Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.455
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 24(4): 690-699, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914890

RESUMEN

The omicron variants of SARS-CoV-2 have substantial ability to escape infection- and vaccine-elicited antibody immunity. Here, we investigated the extent of such escape in nine convalescent patients infected with the wild-type SARS-CoV-2 during the first wave of the pandemic. Among the total of 476 monoclonal antibodies (mAbs) isolated from peripheral memory B cells, we identified seven mAbs with broad neutralizing activity to all variants tested, including various omicron subvariants. Biochemical and structural analysis indicated the majority of these mAbs bound to the receptor-binding domain, mimicked the receptor ACE2 and were able to accommodate or inadvertently improve recognition of omicron substitutions. Passive delivery of representative antibodies protected K18-hACE2 mice from infection with omicron and beta SARS-CoV-2. A deeper understanding of how the memory B cells that produce these antibodies could be selectively boosted or recalled can augment antibody immunity against SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Anticuerpos Monoclonales , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
EMBO J ; 43(12): 2337-2367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649537

RESUMEN

Mitochondria are cellular powerhouses that generate energy through the electron transport chain (ETC). The mitochondrial genome (mtDNA) encodes essential ETC proteins in a compartmentalized manner, however, the mechanism underlying metabolic regulation of mtDNA function remains unknown. Here, we report that expression of tricarboxylic acid cycle enzyme succinate-CoA ligase SUCLG1 strongly correlates with ETC genes across various TCGA cancer transcriptomes. Mechanistically, SUCLG1 restricts succinyl-CoA levels to suppress the succinylation of mitochondrial RNA polymerase (POLRMT). Lysine 622 succinylation disrupts the interaction of POLRMT with mtDNA and mitochondrial transcription factors. SUCLG1-mediated POLRMT hyposuccinylation maintains mtDNA transcription, mitochondrial biogenesis, and leukemia cell proliferation. Specifically, leukemia-promoting FMS-like tyrosine kinase 3 (FLT3) mutations modulate nuclear transcription and upregulate SUCLG1 expression to reduce succinyl-CoA and POLRMT succinylation, resulting in enhanced mitobiogenesis. In line, genetic depletion of POLRMT or SUCLG1 significantly delays disease progression in mouse and humanized leukemia models. Importantly, succinyl-CoA level and POLRMT succinylation are downregulated in FLT3-mutated clinical leukemia samples, linking enhanced mitobiogenesis to cancer progression. Together, SUCLG1 connects succinyl-CoA with POLRMT succinylation to modulate mitochondrial function and cancer development.


Asunto(s)
Biogénesis de Organelos , Succinato-CoA Ligasas , Animales , Humanos , Ratones , Acilcoenzima A/metabolismo , Acilcoenzima A/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Leucemia/metabolismo , Leucemia/genética , Leucemia/patología , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Succinato-CoA Ligasas/metabolismo , Succinato-CoA Ligasas/genética
3.
Nature ; 612(7940): 519-527, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477534

RESUMEN

In mice and humans, sleep quantity is governed by genetic factors and exhibits age-dependent variation1-3. However, the core molecular pathways and effector mechanisms that regulate sleep duration in mammals remain unclear. Here, we characterize a major signalling pathway for the transcriptional regulation of sleep in mice using adeno-associated virus-mediated somatic genetics analysis4. Chimeric knockout of LKB1 kinase-an activator of AMPK-related protein kinase SIK35-7-in adult mouse brain markedly reduces the amount and delta power-a measure of sleep depth-of non-rapid eye movement sleep (NREMS). Downstream of the LKB1-SIK3 pathway, gain or loss-of-function of the histone deacetylases HDAC4 and HDAC5 in adult brain neurons causes bidirectional changes of NREMS amount and delta power. Moreover, phosphorylation of HDAC4 and HDAC5 is associated with increased sleep need, and HDAC4 specifically regulates NREMS amount in posterior hypothalamus. Genetic and transcriptomic studies reveal that HDAC4 cooperates with CREB in both transcriptional and sleep regulation. These findings introduce the concept of signalling pathways targeting transcription modulators to regulate daily sleep amount and demonstrate the power of somatic genetics in mouse sleep research.


Asunto(s)
Transducción de Señal , Duración del Sueño , Transcripción Genética , Animales , Ratones , Regulación de la Expresión Génica , Fosforilación , Transducción de Señal/fisiología , Sueño de Onda Lenta/genética , Perfilación de la Expresión Génica
4.
Nature ; 584(7819): 115-119, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32454513

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2)2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Neumonía Viral/inmunología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Linfocitos B/citología , Linfocitos B/inmunología , Betacoronavirus/química , COVID-19 , Niño , Células Clonales/citología , Células Clonales/inmunología , Reacciones Cruzadas , Cristalización , Cristalografía por Rayos X , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Pruebas de Neutralización , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Plasma/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
5.
Nucleic Acids Res ; 52(D1): D835-D849, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37889051

RESUMEN

The high cost of large-scale, high-coverage whole-genome sequencing has limited its application in genomics and genetics research. The common approach has been to impute whole-genome sequence variants obtained from a few individuals for a larger population of interest individually genotyped using SNP chip. An alternative involves low-coverage whole-genome sequencing (lcWGS) of all individuals in the larger population, followed by imputation to sequence resolution. To overcome limitations of processing lcWGS data and meeting specific genotype imputation requirements, we developed AGIDB (https://agidb.pro), a website comprising tools and database with an unprecedented sample size and comprehensive variant decoding for animals. AGIDB integrates whole-genome sequencing and chip data from 17 360 and 174 945 individuals, respectively, across 89 species to identify over one billion variants, totaling a massive 688.57 TB of processed data. AGIDB focuses on integrating multiple genotype imputation scenarios. It also provides user-friendly searching and data analysis modules that enable comprehensive annotation of genetic variants for specific populations. To meet a wide range of research requirements, AGIDB offers downloadable reference panels for each species in addition to its extensive dataset, variant decoding and utility tools. We hope that AGIDB will become a key foundational resource in genetics and breeding, providing robust support to researchers.


Asunto(s)
Bases de Datos Genéticas , Genómica , Polimorfismo de Nucleótido Simple , Animales , Humanos , Genoma , Estudio de Asociación del Genoma Completo , Genotipo , Análisis de Secuencia , Uso de Internet
6.
Proc Natl Acad Sci U S A ; 120(15): e2219585120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37018198

RESUMEN

Ferroptosis is an iron-dependent oxidative, nonapoptotic form of regulated cell death caused by the destruction of redox homeostasis. Recent studies have uncovered complex cellular networks that regulate ferroptosis. GINS4 is a promoter of eukaryotic G1/S-cell cycle as a regulator of initiation and elongation of DNA replication, but little is known about its impact on ferroptosis. Here, we found that GINS4 was involved in the regulation of ferroptosis in lung adenocarcinoma (LUAD). CRISPR/Cas9-mediated GINS4 KO facilitated ferroptosis. Interestingly, depletion of GINS4 could effectively induce G1, G1/S, S, and G2/M cells to ferroptosis, especially for G2/M cells. Mechanistically, GINS4 suppressed p53 stability through activating Snail that antagonized the acetylation of p53, and p53 lysine residue 351 (K351 for human p53) was the key site for GINS4-suppressed p53-mediated ferroptosis. Together, our data demonstrate that GINS4 is a potential oncogene in LUAD that functions to destabilize p53 and then inhibits ferroptosis, providing a potential therapeutic target for LUAD.


Asunto(s)
Ferroptosis , Humanos , Acetilación , Ciclo Celular , Proteínas Cromosómicas no Histona/metabolismo , Oxidación-Reducción , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(40): e2302361120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37738291

RESUMEN

The almost simultaneous emergence of major animal phyla during the early Cambrian shaped modern animal biodiversity. Reconstructing evolutionary relationships among such closely spaced branches in the animal tree of life has proven to be a major challenge, hindering understanding of early animal evolution and the fossil record. This is particularly true in the species-rich and highly varied Mollusca where dramatic inconsistency among paleontological, morphological, and molecular evidence has led to a long-standing debate about the group's phylogeny and the nature of dozens of enigmatic fossil taxa. A critical step needed to overcome this issue is to supplement available genomic data, which is plentiful for well-studied lineages, with genomes from rare but key lineages, such as Scaphopoda. Here, by presenting chromosome-level genomes from both extant scaphopod orders and leveraging complete genomes spanning Mollusca, we provide strong support for Scaphopoda as the sister taxon of Bivalvia, revitalizing the morphology-based Diasoma hypothesis originally proposed 50 years ago. Our molecular clock analysis confidently dates the split between Bivalvia and Scaphopoda at ~520 Ma, prompting a reinterpretation of controversial laterally compressed Early Cambrian fossils, including Anabarella, Watsonella, and Mellopegma, as stem diasomes. Moreover, we show that incongruence in the phylogenetic placement of Scaphopoda in previous phylogenomic studies was due to ancient incomplete lineage sorting (ILS) that occurred during the rapid radiation of Conchifera. Our findings highlight the need to consider ILS as a potential source of error in deep phylogeny reconstruction, especially in the context of the unique nature of the Cambrian Explosion.


Asunto(s)
Bivalvos , Animales , Filogenia , Biodiversidad , Movimiento Celular , Suplementos Dietéticos
8.
J Neurosci ; 44(4)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050110

RESUMEN

Working memory (WM) maintenance relies on multiple brain regions and inter-regional communications. The hippocampus and entorhinal cortex (EC) are thought to support this operation. Besides, EC is the main gateway for information between the hippocampus and neocortex. However, the circuit-level mechanism of this interaction during WM maintenance remains unclear in humans. To address these questions, we recorded the intracranial electroencephalography from the hippocampus and EC while patients (N = 13, six females) performed WM tasks. We found that WM maintenance was accompanied by enhanced theta/alpha band (2-12 Hz) phase synchronization between the hippocampus to the EC. The Granger causality and phase slope index analyses consistently showed that WM maintenance was associated with theta/alpha band-coordinated unidirectional influence from the hippocampus to the EC. Besides, this unidirectional inter-regional communication increased with WM load and predicted WM load during memory maintenance. These findings demonstrate that WM maintenance in humans engages the hippocampal-entorhinal circuit, with the hippocampus influencing the EC in a load-dependent manner.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Femenino , Humanos , Encéfalo , Electrocorticografía , Corteza Entorrinal , Electroencefalografía , Ritmo Teta
9.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290847

RESUMEN

Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.


Asunto(s)
Mapeo Encefálico , Encéfalo , Femenino , Humanos , Masculino , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Sensación
10.
Plant J ; 118(6): 2249-2268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38430487

RESUMEN

Melon (Cucumis melo L.), being under intensive domestication and selective breeding, displays an abundant phenotypic diversity. Wild germplasm with tolerance to stress represents an untapped genetic resource for discovery of disease-resistance genes. To comprehensively characterize resistance genes in melon, we generate a telomere-to-telomere (T2T) and gap-free genome of wild melon accession PI511890 (C. melo var. chito) with a total length of 375.0 Mb and a contig N50 of 31.24 Mb. The complete genome allows us to dissect genome architecture and identify resistance gene analogs. We construct a pan-NLRome using seven melon genomes, which include 208 variable and 18 core nucleotide-binding leucine-rich repeat receptors (NLRs). Multiple disease-related transcriptome analyses indicate that most up-regulated NLRs induced by pathogens are shell or cloud NLRs. The T2T gap-free assembly and the pan-NLRome not only serve as essential resources for genomic studies and molecular breeding of melon but also provide insights into the genome architecture and NLR diversity.


Asunto(s)
Cucumis melo , Resistencia a la Enfermedad , Genoma de Planta , Genoma de Planta/genética , Cucumis melo/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Cucurbitaceae/genética
11.
Plant J ; 119(2): 1014-1029, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805573

RESUMEN

Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.


Asunto(s)
Celulosa , Regulación de la Expresión Génica de las Plantas , Giberelinas , Manihot , Proteínas de Plantas , Manihot/genética , Manihot/metabolismo , Celulosa/metabolismo , Celulosa/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Pared Celular/metabolismo , Aumento de la Célula , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Polisacáridos/metabolismo
12.
EMBO Rep ; 24(12): e56984, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37955230

RESUMEN

Aging is accompanied by a decreased DNA repair capacity, which might contribute to age-associated functional decline in multiple tissues. Disruption in hormone signaling, associated with reproductive organ dysfunction, is an early event of age-related tissue degeneration, but whether it impacts DNA repair in nonreproductive organs remains elusive. Using skin fibroblasts derived from healthy donors with a broad age range, we show here that the downregulation of expression of XRCC4, a factor involved in nonhomologous end-joining (NHEJ) repair, which is the dominant pathway to repair somatic double-strand breaks, is mediated through transcriptional mechanisms. We show that the androgen receptor (AR), whose expression is also reduced during aging, directly binds to and enhances the activity of the XRCC4 promoter, facilitating XRCC4 transcription and thus stabilizing the genome. We also demonstrate that dihydrotestosterone (DHT), a powerful AR agonist, restores XRCC4 expression and stabilizes the genome in different models of cellular aging. Moreover, DHT treatment reverses senescence-associated phenotypes, opening a potential avenue to aging interventions in the future.


Asunto(s)
Andrógenos , Reparación del ADN por Unión de Extremidades , Andrógenos/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Transducción de Señal , Humanos
13.
Nucleic Acids Res ; 51(D1): D1312-D1324, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36300629

RESUMEN

With the exponential growth of multi-omics data, its integration and utilization have brought unprecedented opportunities for the interpretation of gene regulation mechanisms and the comprehensive analyses of biological systems. IAnimal (https://ianimal.pro/), a cross-species, multi-omics knowledgebase, was developed to improve the utilization of massive public data and simplify the integration of multi-omics information to mine the genetic mechanisms of objective traits. Currently, IAnimal provides 61 191 individual omics data of genome (WGS), transcriptome (RNA-Seq), epigenome (ChIP-Seq, ATAC-Seq) and genome annotation information for 21 species, such as mice, pigs, cattle, chickens, and macaques. The scale of its total clean data has reached 846.46 TB. To better understand the biological significance of omics information, a deep learning model for IAnimal was built based on BioBERT and AutoNER to mine 'gene' and 'trait' entities from 2 794 237 abstracts, which has practical significance for comprehending how each omics layer regulates genes to affect traits. By means of user-friendly web interfaces, flexible data application programming interfaces, and abundant functional modules, IAnimal enables users to easily query, mine, and visualize characteristics in various omics, and to infer how genes play biological roles under the influence of various omics layers.


Asunto(s)
Bases de Datos Genéticas , Animales , Regulación de la Expresión Génica , Genoma , Bases del Conocimiento , Programas Informáticos , Multiómica
14.
Nano Lett ; 24(1): 202-208, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38126308

RESUMEN

This work presents a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas-nanopipette nano-electrochemistry (Cas = CRISPR-associated proteins) capable of ultrasensitive microRNA detection. Nanoconfinement of the CRISPR/Cas13a within a nanopipette leads to a high catalytic efficacy of ca. 169 times higher than that in bulk electrolyte, contributing to the amplified electrochemical responses. CRISPR/Cas13a-enabled detection of representative microRNA-25 achieves a low limit of detection down to 10 aM. Practical application of this method is further demonstrated for single-cell and real human serum detection. Its general applicability is validated by addressing microRNA-141 and the SARS-CoV-2 RNA gene fragment. This work introduces a new CRISPR/Cas-empowered nanotechnology for ultrasensitive nano-electrochemistry and bioanalysis.


Asunto(s)
MicroARNs , Nanoporos , Humanos , MicroARNs/genética , MicroARNs/análisis , Sistemas CRISPR-Cas/genética , ARN Viral
15.
Nano Lett ; 24(20): 6102-6111, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739578

RESUMEN

Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.


Asunto(s)
Lesión Pulmonar Aguda , ADN , Nanoestructuras , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Animales , Ratones , ADN/química , Administración por Inhalación , Nanoestructuras/química , Especies Reactivas de Oxígeno/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Citocinas/metabolismo , Péptidos/química , Nebulizadores y Vaporizadores , Péptidos de Penetración Celular/química , Modelos Animales de Enfermedad , Lipopolisacáridos , Sistemas de Liberación de Medicamentos , Células RAW 264.7
16.
Lancet Oncol ; 25(3): 338-351, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423048

RESUMEN

BACKGROUND: There are few data on international variation in chemotherapy use, despite it being a key treatment type for some patients with cancer. Here, we aimed to examine the presence and size of such variation. METHODS: This population-based study used data from Norway, the four UK nations (England, Northern Ireland, Scotland, and Wales), eight Canadian provinces (Alberta, British Columbia, Manitoba, Newfoundland and Labrador, Nova Scotia, Ontario, Prince Edward Island, and Saskatchewan), and two Australian states (New South Wales and Victoria). Patients aged 15-99 years diagnosed with cancer in eight different sites (oesophageal, stomach, colon, rectal, liver, pancreatic, lung, or ovarian cancer), with no other primary cancer diagnosis occurring from within the 5 years before to 1 year after the index cancer diagnosis or during the study period were included in the study. We examined variation in chemotherapy use from 31 days before to 365 days after diagnosis and time to its initiation, alongside related variation in patient group differences. Information was obtained from cancer registry records linked to clinical or patient management system data or hospital administration data. Random-effects meta-analyses quantified interjurisdictional variation using 95% prediction intervals (95% PIs). FINDINGS: Between Jan 1, 2012, and Dec 31, 2017, of 893 461 patients with a new diagnosis of one of the studied cancers, 111 569 (12·5%) did not meet the inclusion criteria, and 781 892 were included in the analysis. There was large interjurisdictional variation in chemotherapy use for all studied cancers, with wide 95% PIs: 47·5 to 81·2 (pooled estimate 66·4%) for ovarian cancer, 34·9 to 59·8 (47·2%) for oesophageal cancer, 22·3 to 62·3 (40·8%) for rectal cancer, 25·7 to 55·5 (39·6%) for stomach cancer, 17·2 to 56·3 (34·1%) for pancreatic cancer, 17·9 to 49·0 (31·4%) for lung cancer, 18·6 to 43·8 (29·7%) for colon cancer, and 3·5 to 50·7 (16·1%) for liver cancer. For patients with stage 3 colon cancer, the interjurisdictional variation was greater than that for all patients with colon cancer (95% PI 38·5 to 78·4; 60·1%). Patients aged 85-99 years had 20-times lower odds of chemotherapy use than those aged 65-74 years, with very large interjurisdictional variation in this age difference (odds ratio 0·05; 95% PI 0·01 to 0·19). There was large variation in median time to first chemotherapy (from diagnosis date) by cancer site, with substantial interjurisdictional variation, particularly for rectal cancer (95% PI -15·5 to 193·9 days; pooled estimate 89·2 days). Patients aged 85-99 years had slightly shorter median time to first chemotherapy compared with those aged 65-74 years, consistently between jurisdictions (-3·7 days, 95% PI -7·6 to 0·1). INTERPRETATION: Large variation in use and time to chemotherapy initiation were observed between the participating jurisdictions, alongside large and variable age group differences in chemotherapy use. To guide efforts to improve patient outcomes, the underlying reasons for these patterns need to be established. FUNDING: International Cancer Benchmarking Partnership (funded by the Canadian Partnership Against Cancer, Cancer Council Victoria, Cancer Institute New South Wales, Cancer Research UK, Danish Cancer Society, National Cancer Registry Ireland, The Cancer Society of New Zealand, National Health Service England, Norwegian Cancer Society, Public Health Agency Northern Ireland on behalf of the Northern Ireland Cancer Registry, DG Health and Social Care Scottish Government, Western Australia Department of Health, and Public Health Wales NHS Trust).


Asunto(s)
Neoplasias del Colon , Neoplasias Ováricas , Neoplasias del Recto , Femenino , Humanos , Benchmarking , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/epidemiología , Hígado , Pulmón , Ontario/epidemiología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/epidemiología , Medicina Estatal , Estómago , Victoria , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino
17.
Lancet Oncol ; 25(3): 352-365, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423049

RESUMEN

BACKGROUND: There is little evidence on variation in radiotherapy use in different countries, although it is a key treatment modality for some patients with cancer. Here we aimed to examine such variation. METHODS: This population-based study used data from Norway, the four UK nations (England, Northern Ireland, Scotland, and Wales), nine Canadian provinces (Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, Ontario, Prince Edward Island, and Saskatchewan), and two Australian states (New South Wales and Victoria). Patients aged 15-99 years diagnosed with cancer in eight different sites (oesophageal, stomach, colon, rectal, liver, pancreatic, lung, or ovarian cancer), with no other primary cancer diagnosis occurring within the 5 years before to 1 year after the index cancer diagnosis or during the study period were included in the study. We examined variation in radiotherapy use from 31 days before to 365 days after diagnosis and time to its initiation, alongside related variation in patient group differences. Information was obtained from cancer registry records linked to clinical or patient management system data, or hospital administration data. Random-effects meta-analyses quantified interjurisdictional variation using 95% prediction intervals (95% PIs). FINDINGS: Between Jan 1, 2012, and Dec 31, 2017, of 902 312 patients with a new diagnosis of one of the studied cancers, 115 357 (12·8%) did not meet inclusion criteria, and 786,955 were included in the analysis. There was large interjurisdictional variation in radiotherapy use, with wide 95% PIs: 17·8 to 82·4 (pooled estimate 50·2%) for oesophageal cancer, 35·5 to 55·2 (45·2%) for rectal cancer, 28·6 to 54·0 (40·6%) for lung cancer, and 4·6 to 53·6 (19·0%) for stomach cancer. For patients with stage 2-3 rectal cancer, interjurisdictional variation was greater than that for all patients with rectal cancer (95% PI 37·0 to 84·6; pooled estimate 64·2%). Radiotherapy use was infrequent but variable in patients with pancreatic (95% PI 1·7 to 16·5%), liver (1·8 to 11·2%), colon (1·6 to 5·0%), and ovarian (0·8 to 7·6%) cancer. Patients aged 85-99 years had three-times lower odds of radiotherapy use than those aged 65-74 years, with substantial interjurisdictional variation in this age difference (odds ratio [OR] 0·38; 95% PI 0·20-0·73). Women had slightly lower odds of radiotherapy use than men (OR 0·88, 95% PI 0·77-1·01). There was large variation in median time to first radiotherapy (from diagnosis date) by cancer site, with substantial interjurisdictional variation (eg, oesophageal 95% PI 11·3 days to 112·8 days; pooled estimate 62·0 days; rectal 95% PI 34·7 days to 77·3 days; pooled estimate 56·0 days). Older patients had shorter median time to radiotherapy with appreciable interjurisdictional variation (-9·5 days in patients aged 85-99 years vs 65-74 years, 95% PI -26·4 to 7·4). INTERPRETATION: Large interjurisdictional variation in both use and time to radiotherapy initiation were observed, alongside large and variable age differences. To guide efforts to improve patient outcomes, underlying reasons for these differences need to be established. FUNDING: International Cancer Benchmarking Partnership (funded by the Canadian Partnership Against Cancer, Cancer Council Victoria, Cancer Institute New South Wales, Cancer Research UK, Danish Cancer Society, National Cancer Registry Ireland, The Cancer Society of New Zealand, National Health Service England, Norwegian Cancer Society, Public Health Agency Northern Ireland on behalf of the Northern Ireland Cancer Registry, DG Health and Social Care Scottish Government, Western Australia Department of Health, and Public Health Wales NHS Trust).


Asunto(s)
Neoplasias Ováricas , Neoplasias del Recto , Femenino , Humanos , Masculino , Benchmarking , Colon , Hígado , Pulmón , Ontario/epidemiología , Medicina Estatal , Estómago , Victoria , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
18.
BMC Bioinformatics ; 25(1): 29, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233783

RESUMEN

The impairment of sperm maturation is one of the major pathogenic factors in male subfertility, a serious medical and social problem affecting millions of global couples. Regrettably, the existing research on sperm maturation is slow, limited, and fragmented, largely attributable to the lack of a global molecular view. To fill the data gap, we newly established a database, namely the Sperm Maturation Database (SperMD, http://bio-add.org/SperMD ). SperMD integrates heterogeneous multi-omics data (170 transcriptomes, 91 proteomes, and five human metabolomes) to illustrate the transcriptional, translational, and metabolic manifestations during the entire lifespan of sperm maturation. These data involve almost all crucial scenarios related to sperm maturation, including the tissue components of the epididymal microenvironment, cell constituents of tissues, different pathological states, and so on. To the best of our knowledge, SperMD could be one of the limited repositories that provide focused and comprehensive information on sperm maturation. Easy-to-use web services are also implemented to enhance the experience of data retrieval and molecular comparison between humans and mice. Furthermore, the manuscript illustrates an example application demonstrated to systematically characterize novel gene functions in sperm maturation. Nevertheless, SperMD undertakes the endeavor to integrate the islanding omics data, offering a panoramic molecular view of how the spermatozoa gain full reproductive abilities. It will serve as a valuable resource for the systematic exploration of sperm maturation and for prioritizing the biomarkers and targets for precise diagnosis and therapy of male subfertility.


Asunto(s)
Infertilidad Masculina , Maduración del Esperma , Masculino , Humanos , Animales , Ratones , Maduración del Esperma/genética , Semen , Espermatozoides/metabolismo , Epidídimo/metabolismo , Infertilidad Masculina/metabolismo
19.
J Proteome Res ; 23(7): 2587-2597, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836775

RESUMEN

Primary acute angle-closure glaucoma (PAACG) is a sight-threatening condition that can lead to blindness. With the increasing incidence of COVID-19, a multitude of people are experiencing acute vision loss and severe swelling of the eyes and head. These patients were then diagnosed with acute angle closure, with or without a history of PACG. However, the mechanism by which viral infection causes PACG has not been clarified. This is the first study to explore the specific inflammatory proteomic landscape in SARS-CoV-2-induced PAACG. The expression of 92 inflammation-related proteins in 19 aqueous humor samples from PAACGs or cataract patients was detected using the Olink Target 96 Inflammation Panel based on a highly sensitive and specific proximity extension assay technology. The results showed that 76 proteins were significantly more abundant in the PAACG group than in the cataract group. Notably, the top eight differentially expressed proteins were IL-8, MCP-1, TNFRSF9, DNER, CCL4, Flt3L, CXCL10, and CD40. Generally, immune markers are related to inflammation, macrophage activation, and viral infection, revealing the crucial role of macrophages in the occurrence of PAACGs caused by SARS-CoV-2.


Asunto(s)
Biomarcadores , COVID-19 , Glaucoma de Ángulo Cerrado , Proteoma , SARS-CoV-2 , Glaucoma de Ángulo Cerrado/metabolismo , Glaucoma de Ángulo Cerrado/inmunología , Humanos , COVID-19/inmunología , COVID-19/complicaciones , Biomarcadores/metabolismo , Proteoma/análisis , Masculino , Femenino , Anciano , Persona de Mediana Edad , Humor Acuoso/virología , Humor Acuoso/metabolismo , Inflamación/metabolismo , Proteómica/métodos , Catarata/metabolismo , Enfermedad Aguda
20.
BMC Genomics ; 25(1): 209, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408894

RESUMEN

BACKGROUND: The sucrose nonfermenting-1-related protein kinase 2 (SnRK2) plays a crucial role in responses to diverse biotic/abiotic stresses. Currently, there are reports on these genes in Haynaldia villosa, a diploid wild relative of wheat. RESULTS: To understand the evolution of SnRK2-V family genes and their roles in various stress conditions, we performed genome-wide identification of the SnRK2-V gene family in H. villosa. Ten SnRK2-V genes were identified and characterized for their structures, functions and spatial expressions. Analysis of gene exon/intron structure further revealed the presence of evolutionary paths and replication events of SnRK2-V gene family in the H. villosa. In addition, the features of gene structure, the chromosomal location, subcellular localization of the gene family were investigated and the phylogenetic relationship were determined using computational approaches. Analysis of cis-regulatory elements of SnRK2-V gene members revealed their close correlation with different phytohormone signals. The expression profiling revealed that ten SnRK2-V genes expressed at least one tissue (leave, stem, root, or grain), or in response to at least one of the biotic (stripe rust or powdery mildew) or abiotic (drought or salt) stresses. Moreover, SnRK2.9-V was up-regulated in H. villosa under the drought and salt stress and overexpressing of SnRK2.9-V in wheat enhanced drought and salt tolerances via enhancing the genes expression of antioxidant enzymes, revealing a potential value of SnRK2.9-V in wheat improvement for salt tolerance. CONCLUSION: Our present study provides a basic genome-wide overview of SnRK2-V genes in H. villosa and demonstrates the potential use of SnRK2.9-V in enhancing the drought and salt tolerances in common wheat.


Asunto(s)
Tolerancia a la Sal , Triticum , Triticum/metabolismo , Tolerancia a la Sal/genética , Proteínas Quinasas/genética , Sequías , Filogenia , Poaceae/genética , Estrés Salino/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA