Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 571(7765): 376-380, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31316196

RESUMEN

The nature of the pseudogap phase of the copper oxides ('cuprates') remains a puzzle. Although there are indications that this phase breaks various symmetries, there is no consensus on its fundamental nature1. Fermi-surface, transport and thermodynamic signatures of the pseudogap phase are reminiscent of a transition into a phase with antiferromagnetic order, but evidence for an associated long-range magnetic order is still lacking2. Here we report measurements of the thermal Hall conductivity (in the x-y plane, κxy) in the normal state of four different cuprates-La1.6-xNd0.4SrxCuO4, La1.8-xEu0.2SrxCuO4, La2-xSrxCuO4 and Bi2Sr2-xLaxCuO6+δ. We show that a large negative κxy signal is a property of the pseudogap phase, appearing at its critical hole doping, p*. It is also a property of the Mott insulator at p ≈ 0, where κxy has the largest reported magnitude of any insulator so far3. Because this negative κxy signal grows as the system becomes increasingly insulating electrically, it cannot be attributed to conventional mobile charge carriers. Nor is it due to magnons, because it exists in the absence of magnetic order. Our observation is reminiscent of the thermal Hall conductivity of insulators with spin-liquid states4-6, pointing to neutral excitations with spin chirality7 in the pseudogap phase of cuprates.

2.
Nature ; 567(7747): 218-222, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760922

RESUMEN

The three central phenomena of cuprate (copper oxide) superconductors are linked by a common doping level p*-at which the enigmatic pseudogap phase ends and the resistivity exhibits an anomalous linear dependence on temperature, and around which the superconducting phase forms a dome-shaped area in the phase diagram1. However, the fundamental nature of p* remains unclear, in particular regarding whether it marks a true quantum phase transition. Here we measure the specific heat C of the cuprates Eu-LSCO and Nd-LSCO at low temperature in magnetic fields large enough to suppress superconductivity, over a wide doping range2 that includes p*. As a function of doping, we find that Cel/T is strongly peaked at p* (where Cel is the electronic contribution to C) and exhibits a log(1/T) dependence as temperature T tends to zero. These are the classic thermodynamic signatures of a quantum critical point3-5, as observed in heavy-fermion6 and iron-based7 superconductors at the point where their antiferromagnetic phase comes to an end. We conclude that the pseudogap phase of cuprates ends at a quantum critical point, the associated fluctuations of which are probably involved in d-wave pairing and the anomalous scattering of charge carriers.

3.
Phys Rev Lett ; 121(16): 167002, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387647

RESUMEN

We present a detailed study of the temperature (T) and magnetic field (H) dependence of the electronic density of states (DOS) at the Fermi level, as deduced from specific heat and Knight shift measurements in underdoped YBa_{2}Cu_{3}O_{y}. We find that the DOS becomes field independent above a characteristic field H_{DOS}, and that the H_{DOS}(T) line displays an unusual inflection near the onset of the long-range 3D charge-density wave order. The unusual S shape of H_{DOS}(T) is suggestive of two mutually exclusive orders that eventually establish a form of cooperation in order to coexist at low T. On theoretical grounds, such a collaboration could result from the stabilization of a pair-density wave state, which calls for further investigation in this region of the phase diagram.

4.
Nature ; 425(6958): 595-9, 2003 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-14534580

RESUMEN

Fermi-liquid theory (the standard model of metals) has been challenged by the discovery of anomalous properties in an increasingly large number of metals. The anomalies often occur near a quantum critical point--a continuous phase transition in the limit of absolute zero, typically between magnetically ordered and paramagnetic phases. Although not understood in detail, unusual behaviour in the vicinity of such quantum critical points was anticipated nearly three decades ago by theories going beyond the standard model. Here we report electrical resistivity measurements of the 3d metal MnSi, indicating an unexpected breakdown of the Fermi-liquid model--not in a narrow crossover region close to a quantum critical point where it is normally expected to fail, but over a wide region of the phase diagram near a first-order magnetic transition. In this regime, corrections to the Fermi-liquid model are expected to be small. The range in pressure, temperature and applied magnetic field over which we observe an anomalous temperature dependence of the electrical resistivity in MnSi is not consistent with the crossover behaviour widely seen in quantum critical systems. This may suggest the emergence of a well defined but enigmatic quantum phase of matter.

5.
Nat Commun ; 6: 6034, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25616011

RESUMEN

In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.

6.
Phys Rev Lett ; 85(21): 4594-7, 2000 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11082604

RESUMEN

We report on transport measurements of YBa 2Cu 3O (7-delta) single crystals with different oxygen contents in the geometry B, J ||ab (J perpendicularB). Our data show that the vortices become confined between the Cu-O planes below a well-defined temperature at which the effective size 2xi of the vortex core is approximately equal to the period of the Cu-O layers. This confinement strongly increases the vortex liquid freezing temperature. A new melting line is found separating a vortex liquid and a smectic phase, which shows an oscillatory field dependence reflecting differences between commensurate and incommensurate smectic states.

7.
J Phys Condens Matter ; 23(34): 345702, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21841229

RESUMEN

Comparing resistivity data of the quasi-one-dimensional superconductors (TMTSF)2PF6 and (TMTSF)2ClO4 along the least conducting c(⋆)-axis and along the high conductivity a-axis as a function of temperature and pressure, a low temperature regime is observed in which a unique scattering time governs the transport along both directions of these anisotropic conductors. However, the pressure dependence of the anisotropy implies a large pressure dependence of the interlayer coupling. This is in agreement with the results of first-principles density functional theory calculations implying methyl group hyperconjugation in the TMTSF molecule. In this low temperature regime, both materials exhibit for ρ(c) a temperature dependence aT + bT(2). Taking into account the strong pressure dependence of the anisotropy, the T-linear ρ(c) is found to correlate with the suppression of the superconducting Tc, in close analogy with ρ(a) data. This work reveals the domain of existence of the three-dimensional coherent regime in the generic (TMTSF)2X phase diagram and provides further support for the correlation between T-linear resistivity and superconductivity in non-conventional superconductors.

8.
Phys Rev Lett ; 60(15): 1570-1573, 1988 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-10038074
9.
Phys Rev Lett ; 63(1): 93-96, 1989 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-10040441
10.
Phys Rev Lett ; 73(24): 3294-3297, 1994 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-10057340
12.
Phys Rev Lett ; 70(13): 2008-2011, 1993 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-10053442
14.
16.
Phys Rev Lett ; 71(9): 1466-1469, 1993 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-10055547
18.
Phys Rev Lett ; 72(14): 2278-2281, 1994 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-10055834
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA