases within the GT29 family of enzymes. These motifs include motif L and motif S which contain amino acids responsible for substrate binding. These loss-of-function variants cause greatly reduced biosynthesis of GM3 and gangliosides derived from GM3. Here we describe an affected female with typical GM3SD features bearing two novel variants that reside in the other two conserved sialyltransferase motifs (motif 3 and motif VS). These missense alterations occur in amino acid residues that are strictly invariant across the entire GT29 family of sialyltransferases. The functional significance of these variants was confirmed by mass spectrometric analysis of plasma glycolipids, demonstrating a striking loss of GM3 and accumulation of lactosylceramide and Gb3 in the patient. The glycolipid profile changes were accompanied by an increase in ceramide chain length on LacCer. No changes in receptor tyrosine phosphorylation were observed in patient-derived lymphoblasts, indicating that GM3 synthase loss-of-function in this cell type does not impact receptor tyrosine kinase activity. These findings demonstrate the high prevalence of loss-of-function ST3GAL5 variants within highly conserved sialyltransferase motifs in affected individuals with GM3SD.

9.
HGG Adv ; 3(3): 100111, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35571680

RESUMEN

CSNK2B encodes for casein kinase II subunit beta (CK2ß), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and ß-catenin with mutated CK2ß. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated ß-catenin and consequent absence of active ß-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear ß-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.

10.
Int J Pediatr Otorhinolaryngol ; 150: 110872, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34433113

RESUMEN

Congenital hearing loss is a common cause of morbidity in early childhood. There are multiple reasons for congenital hearing impairment, with genetic contribution becoming increasingly recognized. Sensorineural hearing loss has classically been viewed as either syndromic or non-syndromic. With the advent of DNA sequencing technology such as NextGen sequencing, a subcategory has arisen, that of non-syndromic mimics (NSM)s. NSMs present initially as isolated hearing loss but as the patient ages other phenotypes become evident. Early diagnosis of these conditions is imperative as patients may suffer significant morbidity and mortality from complications from their hearing loss syndrome. An example is QT prolongation in Jervell and Lange-Nielsen Syndrome. The need for genetic testing and proper genetic counseling is necessary for patients with hearing loss and testing should be done as early in life as possible.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Síndrome de Jervell-Lange Nielsen , Preescolar , Sordera/diagnóstico , Sordera/genética , Pruebas Genéticas , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Humanos , Análisis de Secuencia de ADN
11.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33951726

RESUMEN

The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro-B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro- to pre-B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1's critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.


Asunto(s)
Agammaglobulinemia/genética , Cromatina/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Adolescente , Adulto , Linfocitos B/fisiología , Diferenciación Celular/genética , Línea Celular , Niño , Preescolar , Células Dendríticas/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Humanos , Lactante , Linfopoyesis/genética , Masculino , Mutación/genética , Células Precursoras de Linfocitos B/fisiología , Células Madre/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA