Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7984): 802-809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853123

RESUMEN

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.


Asunto(s)
Antidepresivos , Depresión , Habénula , Ketamina , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Antidepresivos/administración & dosificación , Antidepresivos/metabolismo , Antidepresivos/farmacocinética , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Habénula/efectos de los fármacos , Habénula/metabolismo , Semivida , Ketamina/administración & dosificación , Ketamina/metabolismo , Ketamina/farmacocinética , Ketamina/farmacología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo , Unión Proteica
2.
Chem Soc Rev ; 53(7): 3561-3578, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415295

RESUMEN

Rechargeable batteries currently power much of our world, but with the increased demand for electric vehicles (EVs) capable of traveling hundreds of miles on a single charge, new paradigms are necessary for overcoming the limits of energy density, particularly in rechargeable batteries. The emergence of reversible anionic redox reactions presents a promising direction toward achieving this goal; however this process has both positive and negative effects on battery performance. While it often leads to higher capacity, anionic redox also causes several unfavorable effects such as voltage fade, voltage hysteresis, sluggish kinetics, and oxygen loss. However, the introduction of cations with topological chemistry tendencies has created an efficient pathway for achieving long-term oxygen redox with improved kinetics. The cations serve as pillars in the crystal structure and meanwhile can interact with oxygen in ways that affect the oxygen redox process through their impact on the electronic structure. This review delves into a detailed examination of the fundamental physical and chemical characteristics of oxygen redox and elucidates the crucial role that cations play in this process at the atomic and electronic scales. Furthermore, we present a systematic summary of polycationic systems, with an emphasis on their electrochemical performance, in order to provide perspectives on the development of next-generation cathode materials.

3.
Plant Biotechnol J ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816932

RESUMEN

Many biotic or abiotic factors such as CPPU (N-(2-chloro-pyridin-4-yl)-N'-phenylurea), a growth regulator of numerous crops, can induce bitterness in cucurbits. In melon, cucurbitacin B is the major compound leading to bitterness. However, the molecular mechanism underlying CuB biosynthesis in response to different conditions remains unclear. Here, we identified a set of genes involved in CPPU-induced CuB biosynthesis in melon fruit and proposed CmBr gene as the major regulator. Using CRISPR/Cas9 gene editing, we confirmed CmBr's role in regulating CuB biosynthesis under CPPU treatment. We further discovered a CPPU-induced MYB-related transcription factor, CmRSM1, which specifically binds to the Myb motif within the CmBr promoter and activates its expression. Moreover, we developed an introgression line by introducing the mutated Cmbr gene into an elite variety and eliminated CPPU-induced bitterness, demonstrating its potential application in breeding. This study offers a valuable tool for breeding high-quality non-bitter melon varieties and provides new insights into the regulation of secondary metabolites under environmental stresses.

4.
Stem Cells ; 41(7): 724-737, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37207995

RESUMEN

Myocardial infarction (MI) is a serious threat to human health. Although monotherapy with pulsed electromagnetic fields (PEMFs) or adipose-derived stem cells (ADSCs) has been reported to have positive effect on the treatment of MI, a satisfactory outcome has not yet been achieved. In recent years, combination therapy has attracted widespread interest. Herein, we explored the synergistic therapeutic effect of combination therapy with PEMFs and ADSCs on MI and found that the combination of PEMFs and ADSCs effectively reduced infarct size, inhibited cardiomyocyte apoptosis and protected the cardiac function in mice with MI. In addition, bioinformatics analysis and RT-qPCR showed that the combination therapy could affect apoptosis by regulating the expression of miR-20a-5p. A dual-luciferase reporter gene assay also confirmed that the miR-20a-5p could target E2F transcription factor 1 (E2F1) and inhibit cardiomyocyte apoptosis by regulating the E2F1/p73 signaling pathway. Therefore, our study systematically demonstrated the effectiveness of combination therapy on the inhibition of cardiomyocyte apoptosis by regulating the miR-20a-5p/E2F1/p73 signaling pathway in mice with MI. Thus, our study underscored the effectiveness of the combination of PEMFs and ADSCs and identified miR-20a-5p as a promising therapeutic target for the treatment of MI in the future.


Asunto(s)
Campos Electromagnéticos , MicroARNs , Miocardio , Animales , Ratones , Apoptosis/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo
5.
Cancer Cell Int ; 24(1): 98, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443969

RESUMEN

Tumor organoids, especially patient-derived organoids (PDOs) exhibit marked similarities in histopathological morphology, genomic alterations, and specific marker expression profiles to those of primary tumour tissues. They are applied in various fields including drug screening, gene editing, and identification of oncogenes. However, CAR-T therapy in the treatment of solid tumours is still at an exploratory stage. Tumour organoids offer unique advantages over other preclinical models commonly used for CAR-T therapy research, which the preservation of the biological characteristics of primary tumour tissue is critical for the study of early-stage solid tumour CAR-T therapies. Although some investigators have used this co-culture model to validate newly targeted CAR-T cells, optimise existing CAR-T cells and explore combination therapy strategies, there is still untapped potential in the co-culture models used today. This review introduces the current status of the application of tumour organoid and CAR-T cell co-culture models in recent years and commented on the limitations of the current co-cultivation model. Meanwhile, we compared the tumour organoid model with two pre-clinical models commonly used in CAR-T therapy research. Eventually, combined with the new progress of organoid technologies, optimization suggestions were proposed for the co-culture model from five perspectives: preserving or reconstructing the tumor microenvironment, systematization, vascularization, standardized culture procedures, and expanding the tumor organoids resource library, aimed at assisting related researchers to better utilize co-culture models.

6.
Macromol Rapid Commun ; : e2400129, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778746

RESUMEN

Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.

7.
Exp Cell Res ; 423(1): 113458, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608837

RESUMEN

Cervical cancer is the second most common malignancy of the female reproductive tract worldwide. Although cervical cancer is caused by human papillomavirus (HPV) infection, its underlying pathogenesis requires further investigation. The present study investigated the role of kinetochore associated protein 1 (KNTC1) in cervical cancer and its association with the key virus oncoprotein, HPV E7. A series of bioinformatic analyses revealed that KNTC1 might be involved in the tumorigenesis of multiple human malignancies, including cervical cancer. Tissue microarray analysis showed that in vivo KNTC1 expression was higher in high-grade squamous intraepithelial lesions (HSILs) than in normal cervix and even higher in cervical cancer. In vitro silencing of KNTC1 increased the proliferation, invasion and migration of cervical cancer cell lines. Although not affecting apoptosis, KNTC1 silencing significantly promoted G1/S phase transition of the cell cycle. High-throughput analysis of mRNA expression showed that KNTC1 could regulate its downstream target protein Smad2 at the transcriptional level. Moreover, as the key oncoprotein of the virus, HPV E7 could inhibit the expression of KNTC1 protein, and decrease Smad2 protein expression with or without the aid of KNTC1. These results indicated that KNTC1 is a novel tumor suppressor that can impede the initiation and progression of cervical carcinoma, providing insight into the molecular mechanism by which HPV induces cervical cancer.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Cuello del Útero/metabolismo , Neoplasias del Cuello Uterino/patología , Infecciones por Papillomavirus/genética , Proteínas E7 de Papillomavirus/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Carcinogénesis/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
9.
Environ Res ; 245: 117901, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38092235

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.


Asunto(s)
Contaminantes Ambientales , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Ecosistema , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Petróleo/toxicidad , Petróleo/análisis , Simulación del Acoplamiento Molecular , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Medición de Riesgo , China , Sedimentos Geológicos/análisis
10.
BMC Psychiatry ; 24(1): 134, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365647

RESUMEN

BACKGROUND: The symptoms of functional constipation (FC) were obviously affected by mental symptoms, which was consistent with somatic symptoms. However, the characteristics of FC patients with somatic symptom remains unexplored. METHODS: Clinical characteristics including somatic symptom (SOM, PHQ-15), depression (PHQ-9), anxiety (GAD-7), quality of life (PAC-QOL), constipation (KESS), demographic variables, anatomical abnormalities and symptoms were investigated. Subsequent analyses encompassed the comparison of clinical parameters between patients with SOM + group (PHQ-15 ≥ 10) and SOM- group (PHQ-15 < 10), subgroup analysis, correlation analysis, and logistic regression. Lastly, we evaluated the somatic symptom severity (SSS) among FC patients subjected to various stressors. RESULTS: Notable disparities were observed between SOM + and SOM- groups in variety of physiological and psychological variables, including gender, stressful events, sleep disorders, reduced interest, GAD-7, PHQ-15, PHQ-9, PAC-QOL, anterior rectocele, KESS, and internal anal sphincter achalasia (IASA) (P < 0.05). Subgroup analysis affirmed consistent findings across mental symptoms. Correlation analyses revealed significant associations between SSS and KESS, anterior rectocele, GAD-7, PHQ-9, and PAC-QOL (P < 0.05). Logistic regression identified PHQ-9 (OR = 7.02, CI: 2.06-27.7, P = 0.003), GAD-7 (OR = 7.18, CI: 2.00-30.7, P = 0.004), and KESS (OR = 16.8, CI: 3.09-113, P = 0.002) as independent predictors of SSS. Elevated SSS scores were significantly associated with couple, parental, and work-related stressors (P < 0.05). CONCLUSION: A marked heterogeneity was observed between SOM + and SOM- patients of FC, with SOM + accompanied by more severe constipation, anxiety and depression symptoms. This finding underscores the importance of considering somatic symptoms in diagnosis and treatment of FC.


Asunto(s)
Síntomas sin Explicación Médica , Calidad de Vida , Humanos , Calidad de Vida/psicología , Estudios Transversales , Rectocele , Encuestas y Cuestionarios , Pacientes Ambulatorios , Ansiedad/diagnóstico , Depresión/diagnóstico , Depresión/psicología , Estreñimiento/diagnóstico
11.
Mycoses ; 67(4): e13721, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570912

RESUMEN

BACKGROUND: Psoriatic patients may experience the coexistence of onychomycosis (OM). However, the evaluation of OM in psoriatics has been hindered by potential clinical differences from OM in non-psoriatics. OBJECTIVE: To assess and compare dermoscopic features between toenail OM in psoriatic and in non-psoriatic patients. PATIENTS AND METHODS: Between September 2020 and September 2023, dermoscopy was conducted on 183 affected toenails by OM in psoriatics and 232 affected toenails by OM in non-psoriatics in two centres. The dermoscopic characteristics were compared using the Chi-squared test. RESULTS: Among toenail OM cases in psoriatic subjects, the most prevalent dermoscopic features included pitting (147/183, 80.33%) and subungual hyperkeratosis (118/183, 64.48%). Conversely, toenail OM in non-psoriatics was characterized by subungual hyperkeratosis (175/232, 75.43%) and nail spikes (139/232, 59.91%). Comparative analysis revealed a significantly higher occurrence of pitting (80.33% vs. 15.96%, p < .001), periungual telangiectasis (22.40% vs. 4.74%, p < .001), oil patches (12.57% vs. 0.43%,p < .001) and transverse grooves (43.72% vs. 28.45%,p < .01) in toenail OM in psoriatics. Furthermore, toenail OM in psoriatics exhibited a significantly lower frequency of yellow structureless area (13.11% vs. 42.67%, p < .001), nail spikes (43.17% vs. 59.91%, p < .01), ruin appearance of sulphur nugget (8.20% vs. 31.03%, p < .001), dotted/blocky haemorrhage (6.01% vs. 20.69%,p < .001) and partial onycholysis (32.79% vs. 46.98%, p < .01). CONCLUSIONS: Dermoscopic features of toenail OM in psoriatic and non-psoriatic patients exhibit notable differences. OM in psoriatics shows a higher frequency of pitting and periungual telangiectasis, while a lower frequency of yellow structureless areas and nail spikes under dermoscopy.


Asunto(s)
Queratosis , Enfermedades de la Uña , Onicomicosis , Telangiectasia , Humanos , Onicomicosis/epidemiología , Onicomicosis/complicaciones , Uñas , Estudios Prospectivos , Queratosis/complicaciones , Telangiectasia/complicaciones
12.
J Eur Acad Dermatol Venereol ; 38(3): 549-556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100231

RESUMEN

BACKGROUND: Data on nail psoriasis (PsO) in China are scarce. OBJECTIVES: To provide nail PsO-related data regarding epidemiologic characteristics, manifestations, fungal infections, arthritic complaints and treatments that may facilitate improved patient management globally. METHODS: From August 2021 to August 2022, patients with nail PsO were enrolled in a prospective multicentre observational study at 25 hospitals in China. We collected and analysed data concerning nail PsO demography, clinical signs, fungal detection, arthritic symptoms and treatment. RESULTS: A total of 817 patients with nail PsO were involved, with a mean body mass index of 24.13 ± 2.93. In addition, 71.41% of the patients were male. The Nail PsO Severity Index score was weakly positively correlated with body surface area. The percentage of nail involvement was 95.29% for fingernails and 57.18% for toenails, with pitting (67.11%) and subungual hyperkeratosis (60.40%) being the most prevalent manifestations, respectively. Toenails showed a significantly higher frequency of nailfold scales, subungual hyperkeratosis and nail plate crumbling and a lower frequency of splinter haemorrhages, pitting and erythema of the lunula. A total of 13.26% of the PsO patients had onychomycosis, and 77.08% were observed in the toenails. Articular symptoms were reported by 12.17% of the patients, with the peripheral type being predominant. Significant associations between articular symptoms and nailfold swelling, subungual hyperkeratosis, nailfold scales, onycholysis and longitudinal ridges were found. Only 2.30% (20 out of 871) of patients with nail PsO received treatment. The most frequently employed therapy for cutaneous PsO with nail involvement was biologic therapy (n = 366). CONCLUSIONS: PsO showed distinct manifestations in the toenails and fingernails. Additionally, toenail PsO combined with onychomycosis requires special attention. Articular symptoms in psoriatic patients are associated with specific nail changes. It is important to research and advocate for more potent treatments for nail PsO.


Asunto(s)
Enfermedades de la Uña , Onicomicosis , Psoriasis , Humanos , Masculino , Femenino , Onicomicosis/diagnóstico , Estudios Prospectivos , Enfermedades de la Uña/diagnóstico , Psoriasis/epidemiología , Psoriasis/terapia , Psoriasis/complicaciones , China/epidemiología
13.
Aesthetic Plast Surg ; 48(3): 519-529, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38148357

RESUMEN

BACKGROUND: The fat retention rate is associated with postoperative inflammation. However, fat survival is still unpredictable even when supplemented with adipose-derived stem cells (ADSCs). Beige adipocytes play a role in regulating pathological inflammation. Thus, we assumed that exosomes may promote macrophage polarization to regulate inflammation when we simulated postgrafted inflammation by lipopolysaccharide (LPS) induction. METHODS: 3T3-L1 preadipocytes were used to differentiate into beige adipocytes, which were stimulated by special culture media, and then, exosomes were isolated from the supernatant. We identified them by morphology, protein and gene expression, or size distribution. Next, we utilized exosomes to stimulate LPS-induced macrophages and evaluated the changes in inflammatory cytokines and macrophage polarization. RESULTS: The induced cells contained multilocular lipid droplets and expressed uncoupling protein 1 (UCP1) and beige adipocyte-specific gene. The exosomes, which were approximately 111.5 nm and cup-like, were positive for surface markers. Additionally, the levels of proinflammatory-related indicators in the LPS+exosomes (LPS+Exos) group were increased after inflammation was activated for 6 h. When inflammation lasted 16 h, exosomes decreased the expression of proinflammatory-related indicators and increased the expression of anti-inflammatory-related indicators compared with the group without exosomes. CONCLUSION: The method described in this article can successfully obtain beige adipocytes and exosomes. The results suggest that beige adipocyte exosomes can promote inflammatory infiltration and polarize more macrophages to the M1 type in the early period of inflammation, accelerating the occurrence of the inflammation endpoint and the progression of macrophage switching from M1 to M2, while inflammation develops continuously. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Adipocitos Beige , Exosomas , Animales , Lipopolisacáridos/farmacología , Macrófagos , Inflamación
14.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38256104

RESUMEN

The progression and metastasis of oral squamous cell carcinoma (OSCC) are highly influenced by cancer stem cells (CSCs) due to their unique self-renewal and plasticity. In this study, data were obtained from a single-cell RNA-sequencing dataset (GSE172577) in the GEO database, and LASSO-Cox regression analysis was performed on 1344 CSCs-related genes to establish a six-gene prognostic signature (6-GPS) consisting of ADM, POLR1D, PTGR1, RPL35A, PGK1, and P4HA1. High-risk scores were significantly associated with unfavorable survival outcomes, and these features were thoroughly validated in the ICGC. The results of nomograms, calibration plots, and ROC curves confirmed the good prognostic accuracy of 6-GPS for OSCC. Additionally, the knockdown of ADM or POLR1D genes may significantly inhibit the proliferation, migration, and invasion of OSCC cells through the JAK/HIF-1 pathway. Furthermore, cell-cycle arrest occurred in the G1 phase by suppressing Cyclin D1. In summary, 6-GPS may play a crucial role in the occurrence and development of OSCC and has the potential to be developed further as a diagnostic, therapeutic, and prognostic tool for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Pronóstico , Neoplasias de la Boca/genética , Células Madre Neoplásicas , ARN Polimerasas Dirigidas por ADN
15.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928503

RESUMEN

Ischemic heart disease (IHD) remains a major global health concern, with ischemia-reperfusion injury exacerbating myocardial damage despite therapeutic interventions. In this study, we investigated the role of tropomyosin 3 (TPM3) in protecting cardiomyocytes against hypoxia-induced injury and oxidative stress. Using the AC16 and H9c2 cell lines, we established a chemical hypoxia model by treating cells with cobalt chloride (CoCl2) to simulate low-oxygen conditions. We found that CoCl2 treatment significantly upregulated the expression of hypoxia-inducible factor 1 alpha (HIF-1α) in cardiomyocytes, indicating the successful induction of hypoxia. Subsequent morphological and biochemical analyses revealed that hypoxia altered cardiomyocyte morphology disrupted the cytoskeleton, and caused cellular damage, accompanied by increased lactate dehydrogenase (LDH) release and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity, indicative of oxidative stress. Lentivirus-mediated TPM3 overexpression attenuated hypoxia-induced morphological changes, cellular damage, and oxidative stress imbalance, while TPM3 knockdown exacerbated these effects. Furthermore, treatment with the HDAC1 inhibitor MGCD0103 partially reversed the exacerbation of hypoxia-induced injury caused by TPM3 knockdown. Protein-protein interaction (PPI) network and functional enrichment analysis suggested that TPM3 may modulate cardiac muscle development, contraction, and adrenergic signaling pathways. In conclusion, our findings highlight the therapeutic potential of TPM3 modulation in mitigating hypoxia-associated cardiac injury, suggesting a promising avenue for the treatment of ischemic heart disease and other hypoxia-related cardiac pathologies.


Asunto(s)
Hipoxia de la Célula , Citoesqueleto , Miocitos Cardíacos , Estrés Oxidativo , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Citoesqueleto/metabolismo , Línea Celular , Ratas , Cobalto/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
16.
J Sci Food Agric ; 104(2): 849-859, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37690095

RESUMEN

BACKGROUND: Nowadays, the prevalence of oxidative stress-related chronic diseases is increasing. The identification of novel antioxidant collagen peptides to counteract oxidative stress for individuals' health has gained significant attention. RESULTS: In this study, collagen peptides with antioxidant activities were separated and identified by ion chromatography, reversed-phase high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. The identified antioxidant collagen peptides were further screened by molecular docking for Keap1-targeted peptide inhibitors and their theoretical interaction mechanisms were investigated. Four novel antioxidant collagen peptides, GPAGPIGPVG, GPAGPpGPIG, ISGPpGPpGPA and IDGRPGPIGPA, with high binding affinity to Keap1 were selected. Molecular docking results demonstrated that the putative antioxidant mechanism of the four antioxidant collagen peptides contributed to their blockage of Keap1-Nrf2 interactions. The results of antioxidant activity of the four antioxidant collagen peptides proved that IDGRPGPIGPA exerted a high scavenging capacity for DPPH and ABTS free radicals, while GPAGPpGPIG improved the resistance of cells to hydrogen peroxide-induced oxidative damage by promoting the activation of intracellular antioxidant enzymes and the production of reduced glutathione in human hepatoma (HepG2) cells. CONCLUSION: The antioxidant collagen peptides (GPAGPIGPVG, GPAGPpGPIG, ISGPpGPpGPA and IDGRPGPIGPA) will be developed as novel functional food for human health in the near future. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Proteína 1 Asociada A ECH Tipo Kelch , Células Hep G2 , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Péptidos/farmacología , Péptidos/química , Colágeno/química
17.
Angew Chem Int Ed Engl ; : e202405459, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711309

RESUMEN

The hydrogen evolution and nitrite reduction reactions are key to producing green hydrogen and ammonia. Antenna-reactor nanoparticles hold promise to improve the performances of these transformations under visible-light excitation, by combining plasmonic and catalytic materials. However, current materials involve compromising either on the catalytic activity or the plasmonic enhancement and also lack control of reaction selectivity. Here, we demonstrate that ultralow loadings and non-uniform surface segregation of the catalytic component optimize catalytic activity and selectivity under visible-light irradiation. Taking Pt-Au as an example we find that fine-tuning the Pt content produces a 6-fold increase in the hydrogen evolution compared to commercial Pt/C as well as a 6.5-fold increase in the nitrite reduction and a 2.5-fold increase in the selectivity for producing ammonia under visible light excitation relative to dark conditions. Density functional theory suggests that the catalytic reactions are accelerated by the intimate contact between nanoscale Pt-rich and Au-rich regions at the surface, which facilitates the formation of electron-rich hot-carrier puddles associated with the Pt-based active sites. The results provide exciting opportunities to design new materials with improved photocatalytic performance for sustainable energy applications.

18.
Immunology ; 170(3): 334-343, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37475539

RESUMEN

The dysfunction of regulatory T cell (Treg) is associated with the pathogenesis of many immune diseases. The regiments used to re-establish Treg's function are currently unsatisfactory and need to be improved. The purpose of this study is to elucidate the synergistic effects of cortisol and endoplasmic reticulum (ER) stress on impairing regulatory T cell functions. In this study, blood samples were collected from patients with food allergy (FA). Immune cells were purified from blood specimens by flow cytometry. A mouse model of FA was established with ovalbumin as a specific antigen. We observed that serum cortisol levels of FA patients were negatively correlated with peripheral Treg counts. Overwhelmed ER stress status was detected in Tregs of FA patients. The antigen-specific immune response induced ER stress in Tregs, which was exacerbated by concurrent cortisol exposure. ER stress mediated the effects of cortisol on impairing the immune suppressive ability of Tregs. The expression of Rnf20 was observed in Tregs upon exposure to cortisol. Rnf20 reduced the expression of Foxp3 and transforming growth factor (TGF)-ß in Tregs. Rnf20 inhibition re-established the immunosuppressive functions of Tregs obtained in patients with FA. The experimental FA in mice was attenuated by inhibition of Rnf20 in Tregs. In summary, specific immune response in synergy with cortisol to induce the expression of Rnf20 in Tregs. Rnf20 reduces the levels of Foxp3 and TGF-ß to impair the immune suppressive function. Inhibition of Rnf20 can restore the immune suppressive ability of Tregs obtained from FA patients.


Asunto(s)
Hidrocortisona , Linfocitos T Reguladores , Humanos , Ratones , Animales , Hidrocortisona/metabolismo , Hidrocortisona/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Estrés del Retículo Endoplásmico , Factores de Transcripción Forkhead/metabolismo
19.
Proc Biol Sci ; 290(1997): 20230019, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37072045

RESUMEN

The iconic sabretooth Homotherium is thought to have hunted cooperatively, but the origin of this behaviour and correlated morphological adaptations are largely unexplored. Here we report the most primitive species of Amphimachairodus (Amphimachairodus hezhengensis sp. nov.), a member of Machairodontini basal to Homotherium, from the Linxia Basin, northeastern border of the Tibetan Plateau (9.8-8.7 Ma). The long snout, laterally oriented and posteriorly located orbit of Amphimachairodus suggest a better ability to observe the surrounding environment, rather than targeting single prey, pointing to an adaptation to the open environment or social behaviour. A pathological forepaw of Amphimachairodus provides direct evidence of partner care. Our analyses of trait evolutionary rates support that traits correlated with killing behaviour and open environment adaptation evolved prior to other traits, suggesting that changes in hunting behaviour may be the major evolutionary driver in the early evolution of the lineage. A. hezhengensis represents one of the most important transitions in the evolution of Machairodontini, leading to adaptation in open environments and contributing to their further dispersal and radiation worldwide. This rapid morphological change is likely to be correlated with increasingly arid environments caused by the rise of the Tibetan Plateau, and competition from abundant large carnivores in this area.


Asunto(s)
Carnívoros , Animales , Tibet , Aclimatación , Adaptación Fisiológica , Conducta Social
20.
BMC Cancer ; 23(1): 942, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798663

RESUMEN

BACKGROUND: Tumor necrosis factor receptor-associated factor 3 (TRAF3) has specific regulatory effects on a wide range of diseases, including tumors. However, the effect and mechanism of TRAF3 on lung adenocarcinoma (LUAD) are still unknown. The aim of the present study was to make clear the role and potential mechanism of TRAF3 in LUAD. METHODS: TIMER2.0 database and western blot were applied to detect the expression of TRAF3 in lung adenocarcinoma tissue. Kaplan-Meier Plotter database was utilized to explore the effect of TRAF3 on the clinical prognosis of lung adenocarcinoma patients. Specific siRNA was used to inhibit the expression of TRAF3 in LUAD cells (A549 and H1299). CCK-8 and EdU assays were performed for assessing LUAD cells proliferation. Wound healing assay and transwell assay were performed for determining cells migration. CCK-8 assay was used to assess the response of the LUAD cells to paclitaxel. TIMER2.0 bioinformatics and western blot were employed to detect the effects of TRAF3 on pyroptosis in LUAD. RESULTS: TRAF3 was highly expressed in lung adenocarcinoma tissues and cell lines. Patients with TRAF3 hyperexpression had a good prognosis compared to those with lower expression. TRAF3 inhibition notably induced proliferation and migration of LUAD cells. Inhibition of TRAF3 also weakened the sensitivity of LUAD cells to paclitaxel. Moreover, bioinformatics results showed that TRAF3 was positively correlated with the expression of pyroptosis-related genes in LUAD. Western blot assays showed that TRAF3 inhibition visibly decreased the expression of apoptosis-associated speck-like protein (ASC), cleaved caspase-1 and matured- IL-1ß. CONCLUSIONS: Inhibition of TRAF3 promotes the proliferation and migration of LUAD cells, and reduces the sensitivity of LUAD cells to paclitaxel. The effects of TRAF3 on LUAD cells were mediated in part by caspase-1-dependent pyroptosis.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Piroptosis , Sincalida , Línea Celular Tumoral , Adenocarcinoma del Pulmón/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Movimiento Celular/genética , Proliferación Celular/genética , Paclitaxel , Caspasas/metabolismo , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA