Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 100(2): 892-900, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27988125

RESUMEN

Highly concentrated micellar casein concentrate (HC-MCC) contains ∼18% casein with ∼70% of whey proteins removed by microfiltration and diafiltration of skim milk, followed by vacuum evaporation for further concentration. When blended with cream, HC-MCC forms recombined concentrated milk (RCM), which could be used as a starting material in cheese making. Our objective was to investigate the rennet coagulation properties of RCM while varying parameters such as casein level, pH, rennet level, and coagulation temperature. The HC-MCC was mixed with cream using low shear at 50°C for 10 min, followed by cooling to 31, 28, or 25°C and adding rennet, and rheological properties were determined. Rennet coagulation time [RCT, the time at which storage modulus (G') = loss modulus (G″)] decreased from 8.7 to 7.4 min as casein level increased from 3.2 to 5.7%, without a significant additional difference in RCT at casein levels >5.7%. The initial G″ (G″0) increased about 10-fold when casein levels were increased from 3.2 to 10.9%, whereas no change in initial G' (G'0) was observed. When G' was measured relative to RCT (i.e., 1, 1.5, or 2 times RCT after RCT was reached, and expressed as G'1, G'1.5, and G'2), log relationship was found between relative G' and casein level (R2 > 0.94). Lowering coagulation temperature from 31 to 25°C increased G″0 by 6 fold and extended RCT from 7.4 to 9.5 min. After coagulation, relative G' was initially higher at the lower temperature with G'1 of 3.6 Pa at 25°C and 2.0 Pa at 31°C, but delayed in further development with G'2 of 0.8 kPa at 25°C and 1.1 kPa at 31°C. Lowering pH of RCM from 6.6 to 6.2 resulted in reduced RCT from 11.9 to 6.5 min with increased relative G' after coagulation. When less rennet was used, RCT increased in a linear inverse relationship without changes in relative G' or G″. The microstructure of RCM coagulum (∼11% casein), observed using transmission electron microscopy, confirmed that RCM curd had a rigid protein matrix containing extensively cross-linked protein strands.


Asunto(s)
Caseínas , Queso , Animales , Quimosina/metabolismo , Micelas , Leche/química , Reología
2.
J Dairy Sci ; 99(7): 5132-5143, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27132095

RESUMEN

Highly concentrated micellar casein concentrate (HC-MCC), a potential ingredient for cheese making, contains ~20% casein with ~70% of serum proteins removed by microfiltration and diafiltration of skim milk, followed by vacuum evaporation. Our objective was to investigate cold gelation properties of recombined concentrated milk (RCM) by mixing thawed frozen HC-MCC and cream under different casein levels, pH, and protein-to-fat ratios, and with addition of sodium citrate or calcium. The HC-MCC was recombined with cream using low shear at 50°C for 30 min, and rheological measurements were conducted. Cold-gelling temperature [the temperature at which storage modulus (G')=loss modulus (G″)] was linearly correlated with casein levels from 8.6 to 11.5% (R(2)=0.71), pH from 6.6 to 7.0 (R(2)=0.96), and addition of sodium citrate from 0 to 0.36mmol/g of casein (R(2)=0.80). At pH 7.0, gelation occurred at 12, 26, and 38°C with 9, 10, and 11% casein, respectively. At pH 6.6, 6.8, and 7.0, RCM with 12% casein gelled at a mean temperature of 12, 26, and 37°C, respectively. Adding calcium chloride at 0.17mmol/g of casein significantly increased cold-gelling temperature from 18 to ≥50°C, whereas no significant change was observed at levels up to 0.12mmol/g of casein. Different protein to fat ratios ranging from 0.8 to 1.2 did not significantly influence gelling temperature. In transmission electron micrographs of RCM with 12% casein, casein micelles were nonspherical and partially dissociated into small protein strands. Upon addition of calcium chloride at 0.21mmol/g of casein, casein micelles were more spherical and retained colloidal structure with the presence of aggregated casein micelles. These gelation processes of RCM with or without addition of trisodium citrate were both reversible. We propose that cold gelation of RCM occurs when protein strands that have been partially released from the casein micelles entangle, restrict their mobility, and form a fine-stranded gel network. Upon addition of high levels of calcium, cold gelation was promoted presumably through direct aggregation of casein micelles. Understanding cold gelation properties can facilitate potential use of RCM in cheese making.


Asunto(s)
Queso/análisis , Manipulación de Alimentos/métodos , Caseínas/análisis , Frío , Micelas
3.
J Dairy Sci ; 98(9): 5917-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26117351

RESUMEN

Highly concentrated micellar casein concentrate (HC-MCC), a potential ingredient of protein-fortified food, is a gel at cold temperature. It contains ~17 to 21% casein, with most serum proteins and lactose removed by microfiltration and diafiltration, and it is then further concentrated using vacuum evaporation. The HC-MCC can be stored frozen, and our objective was to determine the conditions needed to obtain complete solubility of thawed HC-MCC in water and to understand its gelation upon cooling. Dispersibility (ability to pass through a 250-µm mesh sieve), suspendability (percentage of protein not sedimented at 80 × g within 5min), and solubility (percentage of protein not sedimented at 20,000 × g within 5min) were measured at 4, 12, or 20°C after various mixing conditions. Gelation upon cooling from 50 to 5°C was monitored based on storage (G') and loss (G'') moduli. The gelled HC-MCC was also examined by transmission electron microscopy. Thawed HC-MCC was added to water to reach a protein concentration of 3% and mixed using high shear (7,500rpm) for 1min or low shear (800rpm) for 30min at 4, 12, 20, or 50°C and at pH 6.4 to 7.2. The HC-MCC completely dispersed at 50°C, or at ≤20°C followed by overnight storage at 4°C. Suspendability at 50°C was ~90% whereas mixing at ≤20°C followed by overnight storage resulted in only ~57% suspendability. Solubility followed a similar trend with ~83% at 50°C and only ~29% at ≤20°C. Mixing HC-MCC with 60mM trisodium citrate increased dispersibility to 99% and suspendability and solubility to 81% at 20°C. Cold-gelling temperature, defined as the temperature at which G'=G'' when cooling from 50 to 5°C, was positively correlated with protein level in HC-MCC. Gelation occurred at 38, 28, and 7°C with 23, 20, and 17% of protein, respectively. Gelation was reversible upon heating, although after a second cooling cycle the HC-MCC gel had lower G'. In micrographs of gelled HC-MCC, the casein micelles were observed to be within the normal size range but packed very closely together, with only ~20 to 50 nm of space between them. We proposed that cold-gelation of HC-MCC occurs when the kinetic energy of the casein micelles is sufficiently reduced to inhibit their mobility in relation to adjacent casein micelles. Understanding solubilization of rehydrated frozen HC-MCC and its rheological properties can help in designing process systems for using HC-MCC as a potential ingredient in liquid food.


Asunto(s)
Caseínas/química , Alimentos Fortificados , Micelas , Animales , Frío , Grasas de la Dieta/análisis , Geles/química , Concentración de Iones de Hidrógeno , Lactosa/análisis , Leche/química , Proteínas de la Leche/análisis , Reología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA