Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(4): 046701, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335330

RESUMEN

Magnetostriction results from the coupling between magnetic and elastic degrees of freedom. Though it is associated with a relatively small energy, we show that it plays an important role in determining the site of an implanted muon, so that the energetically favorable site can switch on crossing a magnetic phase transition. This surprising effect is demonstrated in the cubic rocksalt antiferromagnet MnO which undergoes a magnetostriction-driven rhombohedral distortion at the Néel temperature T_{N}=118 K. Above T_{N}, the muon becomes delocalized around a network of equivalent sites, but below T_{N} the distortion lifts the degeneracy between these equivalent sites. Our first-principles simulations based on Hubbard-corrected density-functional theory and molecular dynamics are consistent with the experimental data and help to resolve a long-standing puzzle regarding muon data on MnO, as well as having wider applicability to other magnetic oxides.

2.
Phys Chem Chem Phys ; 25(13): 9061-9072, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36919455

RESUMEN

Accurate first-principles predictions of the structural, electronic, magnetic, and electrochemical properties of cathode materials can be key in the design of novel efficient Li-ion batteries. Spinel-type cathode materials LixMn2O4 and LixMn1.5Ni0.5O4 are promising candidates for Li-ion battery technologies, but they present serious challenges when it comes to their first-principles modeling. Here, we use density-functional theory with extended Hubbard functionals-DFT+U+V with on-site U and inter-site V Hubbard interactions-to study the properties of these transition-metal oxides. The Hubbard parameters are computed from first-principles using density-functional perturbation theory. We show that while U is crucial to obtain the right trends in properties of these materials, V is essential for a quantitative description of the structural and electronic properties, as well as the Li-intercalation voltages. This work paves the way for reliable first-principles studies of other families of cathode materials without relying on empirical fitting or calibration procedures.

3.
Phys Rev Lett ; 127(12): 126404, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597093

RESUMEN

Electron-phonon (e-ph) interactions are pervasive in condensed matter, governing phenomena such as transport, superconductivity, charge-density waves, polarons, and metal-insulator transitions. First-principles approaches enable accurate calculations of e-ph interactions in a wide range of solids. However, they remain an open challenge in correlated electron systems (CES), where density functional theory often fails to describe the ground state. Therefore reliable e-ph calculations remain out of reach for many transition metal oxides, high-temperature superconductors, Mott insulators, planetary materials, and multiferroics. Here we show first-principles calculations of e-ph interactions in CES, using the framework of Hubbard-corrected density functional theory (DFT+U) and its linear response extension (DFPT+U), which can describe the electronic structure and lattice dynamics of many CES. We showcase the accuracy of this approach for a prototypical Mott system, CoO, carrying out a detailed investigation of its e-ph interactions and electron spectral functions. While standard DFPT gives unphysically divergent and short-ranged e-ph interactions, DFPT+U is shown to remove the divergences and properly account for the long-range Fröhlich interaction, allowing us to model polaron effects in a Mott insulator. Our work establishes a broadly applicable and affordable approach for quantitative studies of e-ph interactions in CES, a novel theoretical tool to interpret experiments in this broad class of materials.

4.
J Chem Phys ; 152(15): 154105, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32321275

RESUMEN

Quantum ESPRESSO is an open-source distribution of computer codes for quantum-mechanical materials modeling, based on density-functional theory, pseudopotentials, and plane waves, and renowned for its performance on a wide range of hardware architectures, from laptops to massively parallel computers, as well as for the breadth of its applications. In this paper, we present a motivation and brief review of the ongoing effort to port Quantum ESPRESSO onto heterogeneous architectures based on hardware accelerators, which will overcome the energy constraints that are currently hindering the way toward exascale computing.

5.
J Phys Chem A ; 119(16): 3816-22, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25830823

RESUMEN

The simulation of the color optical properties of molecular dyes in liquid solution requires the calculation of time evolution of the solute absorption spectra fluctuating in the solvent at finite temperature. Time-averaged spectra can be directly evaluated by combining ab initio Car-Parrinello molecular dynamics and time-dependent density functional theory calculations. The inclusion of hybrid exchange-correlation functionals, necessary for the prediction of the correct transition frequencies, prevents one from using these techniques for the simulation of the optical properties of large realistic systems. Here we present an alternative approach for the prediction of the color of natural dyes in solution with a low computational cost. We applied this approach to representative anthocyanin dyes: the excellent agreement between the simulated and the experimental colors makes this method a straightforward and inexpensive tool for the high-throughput prediction of colors of molecules in liquid solvents.

6.
J Chem Phys ; 142(3): 034111, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25612693

RESUMEN

We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem and a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the Quantum ESPRESSO distribution of open-source codes.

7.
J Chem Theory Comput ; 20(11): 4824-4843, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38820347

RESUMEN

We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particularly for compounds characterized by both localized and hybridized states in the Hubbard manifold. The numerical values of all Hubbard parameters are readily obtained from linear-response calculations. The relevance of this more refined approach is showcased by its application to bulk solids pyrite (FeS2) and pyrolusite (ß-MnO2), as well as to six Fe(II) molecular complexes. Our findings indicate that a careful definition of Hubbard manifolds is indispensable for extending the applicability of DFT+U beyond its current boundaries. The present orbital-resolved scheme aims to provide a computationally undemanding yet accurate tool for electronic structure calculations of charge-transfer insulators, transition-metal (TM) complexes and other compounds displaying significant orbital hybridization.

8.
J Chem Theory Comput ; 12(9): 4423-9, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27442613

RESUMEN

We introduce a multimodel approach to the simulation of the optical properties of molecular dyes in solution, whereby the effects of thermal fluctuations and of dielectric screening on the absorption spectra are accounted for by explicit and implicit solvation models, respectively. Thermal effects are treated by averaging the spectra of molecular configurations generated by an ab initio molecular-dynamics simulation where solvent molecules are treated explicitly. Dielectric effects are then dealt with implicitly by computing the spectra upon removal of the solvent molecules and their replacement with an effective medium, in the spirit of a continuum solvation model. Our multimodel approach is validated by comparing its predictions with those of a fully explicit-solvation simulation for cyanidin-3-glucoside (cyanin) chromophore in water. While multimodel and fully explicit-solvent spectra may differ considerably for individual configurations along the trajectory, their time averages are remarkably similar, thus providing a solid benchmark of the former and allowing us to save considerably on the computer resources needed to predict accurate absorption spectra. The power of the proposed methodology is finally demonstrated by the excellent agreement between its predictions and the absorption spectra of cyanin measured at strong and intermediate acidity conditions.


Asunto(s)
Antocianinas/química , Colorantes/química , Glucósidos/química , Solventes/química , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA