Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 19(7): e1010847, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506056

RESUMEN

Intron retention plays an important role in cancer progression and chemotherapy resistance and seems to be essential for the maintenance of genome stability in cancer. Here, our goal was to analyze the role of receptor expressed in lymphoid tissue (Relt)-like 2 (RELL2) intron 4 retention in promoting pancreatic ductal adenocarcinoma (PDAC) progression. Our results showed that intron retention (IR) occurs at the fourth intron of RELL2 transcript in gemcitabine resistant PDAC cells, however, the regulatory mechanism and the clinical implications of IR of RELL2 are unclear. Firstly, we found that RELL2 plays an anti-oncogenic role in PDAC by performing in vitro functional assays including cell proliferation, GEM cytotoxicity assay and apoptosis. Subsequently, we identified the upstream gene of RELL2, DEAH-Box Helicase 38 (DHX38), and demonstrated the direct interaction between DHX38 and RELL2 by RIP-qPCR. We also found that altered expression of DHX38 resulted in corresponding changes in intron 4 retention of RELL2. Importantly, we unveiled that overexpression of DHX38 on the basis of knocking down of the fourth intron of RELL2 resulted in an impaired intron 4 intention. Overall, our study identified a new IR site in PDAC, which could be a possible target for PDAC therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferación Celular/genética , Factores de Empalme de ARN , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas Portadoras , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas
2.
EMBO J ; 40(16): e107403, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34223653

RESUMEN

Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.


Asunto(s)
Autoantígenos/metabolismo , Colágeno/antagonistas & inhibidores , Cirrosis Hepática/prevención & control , Fibrosis Pulmonar/prevención & control , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Bleomicina , Tetracloruro de Carbono , Células Cultivadas , Colágeno/biosíntesis , Colágeno/genética , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Isoproterenol , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/patología , Unión Proteica , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Antígeno SS-B
3.
Acta Pharmacol Sin ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992119

RESUMEN

The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.

4.
J Transl Med ; 21(1): 201, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932397

RESUMEN

BACKGROUND: The prognosis of pancreatic cancer patients remains relatively poor. Although some patients would receive surgical resection, distant metastasis frequently occurs within one year. Epithelial-mesenchymal transition (EMT), as a pathological mechanism in cancer progression, contributed to the local and distant metastasis of pancreatic cancer. METHODS: Tissue microarray analysis and immunohistochemistry assays were used to compare the expression of EGR1 in pancreatic cancer and normal pancreatic tissues. Transwell chambers were used to evaluated the migration and invasion ability of cancer cells. Immunofluorescence was utilized to assess the expression of E-cadherin. ChIP-qPCR assay was applied to verify the combination of EGR1 and SNAI2 promoter sequences. Dual-luciferase reporter assay was used to detect the gene promoter activation. Co-IP assay was conducted to verify the interaction of EGR1 and p300/CBP. RESULTS: EGR1 was highly expressed in pancreatic cancer rather than normal pancreatic tissues and correlated with poor prognosis and cancer metastasis. EGR1 was proved to enhance the migration and invasion ability of pancreatic cells. Besides, EGR1 was positively correlated with EMT process in pancreatic cancer, via a SNAI2-dependent pathway. P300/CBP was found to play an auxiliary role in the transcriptional activation of the SNAI2 gene by EGR1. Finally, in vivo experiments also proved that EGR1 promoted liver metastasis of pancreatic cancer. CONCLUSION: Our findings implied the EMT-promoting effect of EGR1 in pancreatic cancer and revealed the intrinsic mechanism. Blocking the expression of EGR1 may be a new anticancer strategy for pancreatic cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Pancreáticas , Humanos , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/farmacología , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Neoplasias Pancreáticas
5.
BMC Surg ; 23(1): 222, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559107

RESUMEN

BACKGROUND: Delayed gastric emptying (DGE) remains one of the major complications after pancreaticoduodenectomy (PD), with discrepant reports of its contributing factors. This study aimed to develop a nomogram to identify potential predictors and predict the probability of DGE after PD. METHODS: This retrospective study enrolled 422 consecutive patients who underwent PD from January 2019 to December 2021 at our institution. The LASSO algorithm and multivariate logistic regression were performed to identify independent risk and protective factors associated with clinically relevant delayed gastric emptying (CR-DGE). A nomogram was established based on the selected variables. Then, the calibration curve, ROC curve, decision curve analysis (DCA), and clinical impact curve (CIC) were applied to evaluate the predictive performance of our model. Finally, an independent cohort of 45 consecutive patients from January 2022 to March 2022 was enrolled to further validate the nomogram. RESULTS: Among 422 patients, CR-DGE occurred in 94 patients (22.2%). A previous history of chronic gastropathy, intraoperative plasma transfusion ≥ 400 ml, end-to-side gastrointestinal anastomosis, intra-abdominal infection, incisional infection, and clinically relevant postoperative pancreatic fistula (CR-POPF) were identified as risk predictors. Minimally invasive pancreaticoduodenectomy (MIPD) was demonstrated to be a protective predictor of CR-DGE. The areas under the curve (AUCs) were 0.768 (95% CI, 0.706-0.830) in the development cohort, 0.766 (95% CI, 0.671-0.861) in the validation cohort, and 0.787 (95% CI, 0.633-0.940) in the independent cohort. Then, we built a simplified scale based on our nomogram for risk stratification. CONCLUSIONS: Our study identified seven predictors and constructed a validated nomogram that effectively predicted CR-DGE for patients who underwent PD.


Asunto(s)
Gastroparesia , Pancreaticoduodenectomía , Humanos , Pancreaticoduodenectomía/efectos adversos , Gastroparesia/epidemiología , Gastroparesia/etiología , Estudios Retrospectivos , Transfusión de Componentes Sanguíneos/efectos adversos , Factores de Riesgo , Plasma , Anastomosis Quirúrgica/efectos adversos , Medición de Riesgo , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Vaciamiento Gástrico
6.
Cancer Cell Int ; 22(1): 340, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344976

RESUMEN

BACKGROUND: Pancreatic cancer is one of the most lethal disease with highly fatal and aggressive properties. Lymph node ratio (LNR), the ratio of the number of metastatic lymph nodes to the total number of examined lymph nodes, is an important index to assess lymphatic metastasis and predict prognosis, but the molecular mechanism underlying high LNR was unclear. METHODS: Gene expression and clinical information data of pancreatic cancer were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Patients in TCGA were averagely divided into low and high LNR groups. Then, Weighted Gene Co-expression Network Analysis (WGCNA) was utilized to build co-expression network to explore LNR-related modules and hub genes. GO and KEGG analysis was performed to find key pathways related to lymph node metastasis. Next, GSE101448 and the overall survival data in TCGA was employed to further select significant genes from hub genes. Considering the key role of CHRNB2 in LNR and survival, gene set enrichment analysis (GSEA) was applied to find pathways related to CHRNB2 expression in pancreatic cancer. The contribution of CHRNB2 to migrative and invasive ability of pancreatic cancer cells was confirmed by Transwell assays. We finally explored the role of CHRNB2 in EMT and ß-catenin pathway via Western Blot. RESULTS: High LNR was significantly related to high T stages and poor prognosis. In WGCNA, 14 hub genes (COL5A1, FN1, THBS2, etc.) were positively related to high LNR, 104 hub genes (FFAR1, SCG5, TMEM63C, etc.) were negatively related to high LNR. After taking the intersection with GSE101448, 13 genes (CDK5R2, SYT7, CACNA2D2, etc.) which might prevent lymph node metastasis were further selected. Among them, CHRNB2 showed the strongest relationship with long survival. Moreover, CHRNB2 also negatively related to the T stages and LNR. Next, knockdown of CHRNB2 expression could acetylcholine (ACh)-independently increase the migration and invasion of pancreatic cancer cells, while CHRNB2 overexpression ACh-independently decrease the migration and invasion of pancreatic cancer cells. For exploring the underlying mechanism, CHRNB2 downregulated ß-catenin pathway might through controlling its upstream regulators such as SOX6, SRY, SOX17, and TCF7L2. CONCLUSIONS: CHRNB2 negatively relates to lymph node metastasis in pancreatic cancer patients. CHRNB2 could inhibit ß-catenin pathway, EMT, migration and invasion of pancreatic cancer cells via ACh-independent mechanism.

7.
Cancer Cell Int ; 22(1): 374, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457017

RESUMEN

BACKGROUNDS: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types and chemotherapeutic drug resistance is a stumbling block in improving the overall survival of PDAC patients. The nature of specific drug resistant subpopulation within pancreatic ductal adenocarcinoma is believed to be partly attributed to epithelial-mesenchymal transition (EMT) and cell stemness. Various PDAC cell lines show various degrees of resistance to chemotherapeutic agents including gemcitabine (GEM) and 5-fluorouracil (5-FU). In-depth understanding of drug resistance mechanisms and profile heterogeneities could lead to the development of novel and precise therapeutic strategies for addressing the chemo-resistant dilemma in PDAC patients. METHODS: Cytotoxicity assays were performed by CCK8 in ten common PDAC cell lines including AsPC-1, BxPC-3, CAPAN-1, CFPAC, HPAFII, MIA PaCa-2, PANC-1, Patu-8988, SW1990 and T3M4. RNA-seq data of the ten cell lines were downloaded from Cancer Cell Line Encyclopedia (CCLE) database and subsequently analyzed for differentially expressed genes (DEGs). Based on first-line chemotherapy regimens of PDAC, DEGs between resistant and sensitive cell lines were validated by qRT-PCR. Enriched pathways of differentially expressed genes between the resistant and sensitive cell lines were acquired by Metascape database. RESULTS: We found that the top two toxic drugs for PDAC cell lines were paclitaxel (PTX) and GEM. Among the ten PDAC cell lines, SW1990 was the most resistant PDAC cell line with the highest IC50 levels for three drugs, while MIA PaCa-2 and BxPC-3 were the most sensitive PDAC cell lines. Differential expression analysis revealed the highest number of DEGs associated with cisplatin (CIS) sensitivity up to 642 genes, of which 181 genes were upregulated and 461 genes were downregulated in CIS-resistant cell lines. The least number of DEGs are associated with GEM sensitivity, of which 37 genes were highly expressed in GEM-resistant PDAC cell lines and 25 genes were lowly expressed. Enrichment analysis of the DEGs revealed that pathways associated with drug resistance were mainly extracellular matrix and cell-cell junction related pathways. CONCLUSIONS: PDAC cell lines showed diverse sensitivities to commonly used chemotherapeutic agents, which was caused by differential gene expression between the resistant and sensitive cell lines. The heterogeneity and its associated genes were enriched in extracellular matrix and cell-cell junction related pathways. Our study first portrayed the sensitivity profile to chemotherapeutic drugs of PDAC, which would benefit the chemoresistance mechanism study by reemphasizing the vital role of extracellular matrix and cell-cell junction related pathways and helping the selection of suitable PDAC cell lines.

8.
Cell Mol Life Sci ; 78(17-18): 6201-6213, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34342664

RESUMEN

Pancreatic cancer (PC) is a kind of common digestive system cancer with the worst prognosis for its insidious symptoms and high invasiveness. Circular RNAs (circRNAs) are endogenous non-coding RNAs with covalently closed circular structure, which are more stable and conservative than linear RNAs and process major functions of microRNA (miRNA) sponge, RNA binding protein (RBP) sponge and polypeptide translation template. Incremental researches have proved that circRNAs express aberrantly and play a vital role in various types of cancer. Hence, we reviewed the biogenesis, degradation, characteristics, and biological functions of circRNAs and summarized the roles circRNAs played in the proliferation, invasion, metastasis, chemoresistance and exosome-mediated intercellular communication of PC. We then summed up a workflow regarding circRNA research in cancer and relative specific databases and experimental methods. In the future, more efforts ought to be put into circRNAs research in PC, including basic research of discovering and testifying circRNAs centered ceRNA networks, and clinical research of exploiting exosomal or circulating circRNAs as a diagnostic biomarker, chemotherapy sensitivity predictor and prognostic predictor.


Asunto(s)
Neoplasias Pancreáticas/patología , ARN Circular/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Resistencia a Antineoplásicos/genética , Exosomas/metabolismo , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/genética , ARN Circular/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
BMC Med Imaging ; 22(1): 71, 2022 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-35430798

RESUMEN

BACKGROUND: To assess the stiffness of benign breast masses in ultrasound images with posterior acoustic shadowing (PAS) and malignant lesions, and explore the significance of differential diagnosis using ultrasound real time shear wave elastography. MATERIAL AND METHODS: All 117 mammary masses (98 patients) with PAS were assessed by using routine ultrasound examination, and elastic modulus values were obtained with the real time shear wave elastography mode. All breast lesions were confirmed by surgery or biopsy. The significance of differences in ultrasound elastography values between breast benign and malignant masses with posterior acoustic shadowing was assessed, and the ROC curves of elasticity modulus values were analyzed. RESULTS: Among the 117 masses, 72 were benign and 45 were malignant. The two types of breast masses showed significant differences in size, margin, internal echo, calcification, and blood flow characteristics (P < 0.05), although the difference in orientation was not significant (P > 0.05). Emean, Emax and Esd obtained with real time shear wave elastography showed statistically significant differences between benign masses with posterior acoustic shadowing and breast cancer (P < 0.05), while Emin showed no significant difference between them (P = 0.633). Ultrasound real time shear wave elastography showed higher sensitivity and specificity than conventional ultrasound. CONCLUSIONS: Benign and malignant breast masses with PAS show different ultrasound manifestations. Real time shear wave elastography can facilitate the differential diagnosis and treatment planning for these breast masses.


Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Acústica , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/patología , Diagnóstico Diferencial , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ultrasonografía Mamaria/métodos
10.
Am J Respir Crit Care Med ; 201(10): 1263-1276, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31917615

RESUMEN

Rationale: Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).Objectives: To study the role of DP1 in the progression of PAH and its underlying mechanism.Methods: DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main Results: DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.Conclusions: DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.


Asunto(s)
Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Hipertensión Arterial Pulmonar/genética , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Remodelación Vascular/genética , Animales , Antihipertensivos/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Epoprostenol/análogos & derivados , Epoprostenol/farmacología , Humanos , Hipertrofia , Inmunosupresores/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar , ARN Mensajero/metabolismo , Ratas , Sirolimus/farmacología
11.
FASEB J ; 33(9): 10207-10217, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31216422

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental pollutant that causes cardiovascular toxicity. The phenotypic transformation of vascular smooth muscle cells (VSMCs) from the contractile to the synthetic phenotype is a hallmark of vascular response to injury. However, the precise role and molecular mechanism of TCDD in vascular remodeling remains unknown. In the present study, we found that TCDD treatment promoted VSMC phenotypic transition from contractile to synthetic phenotype and exaggerated vascular neointimal hyperplasia after wire injury in mice. TCDD treatment enhanced VSMC entry into cell cycle from G0/G1 phase to S and G2/M phase. The expression of cyclin D1, cyclin-dependent kinase 4 (CDK4), and its phosphorylation were coordinately increased in response to TCDD treatment. Knocking down of aryl hydrocarbon receptor (AHR) inhibited VSMC phenotypic transition induced by TCDD and promoted S/G2 phase cell cycle arrest. TCDD treatment markedly increased oncogenic c-Jun gene expression in VSMCs. ChIP assay revealed the direct binding of AHR on the promoter of c-Jun to up-regulate the mRNA expression of c-Jun. Silencing of c-Jun gene enhanced the expression of p53 and p21, whereas attenuated the expression of CDK4 and cyclin D1 leading to the decrease in the TCDD-stimulated VSMC proliferation and synthetic phenotype transition in vitro. In vivo study showed that genetic ablation of c-Jun in VSMCs restricted injury-induced neointimal hyperplasia in TCDD-treated mice. Thus, TCDD exposure exaggerated injury-induced vascular remodeling by the activation of AHR and up-regulation of the expression of its target gene c-Jun, indicating that inhibition of AHR may be a promising prevention strategy for TCDD-associated cardiovascular diseases.-Guo, S., Zhang, R., Liu, Q., Wan, Q., Wang, Y., Yu, Y., Liu, G., Shen, Y., Yu, Y., Zhang, J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes injury-induced vascular neointima formation in mice.


Asunto(s)
Endotelio Vascular/lesiones , Contaminantes Ambientales/toxicidad , Neointima/inducido químicamente , Dibenzodioxinas Policloradas/toxicidad , Animales , Aorta/citología , Ciclo Celular/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Arteria Femoral/efectos de los fármacos , Arteria Femoral/lesiones , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes Reporteros , Genes jun , Humanos , Hiperplasia , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Neointima/etiología , Fenotipo , Proteínas Proto-Oncogénicas c-jun/biosíntesis , Proteínas Proto-Oncogénicas c-jun/genética , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/fisiología , Remodelación Vascular/efectos de los fármacos
12.
Nutr J ; 19(1): 7, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964410

RESUMEN

BACKGROUND: Pregnant women, neonates, and school-age children are vulnerable to iodine deficiency. The iodine contents in the environment (drinking water and household salt for cooking) vary by geographical location in China. The aim of this study was to assess the iodine status in vulnerable groups from different geographical zones and analyze the iodine content in household salt and drinking water from these zones. METHODS: In coastal and inland regions of Zhejiang Province, China, samples of spot urine, drinking water, and household salt for cooking from both pregnant women and school-age children were determined for iodine concentration between 2017 and 2018. Thyroid-stimulating hormone (TSH) levels from neonates born between 2014 and 2015 were acquired from the Newborns Screening Information System. The iodine status of the vulnerable populations was assessed according to the criteria recommended by the World Health Organization. RESULTS: The median UIC of pregnant women was significantly lower in the coastal region (113.0 µg/L) than the inland region (134.9 µg/L; p < 0.001). The median UICs of pregnant women from these two regions were below the lower optimal iodine cutoff level of 150 µg/L. The percentage of neonates with elevated TSH (> 5 mIU/L) was significantly higher in the coastal region (15.8%) than the inland region (10.5%; p < 0.001). The percentage of neonates with elevated TSH from each region decreased within the range of mild iodine deficiency of 3-19.9%. The median UIC of the coastal school-age children was 156.0 µg/L, and the median UIC of inland children was 181.5 µg/L. Both medians fell within the recommended optimal iodine range of 100-299 µg/L. The iodine concentrations in drinking water varied from 1.0 µg/L in the inland region to 2.0 µg/L in the coastal region. The proportion of households that consumed iodized salt was lower in the coastal region (nearly 65%) than the inland region (approximately 95%). CONCLUSIONS: In these two regions with low iodine contents in drinking water, both pregnant women and neonates were iodine-deficient, although school-age children were iodine-sufficient. Urgent efforts are needed to improve the iodine status of pregnant women and neonates.


Asunto(s)
Geografía/estadística & datos numéricos , Yodo/sangre , Yodo/deficiencia , Desnutrición/epidemiología , Tirotropina/sangre , Adulto , Factores de Edad , Niño , China/epidemiología , Femenino , Humanos , Recién Nacido , Yodo/orina , Masculino , Desnutrición/sangre , Desnutrición/orina , Embarazo , Población Urbana
13.
Hepatology ; 65(3): 999-1014, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28039934

RESUMEN

Prostaglandin E2 (PGE2 ) is an important lipid mediator of inflammation. However, whether and how PGE2 regulates hepatic cholesterol metabolism remains unknown. We found that expression of the PGE2 receptor, E prostanoid receptor 3 (EP3) expression is remarkably increased in hepatocytes in response to hyperlipidemic stress. Hepatocyte-specific deletion of EP3 receptor (EP3hep-/- ) results in hypercholesterolemia and augments diet-induced atherosclerosis in low-density lipoprotein receptor knockout (Ldlr-/- ) mice. Cholesterol 7α-hydroxylase (CYP7A1) is down-regulated in livers of EP3hep-/- Ldlr-/- mice, leading to suppressed hepatic bile acid (BA) biosynthesis. Mechanistically, hepatic-EP3 deficiency suppresses CYP7A1 expression by elevating protein kinase A (PKA)-dependent Ser143 phosphorylation of hepatocyte nuclear receptor 4α (HNF4α). Disruption of the PKA-HNF4α interaction and BA sequestration rescue impaired BA excretion and ameliorated atherosclerosis in EP3hep-/- Ldlr-/- mice. CONCLUSION: Our results demonstrated an unexpected role of proinflammatory mediator PGE2 in improving hepatic cholesterol metabolism through activation of the EP3-mediated PKA/HNF4α/CYP7A1 pathway, indicating that inhibition of this pathway may be a novel therapeutic strategy for dyslipidemia and atherosclerosis. (Hepatology 2017;65:999-1014).


Asunto(s)
Aterosclerosis/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Dinoprostona/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Animales , Aterosclerosis/patología , Células Cultivadas , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dieta Occidental , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Hepatocitos/metabolismo , Metabolismo de los Lípidos/fisiología , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/genética , Distribución Aleatoria , Sensibilidad y Especificidad
14.
Circ Res ; 118(8): 1194-207, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26957525

RESUMEN

RATIONALE: Autologous adipose-derived stromal cells (ASCs) offer great promise as angiogenic cell therapy for ischemic diseases. Because of their limited self-renewal capacity and pluripotentiality, the therapeutic efficacy of ASCs is still relatively low. Thromboxane has been shown to play an important role in the maintenance of vascular homeostasis. However, little is known about the effects of thromboxane on ASC-mediated angiogenesis. OBJECTIVE: To explore the role of the thromboxane-prostanoid receptor (TP) in mediating the angiogenic capacity of ASCs in vivo. METHODS AND RESULTS: ASCs were prepared from mouse epididymal fat pads and induced to differentiate into endothelial cells (ECs) by vascular endothelial growth factor. Cyclooxygenase-2 expression, thromboxane production, and TP expression were upregulated in ASCs on vascular endothelial growth factor treatment. Genetic deletion or pharmacological inhibition of TP in mouse or human ASCs accelerated EC differentiation and increased tube formation in vitro, enhanced angiogenesis in in vivo Matrigel plugs and ischemic mouse hindlimbs. TP deficiency resulted in a significant cellular accumulation of ß-catenin by suppression of calpain-mediated degradation in ASCs. Knockdown of ß-catenin completely abrogated the enhanced EC differentiation of TP-deficient ASCs, whereas inhibition of calpain reversed the suppressed angiogenic capacity of TP re-expressed ASCs. Moreover, TP was coupled with Gαq to induce calpain-mediated suppression of ß-catenin signaling through calcium influx in ASCs. CONCLUSION: Thromboxane restrained EC differentiation of ASCs through TP-mediated repression of the calpain-dependent ß-catenin signaling pathway. These results indicate that TP inhibition could be a promising strategy for therapy utilizing ASCs in the treatment of ischemic diseases.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Diferenciación Celular/fisiología , Células Endoteliales/metabolismo , Receptores de Tromboxano A2 y Prostaglandina H2/biosíntesis , Tromboxanos/biosíntesis , Adipocitos/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , beta Catenina/biosíntesis
15.
Mol Cell Probes ; 41: 32-38, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30170103

RESUMEN

Streptococcus pyogenes (Group A Streptococcus, GAS) and Streptococcus agalactiae (Group B Streptococcus, GBS) are common pathogens that threaten public health. In this study, a double recombinase polymerase (RPA) amplification assay was developed to rapidly detect these pathogens. Specificity tests revealed that the GAS and GBS strains were positive for speB and SIP genes, respectively. In clinical samples, the double assay performed similarly to the traditional biochemical method. The limits of detection were both ≤100 copies per reaction. In tests for simulant-contaminated samples, bacterial-culture media containing 103 CFU/mL original concentrations of S. pyogenes and S. agalactiae were positive in RPA assays after incubating for 4 h. Results can be obtained at 37 °C in 20 min. To determine whether propidium monoazide (PMA) can eliminate the influence of DNA extracted from dead cells, a bacterial suspension was treated with PMA before DNA extraction. Findings of RPA assay showed that DNA extracted from dead cells had no fluorescence signal. Therefore, the PMA-RPA assay is a promising technology for field tests and rapid point-of-care diagnosis.


Asunto(s)
Azidas/química , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas/metabolismo , Streptococcus agalactiae/aislamiento & purificación , Streptococcus pyogenes/aislamiento & purificación , Huevos/microbiología , Genes Bacterianos , Humanos , Carne/microbiología , Propidio/química , Sensibilidad y Especificidad , Streptococcus agalactiae/genética , Streptococcus pyogenes/genética
16.
BMC Pregnancy Childbirth ; 18(1): 313, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30075759

RESUMEN

BACKGROUND: Zhejiang has achieved the goal of elimination of iodine deficiency disorders (IDD) via the implementation of universal salt iodization (USI) since 2011. Iodine content in household table salt decreased from the national standard (35 ppm) to the Zhejiang provincial standard (25 ppm) in 2012. It is crucial to periodically monitor iodine status in pregnant women because IDD in pregnancy have adverse effects on fetal neurodevelopment. METHODS: We carried out a cross-sectional study between April 2014 and September 2015 in the eight sentinel surveillance counties across Zhejiang Province, where IDD was previously known to be endemic. A total of 1304 pregnant women participated and provided a random spot urine sample and a household table salt sample. Urinary iodine concentration (UIC) was determined using arsenic-cerium catalytic spectrophotometry. Iodine content in salt was measured using a titration method with sodium thiosulphate. RESULTS: Overall, the median UIC of the total study population of pregnant women was 129.3 µg/L, with a higher UIC in inland (152.54 µg/L) and a lower UIC in coastal counties (107.54 µg/L). Household coverage of iodized salt was 94.6% and the rate of adequately iodized salt was 89.9%. CONCLUSIONS: Our results indicate deficient iodine status in the pregnant population of Zhejiang, according to the lower cut-off value of optimal iodine nutrition (150 µg/L) recommended by the World Health Organization. In addition to sustaining USI, more efforts are urgently needed to improve iodine intake in women during pregnancy, especially those residing in the coastal counties.


Asunto(s)
Enfermedades Carenciales , Desarrollo Fetal/efectos de los fármacos , Yodo/deficiencia , Trastornos del Neurodesarrollo , Complicaciones del Embarazo , Cloruro de Sodio Dietético/normas , Adulto , China/epidemiología , Estudios Transversales , Enfermedades Carenciales/diagnóstico , Enfermedades Carenciales/epidemiología , Enfermedades Carenciales/etiología , Enfermedades Carenciales/prevención & control , Femenino , Humanos , Recién Nacido , Yodo/normas , Yodo/orina , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/prevención & control , Política Nutricional , Necesidades Nutricionales , Embarazo , Complicaciones del Embarazo/diagnóstico , Complicaciones del Embarazo/epidemiología , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/prevención & control , Cloruro de Sodio Dietético/análisis , Urinálisis/métodos
17.
Arterioscler Thromb Vasc Biol ; 35(7): 1687-95, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25977569

RESUMEN

OBJECTIVE: To investigate whether rs12731181 (A→G) interrupted miR-590-3p-mediated suppression of the prostaglandin F2α receptor (FP) and whether it is associated with essential hypertension in the Chinese population. APPROACH AND RESULTS: We found that miR-590-3p regulates human FP gene expression by binding to its 3'-untranslated region. rs12731181 (A→G) altered the binding affinity between miR-590-3p and its FP 3'-untranslated region target, thus reducing the suppression of FP expression, which, in turn, enhanced FP receptor-mediated contractility of vascular smooth muscle cells. Overexpression of FP augmented vascular tone and elevated blood pressure in mice. An association study was performed to analyze the relationship between the FP gene and essential hypertension in the Han Chinese population. The results indicated that the rs12731181 G allele was associated with susceptibility to essential hypertension. Carriers of the AG genotype exhibited significantly higher blood pressure than those of the AA genotype. FP gene expression was significantly higher in human peripheral leukocytes from individuals with the AG genotype than that in leukocytes from individuals with the AA genotype. CONCLUSIONS: rs12731181 in the seed region of the miR-590-3p target site is associated with increased risk of essential hypertension and represents a new paradigm for FP involvement in blood pressure regulation.


Asunto(s)
Pueblo Asiatico/genética , Hipertensión/genética , MicroARNs/genética , Receptores de Prostaglandina/genética , Regiones no Traducidas 3' , Animales , Sitios de Unión , China/etnología , Hipertensión Esencial , Predisposición Genética a la Enfermedad , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Transcripción Genética
18.
Adv Sci (Weinh) ; 11(18): e2307926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460156

RESUMEN

Prostanoids are endogenous lipid bioactive mediators that play essential roles in physiological processes such as glucocorticoid secretion. Here, it is found that the thromboxane (Tx)A2 receptor (TP) is highly expressed in the adrenal cortex of mice. Both global and adrenocortical-specific deletion of the TP receptor lead to increased adiposity in mice by elevating corticosterone synthesis. Mechanistically, the TP receptor deletion increases the phosphorylation of steroidogenic acute regulatory protein (StAR) and corticosterone synthesis in adrenal cortical cells by suppressing p-p38-mediated phosphorylation of 14-3-3γ adapter protein at S71. The activation of the p38 in the adrenal cortical cells by forced expression of the MKK6EE gene attenuates hypercortisolism in TP-deficient mice. These observations suggest that the TxA2/TP signaling regulates adrenal corticosterone homeostasis independent of the hypothalamic-pituitary-adrenal axis and the TP receptor may serve as a promising therapeutic target for hypercortisolism.


Asunto(s)
Corticosterona , Fosfoproteínas , Receptores de Tromboxano A2 y Prostaglandina H2 , Tromboxano A2 , Animales , Masculino , Ratones , Corteza Suprarrenal/metabolismo , Corticosterona/metabolismo , Ratones Endogámicos C57BL , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Transducción de Señal , Tromboxano A2/metabolismo , Receptores de Tromboxano A2 y Prostaglandina H2/genética , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
19.
J Extracell Vesicles ; 13(8): e12488, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104296

RESUMEN

Pancreatic cancer remains one of the most lethal malignant diseases. Gemcitabine-based chemotherapy is still one of the first-line systemic treatments, but chemoresistance occurs in the majority of patients. Recently, accumulated evidence has demonstrated the role of the tumour microenvironment in promoting chemoresistance. In the tumour microenvironment, pancreatic stellate cells (PSCs) are among the main cellular components, and extracellular vesicles (EVs) are common mediators of cell‒cell communication. In this study, we showed that SP1-transcribed miR-31-5p not only targeted LATS2 in pancreatic cancer cells but also regulated the Hippo pathway in PSCs through EV transfer. Consequently, PSCs synthesized and secreted protein acidic and rich in cysteins (SPARC), which was preferentially expressed in stromal cells, stimulating Extracellular Signal regulated kinase (ERK) signalling in pancreatic cancer cells. Therefore, pancreatic cancer cell survival and chemoresistance were improved due to both the intrinsic Hippo pathway regulated by miR-31-5p and external SPARC-induced ERK signalling. In mouse models, miR-31-5p overexpression in pancreatic cancer cells promoted the chemoresistance of coinjected xenografts. In a tissue microarray, pancreatic cancer patients with higher miR-31-5p expression had shorter overall survival. Therefore, miR-31-5p regulates the Hippo pathway in multiple cell types within the tumour microenvironment via EVs, ultimately contributing to the chemoresistance of pancreatic cancer cells.


Asunto(s)
Resistencia a Antineoplásicos , Vesículas Extracelulares , Vía de Señalización Hippo , MicroARNs , Osteonectina , Neoplasias Pancreáticas , Células Estrelladas Pancreáticas , Proteínas Serina-Treonina Quinasas , Microambiente Tumoral , MicroARNs/metabolismo , MicroARNs/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Humanos , Células Estrelladas Pancreáticas/metabolismo , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Ratones , Osteonectina/metabolismo , Osteonectina/genética , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Gemcitabina , Transducción de Señal , Ratones Desnudos
20.
Cancer Res ; 84(16): 2607-2625, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38775804

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide, primarily due to its rapid progression. The current treatment options for PDAC are limited, and a better understanding of the underlying mechanisms responsible for PDAC progression is required to identify improved therapeutic strategies. In this study, we identified FBXO32 as an oncogenic driver in PDAC. FBXO32 was aberrantly upregulated in PDAC, and high FBXO32 expression was significantly associated with an unfavorable prognosis in patients with PDAC. FRG1 deficiency promoted FBXO32 upregulation in PDAC. FBXO32 promoted cell migration and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, FBXO32 directly interacted with eEF1A1 and promoted its polyubiquitination at the K273 site, leading to enhanced activity of eEF1A1 and increased protein synthesis in PDAC cells. Moreover, FBXO32-catalyzed eEF1A1 ubiquitination boosted the translation of ITGB5 mRNA and activated focal adhesion kinase (FAK) signaling, thereby facilitating focal adhesion assembly and driving PDAC progression. Importantly, interfering with the FBXO32-eEF1A1 axis or pharmaceutical inhibition of FAK by defactinib, an FDA-approved FAK inhibitor, substantially inhibited PDAC growth and metastasis driven by aberrantly activated FBXO32-eEF1A1 signaling. Overall, this study uncovers a mechanism by which PDAC cells rely on FBXO32-mediated eEF1A1 activation to drive progression and metastasis. FBXO32 may serve as a promising biomarker for selecting eligible patients with PDAC for treatment with defactinib. Significance: FBXO32 upregulation in pancreatic cancer induced by FRG1 deficiency increases eEF1A1 activity to promote ITGB5 translation and stimulate FAK signaling, driving cancer progression and sensitizing tumors to the FAK inhibitor defactinib.


Asunto(s)
Carcinoma Ductal Pancreático , Progresión de la Enfermedad , Proteínas F-Box , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Ratones , Animales , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Línea Celular Tumoral , Ratones Desnudos , Movimiento Celular , Ubiquitinación , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Pronóstico , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , Factor 1 de Elongación Peptídica/metabolismo , Factor 1 de Elongación Peptídica/genética , Metástasis de la Neoplasia , Proteínas Musculares , Proteínas Ligasas SKP Cullina F-box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA