Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Kidney Int ; 95(2): 321-332, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30665571

RESUMEN

Gain-of-function mutations in TRPC6 cause familial focal segmental glomerulosclerosis, and TRPC6 is upregulated in glomerular diseases including diabetic kidney disease. We studied the effect of systemic TRPC6 knockout in the Akita model of type 1 diabetes. Knockout of TRPC6 inhibited albuminuria in Akita mice at 12 and 16 weeks of age, but this difference disappeared by 20 weeks. Knockout of TRPC6 also reduced tubular injury in Akita mice; however, mesangial expansion was significantly increased. Hyperglycemia and blood pressure were similar between TRPC6 knockout and wild-type Akita mice, but knockout mice were more insulin resistant. In cultured podocytes, knockout of TRPC6 inhibited expression of the calcium/calcineurin responsive gene insulin receptor substrate 2 and decreased insulin responsiveness. Insulin resistance is reported to promote diabetic kidney disease independent of blood glucose levels. While the mechanisms are not fully understood, insulin activates both Akt2 and ERK, which inhibits apoptosis signal regulated kinase 1 (ASK1)-p38-induced apoptosis. In cultured podocytes, hyperglycemia stimulated p38 signaling and induced apoptosis, which was reduced by insulin and ASK1 inhibition and enhanced by Akt or ERK inhibition. Glomerular p38 signaling was increased in TRPC6 knockout Akita mice and was associated with enhanced expression of the p38 gene target cyclooxygenase 2. These data suggest that knockout of TRPC6 in Akita mice promotes insulin resistance and exacerbates glomerular disease independent of hyperglycemia.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/patología , Mesangio Glomerular/patología , Canales Catiónicos TRPC/metabolismo , Animales , Apoptosis , Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/genética , Nefropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Ratones Noqueados , Podocitos , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
2.
J Am Soc Nephrol ; 29(8): 2110-2122, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30002222

RESUMEN

BACKGROUND: We previously reported that mutations in the anillin (ANLN) gene cause familial forms of FSGS. ANLN is an F-actin binding protein that modulates podocyte cell motility and interacts with the phosphoinositide 3-kinase (PI3K) pathway through the slit diaphragm adaptor protein CD2-associated protein (CD2AP). However, it is unclear how the ANLN mutations cause the FSGS phenotype. We hypothesized that the R431C mutation exerts its pathogenic effects by uncoupling ANLN from CD2AP. METHODS: We conducted in vivo complementation assays in zebrafish to determine the effect of the previously identified missense ANLN variants, ANLNR431C and ANLNG618C during development. We also performed in vitro functional assays using human podocyte cell lines stably expressing wild-type ANLN (ANLNWT ) or ANLNR431C . RESULTS: Experiments in anln-deficient zebrafish embryos showed a loss-of-function effect for each ANLN variant. In human podocyte lines, expression of ANLNR431C increased cell migration, proliferation, and apoptosis. Biochemical characterization of ANLNR431C -expressing podocytes revealed hyperactivation of the PI3K/AKT/mTOR/p70S6K/Rac1 signaling axis and activation of mTOR-driven endoplasmic reticulum stress in ANLNR431C -expressing podocytes. Inhibition of mTOR, GSK-3ß, Rac1, or calcineurin ameliorated the effects of ANLNR431C . Additionally, inhibition of the calcineurin/NFAT pathway reduced the expression of endogenous ANLN and mTOR. CONCLUSIONS: The ANLNR431C mutation causes multiple derangements in podocyte function through hyperactivation of PI3K/AKT/mTOR/p70S6K/Rac1 signaling. Our findings suggest that the benefits of calcineurin inhibition in FSGS may be due, in part, to the suppression of ANLN and mTOR. Moreover, these studies illustrate that rational therapeutic targets for familial FSGS can be identified through biochemical characterization of dysregulated podocyte phenotypes.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , Proteínas de Microfilamentos/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/genética , Movimiento Celular/genética , Células Cultivadas , Regulación de la Expresión Génica , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Humanos , Mutación Missense , Podocitos/metabolismo , Sensibilidad y Especificidad , Transducción de Señal , Pez Cebra , Proteína de Unión al GTP rac1/genética
3.
Am J Physiol Renal Physiol ; 313(2): F430-F439, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490532

RESUMEN

Enhanced expression of cyclooxygenase 2 (COX2) in podocytes contributes to glomerular injury in diabetic kidney disease, but some basal level of podocyte COX2 expression might be required to promote podocyte attachment and/or survival. To investigate the role of podocyte COX2 expression in diabetic kidney disease, we deleted COX2 specifically in podocytes in a mouse model of Type 1 diabetes mellitus (Akita mice). Podocyte-specific knockout (KO) of COX2 did not affect renal morphology or albuminuria in nondiabetic mice. Albuminuria was significantly increased in wild-type (WT) and KO Akita mice compared with nondiabetic controls, and the increase in albuminuria was significantly greater in KO Akita mice compared with WT Akita mice at both 16 and 20 wk of age. At the 20-wk time point, mesangial expansion was also increased in WT and KO Akita mice compared with nondiabetic animals, and these histologic abnormalities were not improved by KO of COX2. Tubular injury was seen only in diabetic mice, but there were no significant differences between groups. Thus, KO of COX2 enhanced albuminuria and did not improve the histopathologic features of diabetic kidney disease. These data suggest that 1) KO of COX2 in podocytes does not ameliorate diabetic kidney disease in Akita mice, and 2) some basal level of podocyte COX2 expression in podocytes is necessary to attenuate the adverse effects of diabetes on glomerular filtration barrier function.


Asunto(s)
Albuminuria/enzimología , Ciclooxigenasa 2/deficiencia , Nefropatías Diabéticas/enzimología , Podocitos/enzimología , Albuminuria/genética , Albuminuria/patología , Albuminuria/orina , Animales , Biomarcadores/sangre , Biomarcadores/orina , Glucemia/metabolismo , Presión Sanguínea , Ciclooxigenasa 2/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/orina , Modelos Animales de Enfermedad , Eicosanoides/orina , Predisposición Genética a la Enfermedad , Integrasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Ratones de la Cepa 129 , Ratones Noqueados , Fenotipo , Podocitos/ultraestructura , Regiones Promotoras Genéticas , Renina/metabolismo , Índice de Severidad de la Enfermedad
4.
Kidney Int ; 92(2): 283-285, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28709595

RESUMEN

Selective modulation of Rho GTPase activity in podocytes recapitulates characteristic features of human nephrosis. Using a mouse model, Robins et al. found that high levels of Rac1 activation in podocytes caused podocyte detachment and glomerulosclerosis. Podocyte Rac1 activity was enhanced in biopsy specimens from patients with nephrosis, and serum from this patient population activated Rac1 in cultured podocytes. These data provide a causal link between podocyte Rac1 activation and human nephrotic diseases.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nefrosis , Síndrome Nefrótico , Podocitos , Humanos , Proteína de Unión al GTP rac1
5.
J Am Soc Nephrol ; 26(4): 831-43, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25145932

RESUMEN

FSGS is a clinical disorder characterized by focal scarring of the glomerular capillary tuft, podocyte injury, and nephrotic syndrome. Although idiopathic forms of FSGS predominate, recent insights into the molecular and genetic causes of FSGS have enhanced our understanding of disease pathogenesis. Here, we report a novel missense mutation of the transcriptional regulator Wilms' Tumor 1 (WT1) as the cause of nonsyndromic, autosomal dominant FSGS in two Northern European kindreds from the United States. We performed sequential genome-wide linkage analysis and whole-exome sequencing to evaluate participants from family DUK6524. Subsequently, whole-exome sequencing and direct sequencing were performed on proband DNA from family DUK6975. We identified multiple suggestive loci on chromosomes 6, 11, and 13 in family DUK6524 and identified a segregating missense mutation (R458Q) in WT1 isoform D as the cause of FSGS in this family. The identical mutation was found in family DUK6975. The R458Q mutation was not found in 1600 control chromosomes and was predicted as damaging by in silico simulation. We depleted wt1a in zebrafish embryos and observed glomerular injury and filtration defects, both of which were rescued with wild-type but not mutant human WT1D mRNA. Finally, we explored the subcellular mechanism of the mutation in vitro. WT1(R458Q) overexpression significantly downregulated nephrin and synaptopodin expression, promoted apoptosis in HEK293 cells and impaired focal contact formation in podocytes. Taken together, these data suggest that the WT1(R458Q) mutation alters the regulation of podocyte homeostasis and causes nonsyndromic FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , Proteínas de Microfilamentos/metabolismo , Proteínas WT1/genética , Adolescente , Adulto , Animales , Movimiento Celular , Supervivencia Celular , Exoma , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ligamiento Genético , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Células HEK293 , Humanos , Masculino , Mutación Missense , Nefrosis/etiología , Nefrosis/metabolismo , Podocitos/fisiología , Análisis de Secuencia de ADN , Proteínas WT1/deficiencia , Adulto Joven , Pez Cebra , Proteínas de Pez Cebra/deficiencia
6.
Am J Physiol Renal Physiol ; 309(10): F807-20, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26336162

RESUMEN

Diabetic nephropathy (DN) is a serious complication of both type 1 and type 2 diabetes mellitus. The disease is now the most common cause of end-stage kidney disease (ESKD) in developed countries, and both the incidence and prevalence of diabetes mellitus is increasing worldwide. Current treatments are directed at controlling hyperglycemia and hypertension, as well as blockade of the renin angiotensin system with angiotensin-converting enzyme inhibitors (ACEIs), and angiotensin receptor blockers. Despite these therapies, DN progresses to ESKD in many patients. As a result, much interest is focused on developing new therapies. It has been over two decades since ACEIs were shown to have beneficial effects in DN independent of their blood pressure-lowering actions. Since that time, our understanding of disease mechanisms in DN has evolved. In this review, we summarize major cell signaling pathways implicated in the pathogenesis of diabetic kidney disease, as well as emerging treatment strategies. The goal is to identify promising targets that might be translated into therapies for the treatment of patients with diabetic kidney disease.


Asunto(s)
Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antihipertensivos/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Fallo Renal Crónico/tratamiento farmacológico , Animales , Humanos , Fallo Renal Crónico/diagnóstico
7.
Kidney Int ; 85(5): 1009-11, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24786873

RESUMEN

The role of the circulating renin-angiotensin system (RAS) in regulating systemic blood pressure and sodium balance is well established. More recently, researchers have turned their focus to the local generation of angiotensin II (Ang II) in specific tissues. Matsusaka et al. revisit the renal RAS and provide evidence that liver-derived angiotensinogen (AGT) is a major determinant of renal Ang II levels in a model of podocyte injury.


Asunto(s)
Angiotensina II/metabolismo , Angiotensinógeno/metabolismo , Enfermedades Renales/metabolismo , Túbulos Renales Proximales/metabolismo , Hígado/metabolismo , Podocitos/metabolismo , Animales
8.
Biochem Biophys Res Commun ; 444(4): 622-7, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24491571

RESUMEN

To determine if augmenting podocyte injury promotes the development of advanced diabetic nephropathy (DN), we created mice that expressed the enzyme cytosine deaminase (CD) specifically in podocytes of diabetic Akita mice (Akita-CD mice). In these mice, treatment with the prodrug 5-flucytosine (5-FC) causes podocyte injury as a result of conversion to the toxic metabolite 5-fluorouracil (5-FU). We found that treatment of 4-5 week old Akita mice with 5-FC for 5 days caused robust albuminuria at 16 and 20 weeks of age compared to 5-FC treated Akita controls, which do not express CD (Akita CTLs). By 20 weeks of age, there was a significant increase in mesangial expansion in Akita-CD mice compared to Akita CTLs, which was associated with a variable increase in glomerular basement membrane (GBM) width and interstitial fibrosis. At 20 weeks of age, podocyte number was similarly reduced in both groups of Akita mice, and was inversely correlated with the albuminuria and mesangial expansion. Thus, enhancing podocyte injury early in the disease process promotes the development of prominent mesangial expansion, interstitial fibrosis, increased GBM thickness and robust albuminuria. These data suggest that podocytes play a key role in the development of advanced features of diabetic kidney disease.


Asunto(s)
Nefropatías Diabéticas/patología , Riñón/patología , Podocitos/patología , Albuminuria/complicaciones , Animales , Antimetabolitos/efectos adversos , Citosina Desaminasa/genética , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/genética , Modelos Animales de Enfermedad , Flucitosina/efectos adversos , Fluorouracilo/efectos adversos , Expresión Génica , Riñón/efectos de los fármacos , Riñón/enzimología , Riñón/metabolismo , Ratones , Podocitos/efectos de los fármacos , Podocitos/enzimología , Podocitos/metabolismo , Profármacos/efectos adversos
9.
Circ Res ; 110(12): 1604-17, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22534490

RESUMEN

RATIONALE: Human clinical trials using type 1 angiotensin (AT(1)) receptor antagonists indicate that angiotensin II is a critical mediator of cardiovascular and renal disease. However, recent studies have suggested that individual tissue pools of AT(1) receptors may have divergent effects on target organ damage in hypertension. OBJECTIVE: We examined the role of AT(1) receptors on T lymphocytes in the pathogenesis of hypertension and its complications. METHODS AND RESULTS: Deficiency of AT(1) receptors on T cells potentiated kidney injury during hypertension with exaggerated renal expression of chemokines and enhanced accumulation of T cells in the kidney. Kidneys and purified CD4(+) T cells from "T cell knockout" mice lacking AT(1) receptors on T lymphocytes had augmented expression of Th1-associated cytokines including interferon-γ and tumor necrosis factor-α. Within T lymphocytes, the transcription factors T-bet and GATA-3 promote differentiation toward the Th1 and Th2 lineages, respectively, and AT(1) receptor-deficient CD4(+) T cells had enhanced T-bet/GATA-3 expression ratios favoring induction of the Th1 response. Inversely, mice that were unable to mount a Th1 response due to T-bet deficiency were protected from kidney injury in our hypertension model. CONCLUSIONS: The current studies identify an unexpected role for AT(1) receptors on T lymphocytes to protect the kidney in the setting of hypertension by favorably modulating CD4(+) T helper cell differentiation.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Receptor de Angiotensina Tipo 1/fisiología , Animales , Linfocitos T CD4-Positivos/patología , Diferenciación Celular/inmunología , Hipertensión/patología , Hipertensión/prevención & control , Riñón/inmunología , Riñón/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Transl Res ; 255: 140-151, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36563959

RESUMEN

While natriuretic peptides (NPs) are primarily known for their renal and cardiovascular actions, NPs stimulate lipolysis in adipocytes and induce a thermogenic program in white adipose tissue (WAT) that resembles brown fat. The biologic effects of NPs are negatively regulated by the NP clearance receptor (NPRC), which binds and degrades NPs. Knockout (KO) of NPRC protects against diet induced obesity and improves insulin sensitivity in obese mice. To determine if pharmacologic blockade of NPRC enhanced the beneficial metabolic actions of NPs in type 2 diabetes, we blocked NP clearance in a mouse model of type 2 diabetes using the specific NPRC ligand ANP(4-23). We found that treatment with ANP(4-23) caused a significant decrease in body weight by increasing energy expenditure and reducing fat mass without a change in lean body mass. The decrease in fat mass was associated with a significant improvement in insulin sensitivity and reduced serum insulin levels. These beneficial effects were accompanied by a decrease in infiltrating macrophages in adipose tissue, and reduced expression of inflammatory markers in both serum and WAT. These data suggest that inhibiting NP clearance may be an effective pharmacologic approach to promote weight loss and enhance insulin sensitivity in type 2 diabetes. Optimizing the therapeutic approach may lead to useful therapies for obesity and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ratones Noqueados , Péptidos Natriuréticos/metabolismo , Péptidos Natriuréticos/uso terapéutico , Obesidad/metabolismo , Pérdida de Peso
11.
Kidney Int ; 81(11): 1075-85, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22278020

RESUMEN

Podocytes are highly differentiated cells that play an important role in maintaining glomerular filtration barrier integrity; a function regulated by small GTPase proteins of the Rho family. To investigate the role of Rho A in podocyte biology, we created transgenic mice expressing doxycycline-inducible constitutively active (V14 Rho) or dominant-negative Rho A (N19 Rho) in podocytes. Specific induction of either Rho A construct in podocytes caused albuminuria and foot process effacement along with disruption of the actin cytoskeleton as evidenced by decreased expression of the actin-associated protein synaptopodin. The mechanisms of these adverse effects, however, appeared to be different. Active V14 Rho enhanced actin polymerization, caused a reduction in nephrin mRNA and protein levels, promoted podocyte apoptosis, and decreased endogenous Rho A levels. In contrast, the dominant-negative N19 Rho caused a loss of podocyte stress fibers, did not alter the expression of either nephrin or Rho A, and did not cause podocyte apoptosis. Thus, our findings suggest that Rho A plays an important role in maintaining the integrity of the glomerular filtration barrier under basal conditions, but enhancement of Rho A activity above basal levels promotes podocyte injury.


Asunto(s)
Albuminuria/etiología , Barrera de Filtración Glomerular/enzimología , Podocitos/enzimología , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto de Actina/enzimología , Albuminuria/enzimología , Albuminuria/genética , Albuminuria/patología , Animales , Apoptosis , Regulación de la Expresión Génica , Genotipo , Barrera de Filtración Glomerular/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Fenotipo , Podocitos/patología , ARN Mensajero/metabolismo , Fibras de Estrés/enzimología , Factores de Tiempo , Proteína de Unión al GTP rhoA/genética
12.
Biochem Biophys Res Commun ; 425(2): 407-12, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22846567

RESUMEN

G protein-coupled receptor kinase interacting protein 2 (GIT2) is a signaling scaffold protein involved in the regulation of cytoskeletal structure, membrane trafficking, and G protein-coupled receptor internalization. Since dynamic cytoskeletal reorganization plays key roles both in osteoblast differentiation and in the maintenance of osteoclast polarity during bone resorption, we hypothesized that skeletal physiology would be altered in GIT2(-/-) mice. We found that adult GIT2(-/-) mice have decreased bone mineral density and bone volume in both the trabecular and cortical compartments. This osteopenia was associated with decreased numbers of mature osteoblasts, diminished osteoblastic activity, and increased marrow adiposity, suggesting a defect in osteoblast maturation. In vitro, mesenchymal stem cells derived from GIT2(-/-) mice exhibited impaired differentiation into osteoblasts and increased adipocyte differentiation, consistent with a role for GIT2 in mesenchymal stem cell fate determination. Despite elevated osteoclast inducing cytokines and osteoclast numbers, GIT2(-/-) mice also exhibit impaired bone resorption, consistent with a further role for GIT2 in regulating osteoclast function. Collectively, these findings underscore the importance of the cytoskeleton in both osteoblast and osteoclast function and demonstrate that GIT2 plays essential roles in skeletal metabolism, affecting both bone formation and bone resorption in vivo.


Asunto(s)
Resorción Ósea/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis/genética , Fosfoproteínas/metabolismo , Animales , Densidad Ósea/genética , Recuento de Células , Proteínas de Ciclo Celular/genética , Citoesqueleto/metabolismo , Femenino , Proteínas Activadoras de GTPasa , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/genética
13.
Physiol Rep ; 9(21): e15095, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34755480

RESUMEN

Glomerular podocytes play a key role in proteinuric diseases. Accumulating evidence suggests that cGMP signaling has podocyte protective effects. The major source of cGMP generation in podocytes is natriuretic peptides. The natriuretic peptide clearance receptor (NPRC) binds and degrades natriuretic peptides. As a result, NPRC inhibits natriuretic peptide-induced cGMP generation. To enhance cGMP generation in podocytes, we blocked natriuretic peptide clearance using the specific NPRC ligand ANP(4-23). We then studied the effects of NPRC blockade in both cultured podocytes and in a mouse transgenic (TG) model of focal segmental glomerulosclerosis (FSGS) created in our laboratory. In this model, a single dose of the podocyte toxin puromycin aminonucleoside (PAN) causes robust albuminuria in TG mice, but only mild disease in non-TG animals. We found that natriuretic peptides protected cultured podocytes from PAN-induced apoptosis, and that ANP(4-23) enhanced natriuretic peptide-induced cGMP generation in vivo. PAN-induced heavy proteinuria in vehicle-treated TG mice, and this increase in albuminuria was reduced by treatment with ANP(4-23). Treatment with ANP(4-23) also reduced the number of mice with glomerular injury and enhanced urinary cGMP excretion, but these differences were not statistically significant. Systolic BP was similar in vehicle and ANP(4-23)-treated mice. These data suggest that: 1. Pharmacologic blockade of NPRC may be useful for treating glomerular diseases such as FSGS, and 2. Treatment outcomes might be improved by optimizing NPRC blockade to inhibit natriuretic peptide clearance more effectively.


Asunto(s)
Factor Natriurético Atrial/uso terapéutico , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Proteinuria/tratamiento farmacológico , Receptores del Factor Natriurético Atrial/metabolismo , Animales , Apoptosis , Factor Natriurético Atrial/farmacología , Línea Celular , GMP Cíclico/metabolismo , Femenino , Masculino , Ratones , Péptidos Natriuréticos/metabolismo , Fragmentos de Péptidos/farmacología , Podocitos/efectos de los fármacos , Podocitos/metabolismo
14.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369383

RESUMEN

The transcription factor Twist1 regulates several processes that could impact kidney disease progression, including epithelial cell differentiation and inflammatory cytokine induction. Podocytes are specialized epithelia that exhibit features of immune cells and could therefore mediate unique effects of Twist1 on glomerular disease. To study Twist1 functions in podocytes during proteinuric kidney disease, we employed a conditional mutant mouse in which Twist1 was selectively ablated in podocytes (Twist1-PKO). Deletion of Twist1 in podocytes augmented proteinuria, podocyte injury, and foot process effacement in glomerular injury models. Twist1 in podocytes constrained renal accumulation of monocytes/macrophages and glomerular expression of CCL2 and the macrophage cytokine TNF-α after injury. Deletion of TNF-α selectively from podocytes had no impact on the progression of proteinuric nephropathy. By contrast, the inhibition of CCL2 abrogated the exaggeration in proteinuria and podocyte injury accruing from podocyte Twist1 deletion. Collectively, Twist1 in podocytes mitigated urine albumin excretion and podocyte injury in proteinuric kidney diseases by limiting CCL2 induction that drove monocyte/macrophage infiltration into injured glomeruli. Myeloid cells, rather than podocytes, further promoted podocyte injury and glomerular disease by secreting TNF-α. These data highlight the capacity of Twist1 in the podocyte to mitigate glomerular injury by curtailing the local myeloid immune response.


Asunto(s)
Quimiocina CCL2/metabolismo , Células Mieloides/inmunología , Podocitos/metabolismo , Insuficiencia Renal Crónica , Factor de Necrosis Tumoral alfa/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Diferenciación Celular , Silenciador del Gen , Inmunidad/inmunología , Glomérulos Renales/inmunología , Glomérulos Renales/lesiones , Glomérulos Renales/metabolismo , Macrófagos , Ratones , Proteinuria/metabolismo , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología
15.
J Am Soc Nephrol ; 19(11): 2108-18, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18667730

RESUMEN

Accumulating evidence suggests that upregulation of cyclooxygenase 2 (COX2) in glomerular podocytes promotes podocyte injury. Because Gq signaling activates calcineurin and calcineurin-dependent mechanisms are known to mediate COX2 expression, this study investigated the role of Gqalpha in promoting COX2 expression in podocytes. A constitutively active Gq alpha subunit tagged with the TAT HIV protein sequence was introduced into an immortalized podocyte cell line by protein transduction. This stimulated inositol trisphosphate production, activated an nuclear factor of activated T cells-responsive reporter construct, and enhanced levels of both COX2 mRNA and protein compared with cells treated with a Gq protein lacking the TAT sequence. Induction of COX2 was associated with increased prostaglandin E(2) production and podocyte death, both of which were attenuated by selective COX2 inhibition. In vivo, levels of COX2 mRNA and protein were significantly enhanced in podocytes from transgenic mice that expressed podocyte-targeted constitutively active Gqalpha compared with nontransgenic littermates. These data suggest that Gq-dependent signaling cascades stimulate calcineurin and, in turn, upregulate COX2 mRNA and protein, increase eicosanoid production, and cause podocyte injury.


Asunto(s)
Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Podocitos/metabolismo , Animales , Secuencia de Bases , Calcineurina/metabolismo , Muerte Celular , Línea Celular , ADN Complementario/genética , Dinoprostona/biosíntesis , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Inositol 1,4,5-Trifosfato/biosíntesis , Ratones , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo , Podocitos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Regulación hacia Arriba , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
16.
Cells ; 9(1)2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31877991

RESUMEN

Over a decade ago, mutations in the gene encoding TRPC6 (transient receptor potential cation channel, subfamily C, member 6) were linked to development of familial forms of nephrosis. Since this discovery, TRPC6 has been implicated in the pathophysiology of non-genetic forms of kidney disease including focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, immune-mediated kidney diseases, and renal fibrosis. On the basis of these findings, TRPC6 has become an important target for the development of therapeutic agents to treat diverse kidney diseases. Although TRPC6 has been a major focus for drug discovery, more recent studies suggest that other TRPC family members play a role in the pathogenesis of glomerular disease processes and chronic kidney disease (CKD). This review highlights the data implicating TRPC6 and other TRPC family members in both genetic and non-genetic forms of kidney disease, focusing on TRPC3, TRPC5, and TRPC6 in a cell type (glomerular podocytes) that plays a key role in proteinuric kidney diseases.


Asunto(s)
Enfermedades Renales/metabolismo , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6/metabolismo , Nefropatías Diabéticas/patología , Fibrosis , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/fisiopatología , Proteinuria/metabolismo , Insuficiencia Renal Crónica/patología , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/fisiología , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/fisiología
17.
J Clin Invest ; 115(4): 1092-9, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15841186

RESUMEN

Angiotensin II, acting through type 1 angiotensin (AT(1)) receptors, has potent effects that alter renal excretory mechanisms. Control of sodium excretion by the kidney has been suggested to be the critical mechanism for blood pressure regulation by the renin-angiotensin system (RAS). However, since AT(1) receptors are ubiquitously expressed, precisely dissecting their physiological actions in individual tissue compartments including the kidney with conventional pharmacological or gene targeting experiments has been difficult. Here, we used a cross-transplantation strategy and AT(1A) receptor-deficient mice to demonstrate distinct and virtually equivalent contributions of AT(1) receptor actions in the kidney and in extrarenal tissues to determining the level of blood pressure. We demonstrate that regulation of blood pressure by extrarenal AT(1A) receptors cannot be explained by altered aldosterone generation, which suggests that AT(1) receptor actions in systemic tissues such as the vascular and/or the central nervous systems make nonredundant contributions to blood pressure regulation. We also show that interruption of the AT(1) receptor-mediated short-loop feedback in the kidney is not sufficient to explain the marked stimulation of renin production induced by global AT(1) receptor deficiency or by receptor blockade. Instead, the renin response seems to be primarily determined by renal baroreceptor mechanisms triggered by reduced blood pressure. Thus, the regulation of blood pressure by the RAS is mediated by AT(1) receptors both within and outside the kidney.


Asunto(s)
Presión Sanguínea/fisiología , Trasplante de Riñón , Riñón/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/fisiología , Adrenalectomía , Aldosterona/orina , Angiotensina II/metabolismo , Animales , Determinación de la Presión Sanguínea , Dieta , Homeostasis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Norepinefrina/metabolismo , Receptor de Angiotensina Tipo 1/genética , Renina/metabolismo , Sales (Química)/administración & dosificación , Sales (Química)/metabolismo
18.
Kidney Blood Press Res ; 31(2): 111-21, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18367845

RESUMEN

BACKGROUND AND AIMS: Rho kinase (ROCK) inhibition reduces systemic blood pressure (BP) and decreases renal damage in animal models of kidney disease. The aim of this study was to determine if ROCK inhibition might have beneficial effects in glomerular disease processes that are independent of systemic BP. METHODS: We investigated the effects of the ROCK inhibitor Y27632 and hydralazine in murine puromycin aminonucleoside (PAN) nephrosis. RESULTS: Treatment with either Y27632 or hydralazine similarly reduced systolic BP compared to vehicle-treated controls. Seven days after treatment with PAN, albuminuria, proteinuria and effacement of podocyte foot processes were significantly reduced in Y27632- and hydralazine-treated mice compared to vehicle-treated animals. Treatment with PAN significantly reduced expression of the podocyte proteins nephrin and Neph1, and the loss of glomerular nephrin was attenuated by treatment with Y27632 but not by treatment with hydralazine. In cultured podocytes, PAN potently activated both Rho and ROCK, and PAN-induced ROCK activation was prevented by Y27632. CONCLUSIONS: The ROCK inhibitor Y27632 attenuated glomerular nephrin loss in murine PAN nephrosis independent of its effects on systemic BP.


Asunto(s)
Amidas/farmacología , Antihipertensivos/farmacología , Nefrosis/tratamiento farmacológico , Piridinas/farmacología , Quinasas Asociadas a rho/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales , Glomérulos Renales/citología , Proteínas de la Membrana/efectos de los fármacos , Ratones , Nefrosis/inducido químicamente , Nefrosis/patología , Podocitos/efectos de los fármacos , Puromicina Aminonucleósido
19.
Sci Rep ; 8(1): 12286, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115939

RESUMEN

Expression of a constitutively active Rho A (V14Rho) in podocytes in vivo induces albuminuria and foot process (FP) effacement. These effects may be mediated by the Rho A effector Rho kinase (ROK); but inhibition of ROK with Y27632 failed to attenuate albuminuria or FP effacement in V14Rho mice. ROK activates LIM kinases (LIMKs), which phosphorylate and inhibit the actin depolymerizing factor cofilin 1 (CFL1). Sustained phosphorylation of CFL1 is implicated in human nephrotic diseases, but Y27632 did not inhibit phosphorylation of CFL1 in vivo, despite effective ROK inhibition. CFL1 is also phosphorylated by testis-specific kinase 1 (TESK1) on the same serine residue. TESK1 was expressed in podocytes, and, similar to the in vivo situation, Y27632 had little effect on phospho-CFL1 (pCFL1) levels in cultured podocytes. In contrast, Y27632 reduced pCFL1 levels in TESK1 knockout (KO) cells. ROK inhibition enhanced podocyte motility but, the motility promoting effect of Y27632 was absent in TESK1 KO podocytes. Thus, TESK1 regulates podocyte cytoskeletal dynamics in glomerular podocytes and may play an important role in regulating glomerular filtration barrier integrity in glomerular disease processes.


Asunto(s)
Cofilina 1/metabolismo , Glomérulos Renales/metabolismo , Podocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Citoesqueleto de Actina/metabolismo , Amidas/farmacología , Animales , Línea Celular Transformada , Humanos , Glomérulos Renales/citología , Glomérulos Renales/enzimología , Ratones , Ratones Transgénicos , Fosforilación , Podocitos/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Piridinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores
20.
J Clin Invest ; 109(10): 1361-71, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12021252

RESUMEN

G protein-coupled receptors (GPCRs) play a key role in regulating bone remodeling. Whether GPCRs exert anabolic or catabolic osseous effects may be determined by the rate of receptor desensitization in osteoblasts. Receptor desensitization is largely mediated by direct phosphorylation of GPCR proteins by a family of enzymes termed GPCR kinases (GRKs). We have selectively manipulated GRK activity in osteoblasts in vitro and in vivo by overexpressing a GRK inhibitor. We found that expression of a GRK inhibitor enhanced parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor-stimulated cAMP generation and inhibited agonist-induced phosphorylation of this receptor in cell culture systems, consistent with attenuation of receptor desensitization. To determine the effect of GRK inhibition on bone formation in vivo, we targeted the expression of a GRK inhibitor to mature osteoblasts using the mouse osteocalcin gene 2 (OG2) promoter. Transgenic mice demonstrated enhanced bone remodeling as well as enhanced urinary excretion of the osteoclastic activity marker dexoypyridinoline. Both osteoprotegrin and OPG ligand mRNA levels were altered in calvaria of transgenic mice in a pattern that would promote osteoclast activation. The predominant effect of the transgene, however, was anabolic, as evidenced by an increase in bone density and trabecular bone volume in the transgenic mice compared with nontransgenic littermate controls.


Asunto(s)
Remodelación Ósea , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Osteoblastos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Quinasa 3 del Receptor Acoplado a Proteína-G , Regulación Enzimológica de la Expresión Génica , Humanos , Ratones , Osteoblastos/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Ratas , Transducción de Señal/efectos de los fármacos , Transgenes , Quinasas de Receptores Adrenérgicos beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA