Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112803

RESUMEN

The OAS-RNase L pathway is one of the oldest innate RNA sensing pathways that leads to interferon (IFN) signaling and cell death. OAS recognizes viral RNA and then activates RNase L, which subsequently cleaves both cellular and viral RNA, creating "processed RNA" as an endogenous ligand that further triggers RIG-I-like receptor signaling. However, the IFN response and antiviral activity of the OAS-RNase L pathway are weak compared to other RNA-sensing pathways. Here, we discover that the SKIV2L RNA exosome limits the antiviral capacity of the OAS-RNase L pathway. SKIV2L-deficient cells exhibit remarkably increased interferon responses to RNase L-processed RNA, resulting in heightened antiviral activity. The helicase activity of SKIV2L is indispensable for this function, acting downstream of RNase L. SKIV2L depletion increases the antiviral capacity of OAS-RNase L against RNA virus infection. Furthermore, SKIV2L loss exacerbates autoinflammation caused by human OAS1 gain-of-function mutations. Taken together, our results identify SKIV2L as a critical barrier to OAS-RNase L-mediated antiviral immunity that could be therapeutically targeted to enhance the activity of a basic antiviral pathway.

2.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568967

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Endorribonucleasas/metabolismo , Transducción de Señal , Antivirales
3.
J Biol Chem ; 300(6): 107368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750793

RESUMEN

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Humanos , Biología Computacional/métodos , Cristalografía por Rayos X , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Motivos de Unión al ARN/genética
4.
Proc Natl Acad Sci U S A ; 119(21): e2114324119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35584120

RESUMEN

Antiandrogen strategies remain the prostate cancer treatment backbone, but drug resistance develops. We show that androgen blockade in prostate cancer leads to derepression of retroelements (REs) followed by a double-stranded RNA (dsRNA)-stimulated interferon response that blocks tumor growth. A forward genetic approach identified H3K9 trimethylation (H3K9me3) as an essential epigenetic adaptation to antiandrogens, which enabled transcriptional silencing of REs that otherwise stimulate interferon signaling and glucocorticoid receptor expression. Elevated expression of terminal H3K9me3 writers was associated with poor patient hormonal therapy outcomes. Forced expression of H3K9me3 writers conferred resistance, whereas inhibiting H3K9-trimethylation writers and readers restored RE expression, blocking antiandrogen resistance. Our work reveals a drug resistance axis that integrates multiple cellular signaling elements and identifies potential pharmacologic vulnerabilities.


Asunto(s)
Antagonistas de Receptores Androgénicos , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/farmacología , Metilación de ADN , Resistencia a Antineoplásicos , Silenciador del Gen , Humanos , Interferones , Masculino , Metilación , Nitrilos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
5.
EMBO J ; 39(11): e101573, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32323871

RESUMEN

High expression of 2',5'-oligoadenylate synthetase 1 (OAS1), which adds AMP residues in 2',5' linkage to a variety of substrates, is observed in many cancers as a part of the interferon-related DNA damage resistance signature (IRDS). Poly(ADP-ribose) (PAR) is rapidly synthesized from NAD+ at sites of DNA damage to facilitate repair, but excessive PAR synthesis due to extensive DNA damage results in cell death by energy depletion and/or activation of PAR-dependent programmed cell death pathways. We find that OAS1 adds AMP residues in 2',5' linkage to PAR, inhibiting its synthesis in vitro and reducing its accumulation in cells. Increased OAS1 expression substantially improves cell viability following DNA-damaging treatments that stimulate PAR synthesis during DNA repair. We conclude that high expression of OAS1 in cancer cells promotes their ability to survive DNA damage by attenuating PAR synthesis and thus preventing cell death.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/biosíntesis , Daño del ADN , Regulación Enzimológica de la Expresión Génica , Poli ADP Ribosilación , 2',5'-Oligoadenilato Sintetasa/genética , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Muerte Celular , Línea Celular Transformada , Humanos
6.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031250

RESUMEN

Infection with the flavivirus Zika virus (ZIKV) can result in tissue tropism, disease outcome, and route of transmission distinct from those of other flaviviruses; therefore, we aimed to identify host machinery that exclusively promotes the ZIKV replication cycle, which can inform on differences at the organismal level. We previously reported that deletion of the host antiviral ribonuclease L (RNase L) protein decreases ZIKV production. Canonical RNase L catalytic activity typically restricts viral infection, including that of the flavivirus dengue virus (DENV), suggesting an unconventional, proviral RNase L function during ZIKV infection. In this study, we reveal that an inactive form of RNase L supports assembly of ZIKV replication factories (RFs) to enhance infectious virus production. Compared with the densely concentrated ZIKV RFs generated with RNase L present, deletion of RNase L induced broader subcellular distribution of ZIKV replication intermediate double-stranded RNA (dsRNA) and NS3 protease, two constituents of ZIKV RFs. An inactive form of RNase L was sufficient to contain ZIKV genome and dsRNA within a smaller RF area, which subsequently increased infectious ZIKV release from the cell. Inactive RNase L can interact with cytoskeleton, and flaviviruses remodel cytoskeleton to construct RFs. Thus, we used the microtubule-stabilization drug paclitaxel to demonstrate that ZIKV repurposes RNase L to facilitate the cytoskeleton rearrangements required for proper generation of RFs. During infection with flaviviruses DENV or West Nile Kunjin virus, inactive RNase L did not improve virus production, suggesting that a proviral RNase L role is not a general feature of all flavivirus infections.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Endorribonucleasas/metabolismo , Interacciones Huésped-Patógeno , Replicación Viral , Virus Zika/fisiología , 2',5'-Oligoadenilato Sintetasa/genética , Células A549 , Endorribonucleasas/genética , Humanos
7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33811184

RESUMEN

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2-infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


Asunto(s)
Células Epiteliales/inmunología , Células Epiteliales/virología , Inmunidad Innata , Pulmón/patología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/virología , ARN Bicatenario/metabolismo , SARS-CoV-2/inmunología , Células A549 , Endorribonucleasas/metabolismo , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Nariz/virología , Replicación Viral , eIF-2 Quinasa
8.
Proc Natl Acad Sci U S A ; 117(40): 24802-24812, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958664

RESUMEN

The oligoadenylate synthetase (OAS)-RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


Asunto(s)
Adenosina Desaminasa/deficiencia , Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Endorribonucleasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Malformaciones del Sistema Nervioso/enzimología , Fenol/farmacología , 2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Nucleótidos de Adenina/metabolismo , Adenosina Desaminasa/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Muerte Celular/efectos de los fármacos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inhibidores Enzimáticos/química , Humanos , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Oligorribonucleótidos/metabolismo , Fenol/química , Proteínas de Unión al ARN/genética
9.
Lupus ; 31(13): 1619-1629, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36134524

RESUMEN

Systemic lupus erythematosus is characterized by hyper-activation of the immune system, multi-organ inflammation, and end-organ damage. Type I interferons (IFN-I) have been strongly implicated a role in disease etiology as has the main IFN-I-producing cell subset, the plasmacytoid dendritic cell (pDC). The B6.Nba2 mouse model develops a lupus-like disease characterized by elevated IFN-I levels and pDC pathogenicity. We have previously shown that pDC ablation prior to disease development in B6.Nba2 mice effectively prevents disease; however, it remains unclear if a similar protection can be seen if pDC ablation is initiated during later disease stages. This is important as Systemic lupus erythematosus patients are rarely diagnosed until disease is well-established and thus preventative treatment is unlikely to take place. Here we show that ablation of pDCs in the B6.Nba2 mouse model must be initiated early in order to effectively block disease development and that sustained reduction in pDC numbers is necessary for sustained effects. Finally, targeting of pDCs have been hypothesized to affect immunity towards infectious agents, in particular virus and intracellular bacteria. We show here that pDC ablation in B6.Nba2 mice does not affect the anti-viral response to encephalomyocarditic virus or a model T-dependent antigen. In summary, pDC ablation does not affect general immunity, but needs to happen early and be sustained to prevent lupus-like disease development in B6.Nba2 mice.


Asunto(s)
Interferón Tipo I , Lupus Eritematoso Sistémico , Ratones , Animales , Células Dendríticas , Modelos Animales de Enfermedad
10.
Mol Cell ; 53(2): 221-34, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24462203

RESUMEN

RNase L is an ankyrin repeat domain-containing dual endoribonuclease-pseudokinase that is activated by unusual 2,'5'-oligoadenylate (2-5A) second messengers and which impedes viral infections in higher vertebrates. Despite its importance in interferon-regulated antiviral innate immunity, relatively little is known about its precise mechanism of action. Here we present a functional characterization of 2.5 Å and 3.25 Å X-ray crystal and small-angle X-ray scattering structures of RNase L bound to a natural 2-5A activator with and without ADP or the nonhydrolysable ATP mimetic AMP-PNP. These studies reveal how recognition of 2-5A through interactions with the ankyrin repeat domain and the pseudokinase domain, together with nucleotide binding, imposes a rigid intertwined dimer configuration that is essential for RNase catalytic and antiviral functions. The involvement of the pseudokinase domain of RNase L in 2-5A sensing, nucleotide binding, dimerization, and ribonuclease functions highlights the evolutionary adaptability of the eukaryotic protein kinase fold.


Asunto(s)
Nucleótidos de Adenina/química , Endorribonucleasas/química , Oligorribonucleótidos/química , Adenosina Difosfato/química , Adenilil Imidodifosfato/química , Animales , Repetición de Anquirina , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Virus de la Encefalomiocarditis , Endorribonucleasas/genética , Endorribonucleasas/fisiología , Células HeLa , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Picornaviridae , Estructura Terciaria de Proteína , Dispersión de Radiación , Relación Estructura-Actividad , Sus scrofa
11.
Proc Natl Acad Sci U S A ; 116(11): 5071-5076, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30814222

RESUMEN

Drugs that reverse epigenetic silencing, such as the DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (AZA), have profound effects on transcription and tumor cell survival. AZA is an approved drug for myelodysplastic syndromes and acute myeloid leukemia, and is under investigation for different solid malignant tumors. AZA treatment generates self, double-stranded RNA (dsRNA), transcribed from hypomethylated repetitive elements. Self dsRNA accumulation in DNMTi-treated cells leads to type I IFN production and IFN-stimulated gene expression. Here we report that cell death in response to AZA treatment occurs through the 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway. OASs are IFN-induced enzymes that synthesize the RNase L activator 2-5A in response to dsRNA. Cells deficient in RNase L or OAS1 to 3 are highly resistant to AZA, as are wild-type cells treated with a small-molecule inhibitor of RNase L. A small-molecule inhibitor of c-Jun NH2-terminal kinases (JNKs) also antagonizes RNase L-dependent cell death in response to AZA, consistent with a role for JNK in RNase L-induced apoptosis. In contrast, the rates of AZA-induced and RNase L-dependent cell death were increased by transfection of 2-5A, by deficiencies in ADAR1 (which edits and destabilizes dsRNA), PDE12 or AKAP7 (which degrade 2-5A), or by ionizing radiation (which induces IFN-dependent signaling). Finally, OAS1 expression correlates with AZA sensitivity in the NCI-60 set of tumor cell lines, suggesting that the level of OAS1 can be a biomarker for predicting AZA sensitivity of tumor cells. These studies may eventually lead to pharmacologic strategies for regulating the antitumor activity and toxicity of AZA and related drugs.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Azacitidina/farmacología , Desmetilación del ADN , Endorribonucleasas/metabolismo , Inmunidad Innata , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Muerte Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Isoenzimas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Radiación Ionizante , Bibliotecas de Moléculas Pequeñas/farmacología
12.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32051268

RESUMEN

Our understanding of how rotavirus (RV) subverts host innate immune signaling has greatly increased over the past decade. However, the relative contribution of each virus-encoded innate immune antagonist has not been fully studied in the context of RV infection in vivo Here, we present both in vitro and in vivo evidence that the host interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase (OAS) and RNase L pathway effectively suppresses the replication of heterologous RV strains. VP3 from homologous RVs relies on its 2'-5'-phosphodiesterase (PDE) domain to counteract RNase L-mediated antiviral signaling. Using an RV reverse-genetics system, we show that compared to the parental strain, VP3 PDE mutant RVs replicated at low levels in the small intestine and were shed less in the feces of wild-type mice, and such defects were rescued in Rnasel-/- suckling mice. Collectively, these findings highlight an important role of VP3 in promoting viral replication and pathogenesis in vivo in addition to its well-characterized function as the viral RNA-capping enzyme.IMPORTANCE Rotaviruses are significant human pathogens that result in diarrhea, dehydration, and deaths in many children around the world. Rotavirus vaccines have suboptimal efficacy in low- to middle-income countries, where the burden of the diseases is the most severe. With the ultimate goal of improving current vaccines, we aim to better understand how rotavirus interacts with the host innate immune system in the small intestine. Here, we demonstrate that interferon-activated RNase L signaling blocks rotavirus replication in a strain-specific manner. In addition, virus-encoded VP3 antagonizes RNase L activity both in vitro and in vivo These studies highlight an ever-evolving arms race between antiviral factors and viral pathogens and provide a new means of targeted attenuation for next-generation rotavirus vaccine design.


Asunto(s)
Proteínas de la Cápside/genética , Endorribonucleasas/genética , Rotavirus/genética , Nucleótidos de Adenina/metabolismo , Animales , Proteínas de la Cápside/metabolismo , Línea Celular , Chlorocebus aethiops , Endorribonucleasas/metabolismo , Femenino , Interacciones Huésped-Patógeno/genética , Inmunidad Innata/inmunología , Interferones/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oligorribonucleótidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Polinucleótido Ligasas/metabolismo , Genética Inversa/métodos , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus , Transducción de Señal/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
13.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142667

RESUMEN

There is currently no knowledge of how the emerging human pathogen Zika virus (ZIKV) interacts with the antiviral endoribonuclease L (RNase L) pathway during infection. Since activation of RNase L during infection typically limits virus production dramatically, we used CRISPR-Cas9 gene editing technology to knockout (KO) targeted host genes involved in the RNase L pathway to evaluate the effects of RNase L on ZIKV infection in human A549 cells. RNase L was activated in response to ZIKV infection, which degraded ZIKV genomic RNA. Surprisingly, despite viral genome reduction, RNase L activity did not reduce ZIKV infectious titers. In contrast, both the flavivirus dengue virus and the alphavirus Sindbis virus replicated to significantly higher titers in RNase L KO cells compared to wild-type (WT) cells. Using MAVS/RNase L double KO cells, we demonstrated that the absence of increased ZIKV production in RNase L KO cells was not due to compensation by enhanced type I interferon transcripts to thus inhibit virus production. Finally, when synthetic double-stranded RNA was detected by OAS3 to induce RNase L antiviral activity prior to ZIKV infection, we observed reduced ZIKV replication factory formation, as well as a 42-fold reduction in virus yield in WT but not RNase L KO cells. This study proposes that ZIKV evades RNase L antiviral activity by generating a viral genome reservoir protected from RNase L cleavage during early infection, allowing for sufficient virus production before RNase L activation is detectable.IMPORTANCE With the onset of the 2015 ZIKV outbreak, ZIKV pathogenesis has been of extreme global public health interest, and a better understanding of interactions with the host would provide insight into molecular mechanisms driving the severe neurological outcomes of ZIKV disease. Here is the initial report on the relationship between ZIKV and the host oligoadenylate synthetase-RNase L (OAS-RNase L) system, a potent antiviral pathway effective at restricting replication of diverse viruses. Our study elucidated a unique mechanism whereby ZIKV production is impervious to antiviral RNase L activity, through a mechanism of viral RNA protection that is not mimicked during infection with numerous other RNase L-activating viruses, thus identifying a distinct replication strategy potentially important for ZIKV pathogenesis.


Asunto(s)
Endorribonucleasas/metabolismo , Interacciones Huésped-Patógeno , Replicación Viral , Infección por el Virus Zika/virología , Virus Zika/fisiología , Línea Celular , Células Cultivadas , Activación Enzimática , Genoma Viral , Humanos , Interferones/biosíntesis , Modelos Biológicos , ARN Viral
14.
PLoS Pathog ; 14(4): e1006989, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29652922

RESUMEN

The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler's murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2'-5' oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Nucleótidos de Adenina/metabolismo , Endorribonucleasas/antagonistas & inhibidores , Virus de la Hepatitis Murina/fisiología , Oligorribonucleótidos/metabolismo , Theilovirus/metabolismo , Proteínas Virales/metabolismo , Animales , Antivirales/metabolismo , Endorribonucleasas/fisiología , Células HeLa , Hepatitis Viral Animal/metabolismo , Hepatitis Viral Animal/virología , Interacciones Huésped-Patógeno , Humanos , Ratones
16.
PLoS Pathog ; 13(2): e1006195, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28158275

RESUMEN

Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.


Asunto(s)
Coronaviridae/enzimología , Infecciones por Coronavirus/inmunología , Endonucleasas/inmunología , Evasión Inmune/fisiología , Proteínas Virales/inmunología , Animales , Coronaviridae/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Proc Natl Acad Sci U S A ; 113(8): 2241-6, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858407

RESUMEN

The 2',5'-oligoadenylate (2-5A) synthetase (OAS)-RNase L system is an IFN-induced antiviral pathway. RNase L activity depends on 2-5A, synthesized by OAS. Although all three enzymatically active OAS proteins in humans--OAS1, OAS2, and OAS3--synthesize 2-5A upon binding dsRNA, it is unclear which are responsible for RNase L activation during viral infection. We used clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology to engineer human A549-derived cell lines in which each of the OAS genes or RNase L is knocked out. Upon transfection with poly(rI):poly(rC), a synthetic surrogate for viral dsRNA, or infection with each of four viruses from different groups (West Nile virus, Sindbis virus, influenza virus, or vaccinia virus), OAS1-KO and OAS2-KO cells synthesized amounts of 2-5A similar to those synthesized in parental wild-type cells, causing RNase L activation as assessed by rRNA degradation. In contrast, OAS3-KO cells synthesized minimal 2-5A, and rRNA remained intact, similar to infected RNase L-KO cells. All four viruses replicated to higher titers in OAS3-KO or RNase L-KO A549 cells than in parental, OAS1-KO, or OAS2-KO cells, demonstrating the antiviral effects of OAS3. OAS3 displayed a higher affinity for dsRNA in intact cells than either OAS1 or OAS2, consistent with its dominant role in RNase L activation. Finally, the requirement for OAS3 as the major OAS isoform responsible for RNase L activation was not restricted to A549 cells, because OAS3-KO cells derived from two other human cell lines also were deficient in RNase L activation.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Endorribonucleasas/metabolismo , Virosis/metabolismo , 2',5'-Oligoadenilato Sintetasa/antagonistas & inhibidores , 2',5'-Oligoadenilato Sintetasa/genética , Infecciones por Alphavirus/genética , Infecciones por Alphavirus/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/genética , Activación Enzimática , Técnicas de Inactivación de Genes , Humanos , Gripe Humana/genética , Gripe Humana/metabolismo , Modelos Biológicos , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Virus Sindbis , Vaccinia/genética , Vaccinia/metabolismo , Virosis/genética , Fiebre del Nilo Occidental/genética , Fiebre del Nilo Occidental/metabolismo
18.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003490

RESUMEN

Viruses in the family Coronaviridae, within the order Nidovirales, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3' ends of their genomes, that often act as host cell antagonists. We previously showed that 2',5'-phosphodiesterases (2',5'-PDEs) encoded by the prototypical Betacoronavirus, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2',5'-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHVMut) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2',5'-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHVMut in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHVMut replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it.IMPORTANCE Viruses in the family Coronaviridae include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus Betacoronavirus, mouse hepatitis virus (MHV) and MERS-CoV, encode 2',5'-phosphodiesterases (2',5'-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family Coronaviridae, presenting a possible broad-spectrum therapeutic target.


Asunto(s)
Endorribonucleasas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Virus de la Hepatitis Murina/enzimología , Hidrolasas Diéster Fosfóricas/fisiología , Torovirus/enzimología , Proteínas no Estructurales Virales/fisiología , Nucleótidos de Adenina/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Secuencia Conservada , Cricetinae , Activación Enzimática , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligorribonucleótidos/química , Hidrolasas Diéster Fosfóricas/química , Proteínas no Estructurales Virales/química , Replicación Viral
19.
J Virol ; 90(6): 3160-72, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26739051

RESUMEN

UNLABELLED: The oligoadenylate synthetase (OAS)-RNase L pathway is a potent interferon (IFN)-induced antiviral activity. Upon sensing double-stranded RNA, OAS produces 2',5'-oligoadenylates (2-5A), which activate RNase L. Murine coronavirus (mouse hepatitis virus [MHV]) nonstructural protein 2 (ns2) is a 2',5'-phosphodiesterase (PDE) that cleaves 2-5A, thereby antagonizing RNase L activation. PDE activity is required for robust replication in myeloid cells, as a mutant of MHV (ns2(H126R)) encoding an inactive PDE fails to antagonize RNase L activation and replicates poorly in bone marrow-derived macrophages (BMM), while ns2(H126R) replicates to high titer in several types of nonmyeloid cells, as well as in IFN receptor-deficient (Ifnar1(-/-)) BMM. We reported previously that myeloid cells express significantly higher basal levels of OAS transcripts than nonmyeloid cells. Here, we investigated the contributions of Oas gene expression, basal IFN signaling, and virus-induced IFN to RNase L activation. Infection with ns2(H126R) activated RNase L in Ifih1(-/-) BMM to a similar extent as in wild-type (WT) BMM, despite the lack of IFN induction in the absence of MDA5 expression. However, ns2(H126R) failed to induce RNase L activation in BMM treated with IFNAR1-blocking antibody, as well as in Ifnar1(-/-) BMM, both expressing low basal levels of Oas genes. Thus, activation of RNase L does not require virus-induced IFN but rather correlates with adequate levels of basal Oas gene expression, maintained by basal IFN signaling. Finally, overexpression of RNase L is not sufficient to compensate for inadequate basal OAS levels. IMPORTANCE: The oligoadenylate synthetase (OAS)-RNase L pathway is a potent antiviral activity. Activation of RNase L during murine coronavirus (mouse hepatitis virus [MHV]) infection of myeloid cells correlates with high basal Oas gene expression and is independent of virus-induced interferon secretion. Thus, our data suggest that cells with high basal Oas gene expression levels can activate RNase L and thereby inhibit virus replication early in infection upon exposure to viral double-stranded RNA (dsRNA) before the induction of interferon and prior to transcription of interferon-stimulated antiviral genes. These findings challenge the notion that activation of the OAS-RNase L pathway requires virus to induce type I IFN, which in turn upregulates OAS gene expression, as well as to provide dsRNA to activate OAS. Our data further suggest that myeloid cells may serve as sentinels to restrict viral replication, thus protecting other cell types from infection.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Endorribonucleasas/biosíntesis , Expresión Génica , Interacciones Huésped-Patógeno , Virus de la Hepatitis Murina/fisiología , Células Mieloides/enzimología , Células Mieloides/virología , Animales , Células Cultivadas , Ratones , Ratones Noqueados
20.
J Gen Virol ; 97(4): 880-886, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26757803

RESUMEN

Prior studies have demonstrated that the mouse hepatitis virus (MHV) A59 strain ns2 protein is a member of the 2H phosphoesterase family and exhibits 2',5'-phosphodiesterase (PDE) activity. During the IFN antiviral response, ns2 cleaves 2',5'-oligoadenylate (2-5A), a key mediator of RNase L activation, thereby subverting the activation of RNase L and evading host innate immunity. However, the mechanism of 2-5A cleavage by ns2 remains unclear. Here, we present the crystal structure of the MHV ns2 PDE domain and demonstrate a PDE fold similar to that of the cellular protein, a kinase anchoring protein 7 central domain (AKAP7(CD)) and rotavirus VP3 carboxy-terminal domain. The structure displays a pair of strictly conserved HxT/Sx motifs and forms a deep, positively charged catalytic groove with ß-sheets and an arginine-containing loop. These findings provide insight into the structural basis for 2-5A binding of MHV ns2.


Asunto(s)
Endorribonucleasas/química , Virus de la Hepatitis Murina/química , Hidrolasas Diéster Fosfóricas/química , Proteínas no Estructurales Virales/química , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Secuencias de Aminoácidos , Animales , Dominio Catalítico , Clonación Molecular , Secuencia Conservada , Cristalografía por Rayos X , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Virus de la Hepatitis Murina/enzimología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rotavirus/química , Homología Estructural de Proteína , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA