Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Toxicol ; 39(7): 3930-3943, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38572829

RESUMEN

The number of patients with chronic kidney disease (CKD) is increasing. Oral toxin adsorbents may provide some value. Several uremic toxins, including indoxyl sulfate (IS), p-cresol (PCS), acrolein, per- and poly-fluoroalkyl substances (PFAS), and inflammation markers (interleukin 6 [IL-6] and tumor necrosis factor [TNF]-alpha) have been shown to be related to CKD progression. A total of 81 patients taking oral activated charcoal toxin adsorbents (AC-134), which were embedded in capsules that dissolved in the terminal ileum, three times a day for 1 month, were recruited. The renal function, hemoglobulin (Hb), inflammation markers, three PFAS (PFOA, PFOS, and PFNA), and acrolein were quantified. Compared with the baseline, an improved glomerular filtration rate (GFR) and significantly lower acrolein were noted. Furthermore, the CKD stage 4 and 5 group had significantly higher concentrations of IS, PCS, IL-6, and TNF but lower levels of Hb and PFAS compared with the CKD Stage 3 group at baseline and after the intervention. Hb was increased only in the CKD Stage 3 group after the trial (p = .032). Acrolein did not differ between the different CKD stage groups. Patients with improved GFR (responders) (about 77%) and nonresponders had similar baseline GFR. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, indicating a better digestion function. Both the higher PFOA and lower acrolein may be related to improved eGFR (and possibly to improvements in proteinuria, which we did not measure. Proteinuria is associated with PFAS loss in the urine), AC-134 showed the potential to improve the GFR and decrease acrolein, which might better indicate renal function change. Future studies are needed with longer follow-ups.


Asunto(s)
Tasa de Filtración Glomerular , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Insuficiencia Renal Crónica/fisiopatología , Anciano , Persona de Mediana Edad , Tasa de Filtración Glomerular/efectos de los fármacos , Cresoles , Acroleína , Adsorción , Tóxinas Urémicas , Concentración de Iones de Hidrógeno , Indicán/orina , Carbón Orgánico/química , Carbón Orgánico/administración & dosificación , Riñón/efectos de los fármacos , Riñón/fisiopatología , Cápsulas , Administración Oral
2.
Drug Chem Toxicol ; 45(1): 353-359, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31790610

RESUMEN

Chronic exposure to solar ultraviolet (UV) light induces photoaging in human skin. Our previous results have shown that areca nut procyanidins (ANPs) have antioxidant capacity and possess potential anti-inflammatory effects. Here, we aimed to investigate the effect of ANPs on UVB-induced photoaging. In the present study, dorsal skin of CD-1 mice was exposed to UVB at a minimal erythema dose (130 mJ/cm2) throughout a 3-week period. The effects of ANPs and epigallocatechin-3-gallate (EGCG), a polyphenolic constituent of green tea, on UVB-induced photoaging were compared. The results show that oral administration of ANP prevented UVB-induced photoaging, indicated by epidermal thickness and collagen disorientation, and inhibited UVB-induced expression of cyclooxygenase-2 and matrix metalloproteinases (MMPs), such as MMP-2, MMP-9, and TIMP1. The protective potential of ANP on UVB-induced photodamage was comparable to that of EGCG. These data suggest that ANP could be useful as a dietary supplement to attenuate solar UVB-induced premature skin aging.


Asunto(s)
Proantocianidinas , Envejecimiento de la Piel , Animales , Areca , Ciclooxigenasa 2 , Metaloproteinasas de la Matriz , Ratones , Ratones Pelados , Nueces , Proantocianidinas/farmacología , Piel , Rayos Ultravioleta/efectos adversos
3.
Proc Natl Acad Sci U S A ; 115(7): E1560-E1569, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378943

RESUMEN

E-cigarette smoke delivers stimulant nicotine as aerosol without tobacco or the burning process. It contains neither carcinogenic incomplete combustion byproducts nor tobacco nitrosamines, the nicotine nitrosation products. E-cigarettes are promoted as safe and have gained significant popularity. In this study, instead of detecting nitrosamines, we directly measured DNA damage induced by nitrosamines in different organs of E-cigarette smoke-exposed mice. We found mutagenic O6-methyldeoxyguanosines and γ-hydroxy-1,N2 -propano-deoxyguanosines in the lung, bladder, and heart. DNA-repair activity and repair proteins XPC and OGG1/2 are significantly reduced in the lung. We found that nicotine and its metabolite, nicotine-derived nitrosamine ketone, can induce the same effects and enhance mutational susceptibility and tumorigenic transformation of cultured human bronchial epithelial and urothelial cells. These results indicate that nicotine nitrosation occurs in vivo in mice and that E-cigarette smoke is carcinogenic to the murine lung and bladder and harmful to the murine heart. It is therefore possible that E-cigarette smoke may contribute to lung and bladder cancer, as well as heart disease, in humans.


Asunto(s)
Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Corazón/efectos de los fármacos , Pulmón/efectos de los fármacos , Nicotina/toxicidad , Nitrosaminas/toxicidad , Humo/efectos adversos , Vejiga Urinaria/efectos de los fármacos , Animales , Carcinogénesis/efectos de los fármacos , Línea Celular , Sistemas Electrónicos de Liberación de Nicotina , Humanos , Pulmón/metabolismo , Masculino , Ratones , Mutación/efectos de los fármacos , Nicotina/química , Nitrosaminas/química , Vejiga Urinaria/metabolismo
4.
Int J Mol Sci ; 17(12)2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27916828

RESUMEN

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib, have been demonstrated to effectively treat the patients of extracranial non-small cell lung cancer (NSCLC). However, these patients often develop brain metastasis (BM) during their disease course. The major obstacle to treat BM is the limited penetration of anticancer drugs across the blood-brain barrier (BBB). In the present study, we utilized gefitinib-loaded liposomes with different modifications to improve gefitinib delivery across the in vitro BBB model of bEnd.3 cells. Gefitinib was encapsulated in small unilamellar liposomes modified with glutathione (GSH) and Tween 80 (SUV-G+T; one ligand plus one surfactant) or RF (SUV-RF; one α-helical cell-penetrating peptide). GSH, Tween 80, and RF were tested by the sulforhodamine B (SRB) assay to find their non-cytotoxic concentrations on bEnd.3 cells. The enhancement on gefitinib across the BBB was evaluated by cytotoxicity assay on human lung adenocarcinoma PC9 cells under the bEnd.3 cells grown on the transwell inserts. Our findings showed that gefitinib incorporated in SUV-G+T or SUV-RF across the bEnd.3 cells significantly reduced the viability of PC9 cells more than that of free gefitinib. Furthermore, SUV-RF showed no cytotoxicity on bEnd.3 cells and did not affect the transendothelial electrical resistance (TEER) and transendothelial permeability of sodium fluorescein across the BBB model. Moreover, flow cytometry and confocal laser scanning microscopy were employed to evaluate the endocytosis pathways of SUV-RF. The results indicated that the uptake into bEnd.3 cells was mainly through adsorptive-mediated mechanism via electrostatic interaction and partially through clathrin-mediated endocytosis. In conclusion, cell penetrating peptide-conjugated SUV-RF shed light on improving drug transport across the BBB via modulating the transcytosis pathway(s).


Asunto(s)
Barrera Hematoencefálica/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Glutatión/química , Liposomas/química , Polisorbatos/química , Quinazolinas/química , Quinazolinas/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Gefitinib , Humanos , Neoplasias Pulmonares/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Quinazolinas/farmacología
5.
Mol Cancer Ther ; 23(7): 1043-1056, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38346939

RESUMEN

Many patients with colorectal cancer do not respond to immune checkpoint blockade (ICB) therapy, highlighting the urgent need to understand tumor resistance mechanisms. Recently, the link between the IFNγ signaling pathway integrity and ICB resistance in the colorectal cancer tumor microenvironment has been revealed. The immunosuppressive microenvironment poses a significant challenge to antitumor immunity in colorectal cancer development. Tumor-associated neutrophils found in tumor tissues exhibit an immunosuppressive phenotype and are associated with colorectal cancer patient prognosis. Neutrophil extracellular traps (NET), DNA meshes containing cytotoxic enzymes released into the extracellular space, may be promising therapeutic targets in cancer. This study showed increased NETs in tumor tissues and peripheral neutrophils of high levels of microsatellite instability (MSI-H) patients with colorectal cancer compared with microsatellite stable (MSS) patients with colorectal cancer. IFNγ response genes were enriched in MSI-H patients with colorectal cancer compared with patients with MSS colorectal cancer. Co-culturing neutrophils with MSI-H colorectal cancer cell lines induced more NET formation and higher cellular apoptosis than MSS colorectal cancer cell lines. IFNγ treatment induced more NET formation and apoptosis in MSS colorectal cancer cell lines. Using subcutaneous or orthotopic CT-26 (MSS) tumor-bearing mice models, IFNγ reduced tumor size and enhanced PD-1 antibody-induced tumor-killing activity, accompanied by upregulated NETs and cellular apoptosis. These findings suggest that IFNγ could be a therapeutic strategy for MSS colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Trampas Extracelulares , Interferón gamma , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Trampas Extracelulares/metabolismo , Animales , Ratones , Interferón gamma/metabolismo , Interferón gamma/farmacología , Femenino , Inestabilidad de Microsatélites , Neutrófilos/metabolismo , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Masculino , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Carcinogenesis ; 34(1): 220-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23042304

RESUMEN

Acrolein (Acr), an α,ß-unsaturated aldehyde, is abundant in tobacco smoke and cooking and exhaust fumes. Acr induces mutagenic α- and γ- hydroxy-1,N(2)-cyclic propano-deoxyguanosine adducts in normal human bronchial epithelial cells. Our earlier work has found that Acr-induced DNA damage preferentially occurs at lung cancer p53 mutational hotspots that contain CpG sites and that methylation at CpG sites enhances Acr-DNA binding at these sites. Based on these results, we hypothesized that this enhancement of Acr-DNA binding leads to p53 mutational hotspots in lung cancer. In this study, using a shuttle vector supF system, we tested this hypothesis by determining the effect of CpG methylation on Acr-DNA binding and the mutations in human lung fibroblasts. We found that CpG methylation enhances Acr-induced mutations significantly. Although CpG methylation enhances Acr-DNA binging at all CpG sites, it enhances mutations at selective--TCGA--sites. Similarly, we found that CpG methylation enhances benzo(a)pyrene diol epoxide binding at all -CpG- sites. However, the methylated CpG sequences in which benzo(a)pyrene diol epoxide-induced mutations are enhanced are different from the CpG sequences in which Acr-induced mutations are enhanced. CpG methylation greatly increases Acr-induced G to T and G to A mutation frequency to levels similar to these types of mutations found in the CpG sites in the p53 gene in tobacco smoke-related lung cancer. These results indicate that both CpG sequence context and the chemical nature of the carcinogens are crucial factors for determining the effect of CpG methylation on mutagenesis.


Asunto(s)
7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , Acroleína/toxicidad , Islas de CpG , Aductos de ADN/metabolismo , Metilación de ADN , Mutágenos/toxicidad , Acroleína/metabolismo , Secuencia de Bases , Células Cultivadas , ADN/efectos de los fármacos , ADN/genética , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Mutágenos/metabolismo , Reacción en Cadena de la Polimerasa
7.
J Biol Chem ; 287(15): 12379-86, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22275365

RESUMEN

Acrolein (Acr), a ubiquitous environmental contaminant, is a human carcinogen. Acr can react with DNA to form mutagenic α- and γ-hydroxy-1, N(2)-cyclic propano-2'-deoxyguanosine adducts (α-OH-Acr-dG and γ-OH-Acr-dG). We demonstrate here that Acr-dG adducts can be efficiently repaired by the nucleotide excision repair (NER) pathway in normal human bronchial epithelia (NHBE) and lung fibroblasts (NHLF). However, the same adducts were poorly processed in cell lysates isolated from Acr-treated NHBE and NHLF, suggesting that Acr inhibits NER. In addition, we show that Acr treatment also inhibits base excision repair and mismatch repair. Although Acr does not change the expression of XPA, XPC, hOGG1, PMS2 or MLH1 genes, it causes a reduction of XPA, XPC, hOGG1, PMS2, and MLH1 proteins; this effect, however, can be neutralized by the proteasome inhibitor MG132. Acr treatment further enhances both bulky and oxidative DNA damage-induced mutagenesis. These results indicate that Acr not only damages DNA but can also modify DNA repair proteins and further causes degradation of these modified repair proteins. We propose that these two detrimental effects contribute to Acr mutagenicity and carcinogenicity.


Asunto(s)
Acroleína/farmacología , Carcinógenos/farmacología , Aductos de ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Mutágenos/farmacología , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Bronquiolos/citología , Células Cultivadas , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Pulmón/citología , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Homólogo 1 de la Proteína MutL , Mutágenos/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidación-Reducción , Plásmidos/química , Plásmidos/efectos de la radiación , Mucosa Respiratoria/citología , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(27): 12180-5, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20566850

RESUMEN

Melanomas occur mainly in sunlight-exposed skin. Xeroderma pigmentosum (XP) patients have 1,000-fold higher incidence of melanoma, suggesting that sunlight-induced "bulky" photoproducts are responsible for melanomagenesis. Sunlight induces a high level of reactive oxygen species in melanocytes (MCs); oxidative DNA damage (ODD) may thus also contribute to melanomagenesis, and XP gene products may participate in the repair of ODD. We examined the effects of melanin on UVA (320-400 nm) irradiation-induced ODD and UV photoproducts and the repair capacity in MC and XP cells for ODD and UV-induced photoproducts. Our findings indicate that UVA irradiation induces a significantly higher amount of formamidopyrimidine glycosylase-sensitive ODD in MCs than in normal human skin fibroblasts (NHSFs). In contrast, UVA irradiation induces an insignificant amount of UvrABC-sensitive sites in either of these two types of cells. We also found that, compared to NHSFs, MCs have a reduced repair capacity for ODD and photoproducts; H(2)O(2) modified- and UVC-irradiated DNAs induce a higher mutation frequency in MCs than in NHSFs; and, XP complementation group A (XPA), XP complementation group C, and XP complementation group G cells are deficient in ODD repair and ODD induces a higher mutation frequency in XPA cells than in NHSFs. These results suggest that: (i) melanin sensitizes UVA in the induction of ODD but not bulky UV photoproducts; (ii) the high susceptibility to UVA-induced ODD and the reduced DNA repair capacity in MCs contribute to carcinogenesis; and (iii) the reduced repair capacity for ODD contributes to the high melanoma incidence in XP patients.


Asunto(s)
Daño del ADN , Reparación del ADN , Melanocitos/metabolismo , Estrés Oxidativo/fisiología , 8-Hidroxi-2'-Desoxicoguanosina , Células Cultivadas , ADN-Formamidopirimidina Glicosilasa/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Melaninas/farmacología , Melanocitos/citología , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Piel/citología , Rayos Ultravioleta
9.
Environ Pollut ; 336: 122380, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625774

RESUMEN

Type 2 diabetes mellitus (DM) is a common chronic condition characterized by persistent hyperglycemia and is associated with insulin resistance (IR) in critical glucose-consuming tissues, including skeletal muscle and adipose tissue. Oxidative stress and mitochondrial dysfunction are known to play key roles in IR. Acrolein is a reactive aldehyde found in the diet and environment that is generated as a fatty acid product through the glucose autooxidation process under hyperglycemic conditions. Our previous studies have shown that acrolein impairs insulin sensitivity in normal and diabetic mice, and this effect can be reversed by scavenging acrolein. This study demonstrated that acrolein increased oxidative stress and inhibited mitochondrial respiration in differentiated C2C12 myotubes and differentiated 3T3-L1 adipocytes. As a result, insulin signaling pathways were inhibited, leading to reduced glucose uptake. Treatment with acrolein scavengers, N-acetylcysteine, or carnosine ameliorated mitochondrial dysfunction and inhibited insulin signaling. Additionally, an increase in acrolein expression correlated with mitochondrial dysfunction in the muscle and adipose tissues of diabetic mice. These findings suggest that acrolein-induced mitochondrial dysfunction contributes to IR, and scavenging acrolein is a potential therapeutic approach for treating IR.

10.
Endocr Connect ; 12(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698127

RESUMEN

Acrolein, an unsaturated aldehyde, plays a pathological role in neurodegenerative diseases. However, less is known about its effects on peripheral neuropathy. The aim of this study was to investigate the association of acrolein and diabetic peripheral neuropathy in patients with type 2 diabetes. We recruited 148 ambulatory patients with type 2 diabetes. Each participant underwent an assessment of the Michigan Neuropathy Screening Instrument Physical Examination. Diabetic peripheral neuropathy was defined as Michigan Neuropathy Screening Instrument Physical Examination score ≥ 2.5. Serum levels and urinary levels of acrolein protein conjugates were measured. Urinary acrolein protein conjugates-to-creatinine ratios were determined. Patients with diabetic peripheral neuropathy had significantly higher urinary acrolein protein conjugates-to-creatinine ratios than those without diabetic peripheral neuropathy (7.91, 95% CI: 5.96-10.50 vs 5.31, 95% CI: 4.21-6.68, P = 0.029). Logarithmic transformation of urinary acrolein protein conjugates-to-creatinine ratios was positively associated with diabetic peripheral neuropathy in univariate logistic analysis, and the association remained significant in multivariate analysis (OR = 2.45, 95% CI: 1.12-5.34, P = 0.025). In conclusion, urinary acrolein protein conjugates-to-creatinine ratio may act as a new biomarker for diabetic peripheral neuropathy in type 2 diabetes. The involvement of acrolein in the pathogenesis of diabetic peripheral neuropathy warrants further investigation.

11.
Front Med (Lausanne) ; 10: 1151359, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007793

RESUMEN

Renal fibrosis is a hallmark of diabetic nephropathy (DN) and is characterized by an epithelial-to-mesenchymal transition (EMT) program and aberrant glycolysis. The underlying mechanisms of renal fibrosis are still poorly understood, and existing treatments are only marginally effective. Therefore, it is crucial to comprehend the pathophysiological mechanisms behind the development of renal fibrosis and to generate novel therapeutic approaches. Acrolein, an α-,ß-unsaturated aldehyde, is endogenously produced during lipid peroxidation. Acrolein shows high reactivity with proteins to form acrolein-protein conjugates (Acr-PCs), resulting in alterations in protein function. In previous research, we found elevated levels of Acr-PCs along with kidney injuries in high-fat diet-streptozotocin (HFD-STZ)-induced DN mice. This study used a proteomic approach with an anti-Acr-PC antibody followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify several acrolein-modified protein targets. Among these protein targets, pyruvate kinase M2 (PKM2) was found to be modified by acrolein at Cys358, leading to the inactivation of PKM2 contributing to the pathogenesis of renal fibrosis through HIF1α accumulation, aberrant glycolysis, and upregulation of EMT in HFD-STZ-induced DN mice. Finally, PKM2 activity and renal fibrosis in DN mice can be reduced by acrolein scavengers such as hydralazine and carnosine. These results imply that acrolein-modified PKM2 contributes to renal fibrosis in the pathogenesis of DN.

12.
Bioengineering (Basel) ; 10(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36671661

RESUMEN

Hyperlipidemia is increasing in prevalence and is highly correlated with cardiovascular disease (CVD). Lipid-lowering medications prevent CVD but may not be suitable when the side effects are intolerable or hypercholesterolemia is too severe. Double-filtration plasmapheresis (DF) has shown its therapeutic effect on hyperlipidemia, but its side effects are not yet known. We enrolled 45 adults with hyperlipidemia in our study. The sera before and two weeks after DF were evaluated, and we also analyzed perfluorochemicals to see if DF could remove these lipophilic toxins. After DF, all lipid profile components (total cholesterol, triglycerides, high-density lipoprotein [HDL], and low-density lipoprotein [LDL]) had significantly decreased. Leukocyte counts increased while platelet levels decreased, which may have been caused by the puncture wound from DF and consumption of platelets during the process. As for uremic toxins and inflammation, levels of C-reactive protein, uric acid, and alanine transaminase (ALT) all decreased, which may be related to the removal of serum perfluorooctane sulfonate (PFOS) and improvement of renal function. The total cholesterol/HDL ratio and triglycerides were significantly higher in the diabetes mellitus (DM) group at baseline but did not significantly differ after DF. In conclusion, DF showed potential for improving inflammation and removing serum lipids and PFOS in adults with hyperlipidemia.

13.
Free Radic Biol Med ; 207: 17-28, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37414347

RESUMEN

Acrolein, which is the most reactive aldehyde, is a byproduct of lipid peroxidation in a hypoxic environment. Acrolein has been shown to form acrolein-cysteine bonds, resulting in functional changes in proteins and immune effector cell suppression. Neutrophils are the most abundant immune effector cells in circulation in humans. In the tumor microenvironment, proinflammatory tumor-associated neutrophils (TANs), which are termed N1 neutrophils, exert antitumor effects via the secretion of cytokines, while anti-inflammatory neutrophils (N2 neutrophils) support tumor growth. Glioma is characterized by significant tissue hypoxia, immune cell infiltration, and a highly immunosuppressive microenvironment. In glioma, neutrophils exert antitumor effects early in tumor development but gradually shift to a tumor-supporting role as the tumor develops. However, the mechanism of this anti-to protumoral switch in TANs remains unclear. In this study, we found that the production of acrolein in glioma cells under hypoxic conditions inhibited neutrophil activation and induced an anti-inflammatory phenotype by directly reacting with Cys310 of AKT and inhibiting AKT activity. A higher percentage of cells expressing acrolein adducts in tumor tissue are associated with poorer prognosis in glioblastoma patients. Furthermore, high-grade glioma patients have increased serum acrolein levels and impaired neutrophil functions. These results suggest that acrolein suppresses neutrophil function and contributes to the switch in the neutrophil phenotype in glioma.


Asunto(s)
Acroleína , Glioblastoma , Humanos , Acroleína/farmacología , Acroleína/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glioblastoma/metabolismo , Antiinflamatorios/farmacología , Microambiente Tumoral
14.
Chem Res Toxicol ; 25(12): 2788-95, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23126278

RESUMEN

Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N(2)-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity toward Acr-dG, weaker reactivity toward crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N(2)-propanodeoxyguanosines, and weak or no reactivity toward 1,N(6)-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these antibodies, we developed assays to detect Acr-dG in vivo: first, a simple and quick FACS-based assay for detecting these adducts directly in cells; second, a highly sensitive direct ELISA assay for measuring Acr-dG in cells and tissues using only 1 µg of DNA without DNA digestion and sample enrichment; and third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA, and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion.


Asunto(s)
Acroleína/inmunología , Contaminantes Atmosféricos/inmunología , Anticuerpos Monoclonales/inmunología , Aductos de ADN/inmunología , Animales , Biomarcadores , Células Cultivadas , Cromatografía Liquida , Ensayo de Inmunoadsorción Enzimática , Células HT29 , Humanos , Queratinocitos , Ratones , Ratones Endogámicos BALB C , Boca/citología , Espectrometría de Masas en Tándem
15.
Toxicology ; 479: 153318, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36096319

RESUMEN

Cigarette smoke (CS) significantly contributes to the development of chronic obstructive pulmonary disease (COPD). Heated tobacco products (HTPs), newly developed cigarette products, have been proposed as an alternative for safe cigarette smoking. Although it is plausible to think that replacing traditional cigarettes with HTPs would lower the risks of COPD, this notion requires confirmation by further investigations from sources independent of the tobacco industry. COPD is characterized by an ongoing inflammatory process in the lungs, and the renin-angiotensin system (RAS) has been implicated in the pathogenesis of COPD. Angiotensin-converting enzyme-2 (ACE2) functions as a negative regulator of RAS and has been suggested as a cellular receptor for the causative agent of SARS-CoV-2. It has been shown that smoking is most likely associated with the negative progression and adverse outcomes of SARS-CoV-2. In this study, we found that cigarette smoke extracts from traditional cigarettes (CSE) caused higher cytotoxicity and higher oxidative stress levels than extracts from HTPs (HTPE) in two lung cell lines (Calu-3 and Beas-2B). CSE and HTPE induced RAS activation, MAPK activation, and NF-kB inflammatory pathway activation, resulting in the production of inflammatory cytokines. Furthermore, CSE and a high dose of HTPE reduced tight junction proteins, including claudin 1, E-cadherin, and ZO-1, and disrupted lung epidermal tight junctions at the air-liquid interface (ALI). Finally, CSE and HTPE enhanced the spike protein S1-induced lung injury response. Together, these results suggest that HTPE induced similar lung pathogenesis relevant to COPD and SARS-CoV-2-induced lung injury caused by CSE.


Asunto(s)
COVID-19 , Enfermedades Pulmonares , Lesión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Productos de Tabaco , Enzima Convertidora de Angiotensina 2 , Angiotensinas , Cadherinas , Claudina-1 , Citocinas , Enfermedades Pulmonares/patología , Lesión Pulmonar/inducido químicamente , FN-kappa B , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteínas de Uniones Estrechas , Nicotiana , Productos de Tabaco/toxicidad
16.
Neuromolecular Med ; 24(2): 113-124, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34075570

RESUMEN

Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Co-Represor 1 de Receptor Nuclear , Temozolomida , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteína de Interacción con Receptores Nucleares 1 , Temozolomida/farmacología
17.
Mol Cancer Ther ; 21(6): 1010-1019, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35312783

RESUMEN

Cisplatin-based chemotherapy is the first-line therapy for bladder cancer. However, cisplatin resistance has been associated with the recurrence of bladder cancer. Previous studies have shown that activation of FGFR and HER2 signaling are involved in bladder cancer cell proliferation and drug resistance. Smoking is the most common etiologic risk factor for bladder cancer, and there is emerging evidence that smoking is associated with cisplatin resistance. However, the underlying mechanism remains elusive. Acrolein, a highly reactive aldehyde, is abundant in tobacco smoke, cooking fumes, and automobile exhaust fumes. Our previous studies have shown that acrolein contributes to bladder carcinogenesis through the induction of DNA damage and inhibition of DNA repair. In this study, we found that acrolein induced cisplatin resistance and tumor progression in both non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC) cell lines RT4 and T24, respectively. Activation of HER2 and FGFR3 signaling contributes to acrolein-induced cisplatin resistance in RT4 and T24 cells, respectively. Furthermore, trastuzumab, an anti-HER2 antibody, and PD173074, an FGFR inhibitor, reversed cisplatin resistance in RT4 and T24 cells, respectively. Using a xenograft mouse model with acrolein-induced cisplatin-resistant T24 clones, we found that cisplatin combined with PD173074 significantly reduced tumor size compared with cisplatin alone. These results indicate that differential molecular alterations behind cisplatin resistance in NMIBC and MIBC significantly alter the effectiveness of targeted therapy combined with chemotherapy. This study provides valuable insights into therapeutic strategies for cisplatin-resistant bladder cancer.


Asunto(s)
Antineoplásicos , Fumar Cigarrillos , Neoplasias de la Vejiga Urinaria , Acroleína/farmacología , Acroleína/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Humanos , Ratones , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
18.
Eur J Endocrinol ; 187(4): 579-592, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36001357

RESUMEN

Objective: Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a major chronic complication of diabetes and is the most frequent cause of kidney failure globally. A better understanding of the pathophysiology of DN would lead to the development of novel therapeutic options. Acrolein, an α,ß-unsaturated aldehyde, is a common dietary and environmental pollutant. Design: The role of acrolein and the potential protective action of acrolein scavengers in DN were investigated using high-fat diet/ streptozotocin-induced DN mice and in vitro DN cellular models. Methods: Acrolein-protein conjugates (Acr-PCs) in kidney tissues were examined using immunohistochemistry. Renin-angiotensin system (RAS) and downstream signaling pathways were analyzed using quantitative RT-PCR and Western blot analyses. Acr-PCs in DN patients were analyzed using an established Acr-PC ELISA system. Results: We found an increase in Acr-PCs in kidney cells using in vivo and in vitro DN models. Hyperglycemia activated the RAS and downstream MAPK pathways, increasing inflammatory cytokines and cellular apoptosis in two human kidney cell lines (HK2 and HEK293). A similar effect was induced by acrolein. Furthermore, acrolein scavengers such as N-acetylcysteine, hydralazine, and carnosine could ameliorate diabetes-induced kidney injury. Clinically, we also found increased Acr-PCs in serum samples or kidney tissues of DKD patients compared to normal volunteers, and the Acr-PCs were negatively correlated with kidney function. Conclusions: These results together suggest that acrolein plays a role in the pathogenesis of DN and could be a diagnostic marker and effective therapeutic target to ameliorate the development of DN.


Asunto(s)
Carnosina , Diabetes Mellitus , Nefropatías Diabéticas , Contaminantes Ambientales , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Acroleína/metabolismo , Acroleína/farmacología , Acroleína/uso terapéutico , Animales , Carnosina/metabolismo , Carnosina/farmacología , Carnosina/uso terapéutico , Citocinas , Diabetes Mellitus/patología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/farmacología , Contaminantes Ambientales/uso terapéutico , Células HEK293 , Humanos , Hidralazina/metabolismo , Hidralazina/farmacología , Hidralazina/uso terapéutico , Riñón/metabolismo , Ratones , Estreptozocina/metabolismo , Estreptozocina/farmacología , Estreptozocina/uso terapéutico
19.
Mutat Res Rev Mutat Res ; 789: 108409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35690412

RESUMEN

The allure of tobacco smoking is linked to the instant gratification provided by inhaled nicotine. Unfortunately, tobacco curing and burning generates many mutagens including more than 70 carcinogens. There are two types of mutagens and carcinogens in tobacco smoke (TS): direct DNA damaging carcinogens and procarcinogens, which require metabolic activation to become DNA damaging. Recent studies provide three new insights on TS-induced DNA damage. First, two major types of TS DNA damage are induced by direct carcinogen aldehydes, cyclic-1,N2-hydroxy-deoxyguanosine (γ-OH-PdG) and α-methyl-1, N2-γ-OH-PdG, rather than by the procarcinogens, polycyclic aromatic hydrocarbons and aromatic amines. Second, TS reduces DNA repair proteins and activity levels. TS aldehydes also prevent procarcinogen activation. Based on these findings, we propose that aldehydes are major sources of TS induce DNA damage and a driving force for carcinogenesis. E-cigarettes (E-cigs) are designed to deliver nicotine in an aerosol state, without burning tobacco. E-cigarette aerosols (ECAs) contain nicotine, propylene glycol and vegetable glycerin. ECAs induce O6-methyl-deoxyguanosines (O6-medG) and cyclic γ-hydroxy-1,N2--propano-dG (γ-OH-PdG) in mouse lung, heart and bladder tissues and causes a reduction of DNA repair proteins and activity in lungs. Nicotine and nicotine-derived nitrosamine ketone (NNK) induce the same types of DNA adducts and cause DNA repair inhibition in human cells. After long-term exposure, ECAs induce lung adenocarcinoma and bladder urothelial hyperplasia in mice. We propose that E-cig nicotine can be nitrosated in mouse and human cells becoming nitrosamines, thereby causing two carcinogenic effects, induction of DNA damage and inhibition of DNA repair, and that ECA is carcinogenic in mice. Thus, this article reviews the newest literature on DNA adducts and DNA repair inhibition induced by nicotine and ECAs in mice and cultured human cells, and provides insights into ECA carcinogenicity in mice.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Contaminación por Humo de Tabaco , Aerosoles , Aldehídos , Animales , Carcinogénesis/genética , Carcinógenos/toxicidad , Aductos de ADN/genética , Daño del ADN , Reparación del ADN/genética , Humanos , Ratones , Mutágenos , Nicotina/análisis , Humo , Nicotiana/efectos adversos , Contaminación por Humo de Tabaco/análisis
20.
Sci Rep ; 11(1): 12497, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127699

RESUMEN

Abnormal accumulation of acrolein, an α, ß unsaturated aldehyde has been reported as one pathological cause of the CNS neurodegenerative diseases. In the present study, the neuroprotective effect of selumetinib (a MEK-ERK inhibitor) on acrolein-induced neurotoxicity was investigated in vitro using primary cultured cortical neurons. Incubation of acrolein consistently increased phosphorylated ERK levels. Co-treatment of selumetinib blocked acrolein-induced ERK phosphorylation. Furthermore, selumetinib reduced acrolein-induced increases in heme oxygenase-1 (a redox-regulated chaperone protein) and its transcriptional factor, Nrf-2 as well as FDP-lysine (acrolein-lysine adducts) and α-synuclein aggregation (a pathological biomarker of neurodegeneration). Morphologically, selumetinib attenuated acrolein-induced damage in neurite outgrowth, including neuritic beading and neurite discontinuation. Moreover, selumetinib prevented acrolein-induced programmed cell death via decreasing active caspase 3 (a hallmark of apoptosis) as well as RIP (receptor-interacting protein) 1 and RIP3 (biomarkers for necroptosis). In conclusion, our study showed that selumetinib inhibited acrolein-activated Nrf-2-HO-1 pathway, acrolein-induced protein conjugation and aggregation as well as damage in neurite outgrowth and cell death, suggesting that selumetinib, a MEK-ERK inhibitor, may be a potential neuroprotective agent against acrolein-induced neurotoxicity in the CNS neurodegenerative diseases.


Asunto(s)
Acroleína/toxicidad , Bencimidazoles/administración & dosificación , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Necroptosis/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Proyección Neuronal/efectos de los fármacos , Neuronas/patología , Cultivo Primario de Células , Agregado de Proteínas/efectos de los fármacos , Ratas , Pruebas de Toxicidad Aguda , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA