Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(11): 2703-2716.e23, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657602

RESUMEN

Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo. It is overexpressed and associated with low antigen presentation, low immune infiltration, and worse clinical outcomes in many tumors. An antibody that blocks IGSF8-NK receptor interaction enhances NK cell killing of malignant cells in vitro and upregulates antigen presentation, NK cell-mediated cytotoxicity, and T cell signaling in vivo. In syngeneic tumor models, anti-IGSF8 alone, or in combination with anti-PD1, inhibits tumor growth. Our results indicate that IGSF8 is an innate immune checkpoint that could be exploited as a therapeutic target.


Asunto(s)
Inmunidad Innata , Inmunoterapia , Células Asesinas Naturales , Neoplasias , Animales , Femenino , Humanos , Ratones , Presentación de Antígeno , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/terapia
2.
Cell ; 184(21): 5357-5374.e22, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34582788

RESUMEN

Despite remarkable clinical efficacy of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits for triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that deletion of the E3 ubiquitin ligase Cop1 in cancer cells decreases secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, enhances anti-tumor immunity, and strengthens ICB response. Transcriptomics, epigenomics, and proteomics analyses revealed that Cop1 functions through proteasomal degradation of the C/ebpδ protein. The Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. In addition, deletion of the E3 ubiquitin ligase Cop1 in cancer cells stabilizes C/ebpδ to suppress expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy in TNBC by regulating chemokine secretion and macrophage infiltration in the tumor microenvironment.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Inmunoterapia , Macrófagos/enzimología , Neoplasias/inmunología , Neoplasias/terapia , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Quimiocinas/metabolismo , Quimiotaxis , Modelos Animales de Enfermedad , Biblioteca de Genes , Humanos , Evasión Inmune , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteolisis , Especificidad por Sustrato , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/terapia
3.
Mol Cell ; 78(6): 1096-1113.e8, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32416067

RESUMEN

BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos NOD , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35031563

RESUMEN

Drugs that block the activity of the methyltransferase EZH2 are in clinical development for the treatment of non-Hodgkin lymphomas harboring EZH2 gain-of-function mutations that enhance its polycomb repressive function. We have previously reported that EZH2 can act as a transcriptional activator in castration-resistant prostate cancer (CRPC). Now we show that EZH2 inhibitors can also block the transactivation activity of EZH2 and inhibit the growth of CRPC cells. Gene expression and epigenomics profiling of cells treated with EZH2 inhibitors demonstrated that in addition to derepressing gene expression, these compounds also robustly down-regulate a set of DNA damage repair (DDR) genes, especially those involved in the base excision repair (BER) pathway. Methylation of the pioneer factor FOXA1 by EZH2 contributes to the activation of these genes, and interaction with the transcriptional coactivator P300 via the transactivation domain on EZH2 directly turns on the transcription. In addition, CRISPR-Cas9-mediated knockout screens in the presence of EZH2 inhibitors identified these BER genes as the determinants that underlie the growth-inhibitory effect of EZH2 inhibitors. Interrogation of public data from diverse types of solid tumors expressing wild-type EZH2 demonstrated that expression of DDR genes is significantly correlated with EZH2 dependency and cellular sensitivity to EZH2 inhibitors. Consistent with these findings, treatment of CRPC cells with EZH2 inhibitors dramatically enhances their sensitivity to genotoxic stress. These studies reveal a previously unappreciated mechanism of action of EZH2 inhibitors and provide a mechanistic basis for potential combination cancer therapies.


Asunto(s)
Daño del ADN/genética , Daño del ADN/fisiología , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Activación Transcripcional , Sistemas CRISPR-Cas , Línea Celular Tumoral , Reparación del ADN/genética , Reparación del ADN/fisiología , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
5.
Mol Cancer ; 23(1): 20, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254110

RESUMEN

The incidence of nasopharyngeal carcinoma (NPC) exhibits significant variations across different ethnic groups and geographical regions, with Southeast Asia and North Africa being endemic areas. Of note, Epstein-Barr virus (EBV) infection is closely associated with almost all of the undifferentiated NPC cases. Over the past three decades, radiation therapy and chemotherapy have formed the cornerstone of NPC treatment. However, recent advancements in immunotherapy have introduced a range of promising approaches for managing NPC. In light of these developments, it has become evident that a deeper understanding of the tumor microenvironment (TME) is crucial. The TME serves a dual function, acting as a promoter of tumorigenesis while also orchestrating immunosuppression, thereby facilitating cancer progression and enabling immune evasion. Consequently, a comprehensive comprehension of the TME and its intricate involvement in the initiation, progression, and metastasis of NPC is imperative for the development of effective anticancer drugs. Moreover, given the complexity of TME and the inter-patient heterogeneity, personalized treatment should be designed to maximize therapeutic efficacy and circumvent drug resistance. This review aims to provide an in-depth exploration of the TME within the context of EBV-induced NPC, with a particular emphasis on its pivotal role in regulating intercellular communication and shaping treatment responses. Additionally, the review offers a concise summary of drug resistance mechanisms and potential strategies for their reversal, specifically in relation to chemoradiation therapy, targeted therapy, and immunotherapy. Furthermore, recent advances in clinical trials pertaining to NPC are also discussed.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Carcinoma Nasofaríngeo/tratamiento farmacológico , Microambiente Tumoral , Herpesvirus Humano 4 , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética
6.
Anticancer Drugs ; 34(2): 227-237, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305358

RESUMEN

The occurrence and progression of colorectal cancer (CRC) are closely related to intestinal microecological disorders. Butyrate, the representative of short chain fatty acids, possess anti-inflammatory and antioxidant effects, and its antitumor effect has been gradually paid attention to. In this study, azoxymethane/dextran sodium sulfate induced mouse CRC model was used to explore the role and mechanism of butyrate in regulating colon cancer and its intestinal microecological balance. Outcomes exhibited that butyrate alleviated weight loss, disease activity index, and survival in CRC mice and inhibited tumor number and progression. Further research revealed that butyrate restrained the aggregation of harmful while promoting the colonization of beneficial flora, such as Actinobacteriota, Bifidobacteriales and Muribaculacea through 16S rDNA sequence analysis. This study confirmed that butyrate can ameliorate CRC by repairing intestinal microecology, providing ideas and evidence for chemical prophylactic agents, such as butyrate to remedy tumors and regulate tumor microbiota.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Ratones , Animales , Butiratos/efectos adversos , Modelos Animales de Enfermedad , Azoximetano/efectos adversos , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Neoplasias Colorrectales/patología
7.
Proc Natl Acad Sci U S A ; 116(50): 25186-25195, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31727847

RESUMEN

Although millions of transcription factor binding sites, or cistromes, have been identified across the human genome, defining which of these sites is functional in a given condition remains challenging. Using CRISPR/Cas9 knockout screens and gene essentiality or fitness as the readout, we systematically investigated the essentiality of over 10,000 FOXA1 and CTCF binding sites in breast and prostate cancer cells. We found that essential FOXA1 binding sites act as enhancers to orchestrate the expression of nearby essential genes through the binding of lineage-specific transcription factors. In contrast, CRISPR screens of the CTCF cistrome revealed 2 classes of essential binding sites. The first class of essential CTCF binding sites act like FOXA1 sites as enhancers to regulate the expression of nearby essential genes, while a second class of essential CTCF binding sites was identified at topologically associated domain (TAD) boundaries and display distinct characteristics. Using regression methods trained on our screening data and public epigenetic profiles, we developed a model to predict essential cis-elements with high accuracy. The model for FOXA1 essentiality correctly predicts noncoding variants associated with cancer risk and progression. Taken together, CRISPR screens of cis-regulatory elements can define the essential cistrome of a given factor and can inform the development of predictive models of cistrome function.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Elementos Reguladores de la Transcripción , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Factor de Unión a CCCTC/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Femenino , Genoma Humano , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(23): 11437-11443, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31110002

RESUMEN

Limited knowledge of the changes in estrogen receptor (ER) signaling during the transformation of the normal mammary gland to breast cancer hinders the development of effective prevention and treatment strategies. Differences in estrogen signaling between normal human primary breast epithelial cells and primary breast tumors obtained immediately following surgical excision were explored. Transcriptional profiling of normal ER+ mature luminal mammary epithelial cells and ER+ breast tumors revealed significant difference in the response to estrogen stimulation. Consistent with these differences in gene expression, the normal and tumor ER cistromes were distinct and sufficient to segregate normal breast tissues from breast tumors. The selective enrichment of the DNA binding motif GRHL2 in the breast cancer-specific ER cistrome suggests that it may play a role in the differential function of ER in breast cancer. Depletion of GRHL2 resulted in altered ER binding and differential transcriptional responses to estrogen stimulation. Furthermore, GRHL2 was demonstrated to be essential for estrogen-stimulated proliferation of ER+ breast cancer cells. DLC1 was also identified as an estrogen-induced tumor suppressor in the normal mammary gland with decreased expression in breast cancer. In clinical cohorts, loss of DLC1 and gain of GRHL2 expression are associated with ER+ breast cancer and are independently predictive for worse survival. This study suggests that normal ER signaling is lost and tumor-specific ER signaling is gained during breast tumorigenesis. Unraveling these changes in ER signaling during breast cancer progression should aid the development of more effective prevention strategies and targeted therapeutics.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Receptores de Estrógenos/genética , Transducción de Señal/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Células Epiteliales/patología , Estrógenos/genética , Femenino , Humanos , Células MCF-7 , Factores de Transcripción/genética
9.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298363

RESUMEN

Traditional soil nitrogen detection methods have the characteristics of being time-consuming and having an environmental pollution effect. We urgently need a rapid, easy-to-operate, and non-polluting soil nitrogen detection technology. In order to quickly measure the nitrogen content in soil, a new method for detecting the nitrogen content in soil is presented by using a near-infrared spectrum technique and random forest regression (RF). Firstly, the experiment took the soil by the Xunsi River in the area of Hubei University of Technology as the research object, and a total of 143 soil samples were collected. Secondly, NIR spectral data from 143 soil samples were acquired, and chemical and physical methods were used to determine the content of nitrogen in the soil. Thirdly, the raw spectral data of soil samples were denoised by preprocessing. Finally, a forecast model for the soil nitrogen content was developed by using the measured values of components and modeling algorithms. The model was optimized by adjusting the changes in the model parameters and Gini coefficient (∆Gini), and the model was compared with the back propagation (BP) and support vector machine (SVM) models. The results show that: the RF model modeling set prediction R2C is 0.921, the RMSEC is 0.115, the test set R2P is 0.83, and the RMSEP is 0.141; the detection of the soil nitrogen content can be realized by using a near-infrared spectrum technique and random forest algorithm, and its prediction accuracy is better than that of the BP and SVM models; using ∆ Gini to optimize the RF modeling data, the spectral information of the soil nitrogen content can be extracted, and the data redundancy can be reduced effectively.


Asunto(s)
Suelo , Espectroscopía Infrarroja Corta , Suelo/química , Espectroscopía Infrarroja Corta/métodos , Nitrógeno/análisis , Máquina de Vectores de Soporte , Algoritmos , Análisis de los Mínimos Cuadrados
10.
World J Surg Oncol ; 19(1): 255, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454535

RESUMEN

BACKGROUND: To evaluate the clinicopathologic value of morphological growth patterns of small renal cell carcinoma (sRCC) and determine the actual demand for taking a rim of healthy parenchyma to avoid positive SM. METHODS: Data was collected from 560 sRCC patients who underwent laparoscopic surgeries from May 2010 to October 2017. One hundred forty-nine cases received nephron-sparing surgery (NSS) and others received radical nephrectomy (RN). All specimens were analyzed separately by two uropathologists, and three morphological growth patterns were identified. The presence of pseudocapsule (PC), surgical margins (SM), and other routine variables were recorded. The relationship between growth patterns and included variables was measured by the χ2 test and Fisher's exact probability test. Survival outcomes were evaluated by Kaplan-Meier method and the log-rank test. RESULTS: The median age of patients was 63.2 years old and the mean tumor diameter was 3.0 cm. Four hundred eighty (85.7%) cases were clear cell RCC and 541 (96.6%) cases were at the pT1a stage. Peritumoral PC was detected in 512 (92.5%) specimens, and the ratio of tumor invasion in PC in infiltration pattern increased obviously than that of the other growth patterns. Similarly, the pT stage was significantly correlated with the infiltration pattern as well. One hundred forty-nine patients underwent NSS and 3 (2.0%) of them showed positive SM after operation. Statistical differences of the 5-year overall survival (OS) and the cancer-specific survival (CSS) existed between different morphological growth patterns, PC status, and pT stages. CONCLUSIONS: Morphological growth patterns of sRCC might be used as a potential biomarker to help operate NSS to avoid the risk of positive SM. How to distinguish different morphological growth patterns before operation and the effectiveness of the growth pattern as a novel proposed parameter to direct NSS in sRCC patients deserves further exploration.


Asunto(s)
Neoplasias Renales , Neoplasias Pulmonares , Humanos , Neoplasias Renales/cirugía , Márgenes de Escisión , Persona de Mediana Edad , Nefrectomía , Nefronas/cirugía , Pronóstico
11.
Proc Natl Acad Sci U S A ; 115(31): 7869-7878, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29987050

RESUMEN

Endocrine therapy resistance invariably develops in advanced estrogen receptor-positive (ER+) breast cancer, but the underlying mechanisms are largely unknown. We have identified C-terminal SRC kinase (CSK) as a critical node in a previously unappreciated negative feedback loop that limits the efficacy of current ER-targeted therapies. Estrogen directly drives CSK expression in ER+ breast cancer. At low CSK levels, as is the case in patients with ER+ breast cancer resistant to endocrine therapy and with the poorest outcomes, the p21 protein-activated kinase 2 (PAK2) becomes activated and drives estrogen-independent growth. PAK2 overexpression is also associated with endocrine therapy resistance and worse clinical outcome, and the combination of a PAK2 inhibitor with an ER antagonist synergistically suppressed breast tumor growth. Clinical approaches to endocrine therapy-resistant breast cancer must overcome the loss of this estrogen-induced negative feedback loop that normally constrains the growth of ER+ tumors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Estrógenos/farmacología , Proteínas de Neoplasias/biosíntesis , Receptores de Estrógenos/biosíntesis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteína Tirosina Quinasa CSK , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Receptores de Estrógenos/genética , Quinasas p21 Activadas/biosíntesis , Quinasas p21 Activadas/genética , Familia-src Quinasas/biosíntesis , Familia-src Quinasas/genética
12.
Proc Natl Acad Sci U S A ; 114(5): 1027-1032, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28082722

RESUMEN

Most clear cell renal carcinomas (ccRCCs) are initiated by somatic inactivation of the VHL tumor suppressor gene. The VHL gene product, pVHL, is the substrate recognition unit of an ubiquitin ligase that targets the HIF transcription factor for proteasomal degradation; inappropriate expression of HIF target genes drives renal carcinogenesis. Loss of pVHL is not sufficient, however, to cause ccRCC. Additional cooperating genetic events, including intragenic mutations and copy number alterations, are required. Common examples of the former are loss-of-function mutations of the PBRM1 and BAP1 tumor suppressor genes, which occur in a mutually exclusive manner in ccRCC and define biologically distinct subsets of ccRCC. PBRM1 encodes the Polybromo- and BRG1-associated factors-containing complex (PBAF) chromatin remodeling complex component BRG1-associated factor 180 (BAF180). Here we identified ccRCC lines whose ability to proliferate in vitro and in vivo is sensitive to wild-type BAF180, but not a tumor-associated BAF180 mutant. Biochemical and functional studies linked growth suppression by BAF180 to its ability to form a canonical PBAF complex containing BRG1 that dampens the HIF transcriptional signature.


Asunto(s)
Carcinoma de Células Renales/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Neoplasias Renales/genética , Proteínas de Neoplasias/fisiología , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proteínas de Unión al ADN , Mutación del Sistema de Lectura , Xenoinjertos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ratones Desnudos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
13.
Proc Natl Acad Sci U S A ; 114(26): E5207-E5215, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28611215

RESUMEN

Alternative RNA splicing plays an important role in cancer. To determine which factors involved in RNA processing are essential in prostate cancer, we performed a genome-wide CRISPR/Cas9 knockout screen to identify the genes that are required for prostate cancer growth. Functional annotation defined a set of essential spliceosome and RNA binding protein (RBP) genes, including most notably heterogeneous nuclear ribonucleoprotein L (HNRNPL). We defined the HNRNPL-bound RNA landscape by RNA immunoprecipitation coupled with next-generation sequencing and linked these RBP-RNA interactions to changes in RNA processing. HNRNPL directly regulates the alternative splicing of a set of RNAs, including those encoding the androgen receptor, the key lineage-specific prostate cancer oncogene. HNRNPL also regulates circular RNA formation via back splicing. Importantly, both HNRNPL and its RNA targets are aberrantly expressed in human prostate tumors, supporting their clinical relevance. Collectively, our data reveal HNRNPL and its RNA clients as players in prostate cancer growth and potential therapeutic targets.


Asunto(s)
Sistemas CRISPR-Cas , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Empalme del ARN , ARN Neoplásico/biosíntesis , Ribonucleoproteínas/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Neoplásico/genética , Ribonucleoproteínas/genética
14.
Genome Res ; 26(10): 1417-1429, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27466232

RESUMEN

Model-based analysis of regulation of gene expression (MARGE) is a framework for interpreting the relationship between the H3K27ac chromatin environment and differentially expressed gene sets. The framework has three main functions: MARGE-potential, MARGE-express, and MARGE-cistrome. MARGE-potential defines a regulatory potential (RP) for each gene as the sum of H3K27ac ChIP-seq signals weighted by a function of genomic distance from the transcription start site. The MARGE framework includes a compendium of RPs derived from 365 human and 267 mouse H3K27ac ChIP-seq data sets. Relative RPs, scaled using this compendium, are superior to superenhancers in predicting BET (bromodomain and extraterminal domain) -inhibitor repressed genes. MARGE-express, which uses logistic regression to retrieve relevant H3K27ac profiles from the compendium to accurately model a query set of differentially expressed genes, was tested on 671 diverse gene sets from MSigDB. MARGE-cistrome adopts a novel semisupervised learning approach to identify cis-regulatory elements regulating a gene set. MARGE-cistrome exploits information from H3K27ac signal at DNase I hypersensitive sites identified from published human and mouse DNase-seq data. We tested the framework on newly generated RNA-seq and H3K27ac ChIP-seq profiles upon siRNA silencing of multiple transcriptional and epigenetic regulators in a prostate cancer cell line, LNCaP-abl. MARGE-cistrome can predict the binding sites of silenced transcription factors without matched H3K27ac ChIP-seq data. Even when the matching H3K27ac ChIP-seq profiles are available, MARGE leverages public H3K27ac profiles to enhance these data. This study demonstrates the advantage of integrating a large compendium of historical epigenetic data for genomic studies of transcriptional regulation.


Asunto(s)
Código de Histonas , Histonas/metabolismo , Modelos Genéticos , Acetilación , Animales , Línea Celular Tumoral , Epigénesis Genética , Genoma Humano , Histonas/genética , Humanos , Ratones
15.
Bioinformatics ; 34(23): 4095-4101, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29868757

RESUMEN

Motivation: Genome-wide clustered, regularly interspaced, short palindromic repeat (CRISPR)-Cas9 screen has been widely used to interrogate gene functions. However, the rules to design better libraries beg further refinement. Results: We found single guide RNA (sgRNA) outliers are characterized by higher G-nucleotide counts, especially in regions distal from the PAM motif and are associated with stronger off-target activities. Furthermore, using non-targeting sgRNAs as negative controls lead to strong bias, which can be mitigated by using sgRNAs targeting multiple 'safe harbor' regions. Custom-designed screens confirmed our findings and further revealed that 19 nt sgRNAs consistently gave the best signal-to-noise ratio. Collectively, our analysis motivated the design of a new genome-wide CRISPR/Cas9 screen library and uncovered some intriguing properties of the CRISPR-Cas9 system. Availability and implementation: The MAGeCK workflow is available open source at https://bitbucket.org/liulab/mageck_nest under the MIT license. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Sistemas CRISPR-Cas , Biblioteca de Genes , ARN Guía de Kinetoplastida/genética , Biología Computacional , Genoma
16.
PLoS Pathog ; 13(10): e1006668, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29028833

RESUMEN

Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/virología , Transformación Celular Viral/fisiología , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Antígenos Transformadores de Poliomavirus/metabolismo , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/metabolismo , Línea Celular Tumoral , Humanos , Immunoblotting , Inmunoprecipitación , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus/complicaciones , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/metabolismo , Infecciones Tumorales por Virus/complicaciones , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/metabolismo
17.
Genome Res ; 25(8): 1147-57, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063738

RESUMEN

The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Biología Computacional/métodos , ARN Guía de Kinetoplastida/metabolismo , ADN/análisis , Técnicas de Inactivación de Genes , Células HL-60 , Humanos , Modelos Genéticos , Tasa de Mutación
18.
BMC Genomics ; 15: 321, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24884413

RESUMEN

BACKGROUND: In metazoans, Piwi-related Argonaute proteins play important roles in maintaining germline integrity and fertility and have been linked to a class of germline-enriched small RNAs termed piRNAs. Caenorhabditis elegans encodes two Piwi family proteins called PRG-1 and PRG-2, and PRG-1 interacts with the C. elegans piRNAs (21U-RNAs). Previous studies found that mutation of prg-1 causes a marked reduction in the expression of 21U-RNAs, temperature-sensitive defects in fertility and other phenotypic defects. RESULTS: In this study, we wanted to systematically demonstrate the function of PRG-1 in the regulation of small RNAs and their targets. By analyzing small RNAs and mRNAs with and without a mutation in prg-1 during C. elegans development, we demonstrated that (1) mutation of prg-1 leads to a decrease in the expression of 21U-RNAs, and causes 35 ~ 40% of miRNAs to be down-regulated; (2) in C. elegans, approximately 3% (6% in L4) of protein-coding genes are differentially expressed after mutating prg-1, and 60 ~ 70% of these substantially altered protein-coding genes are up-regulated; (3) the target genes of the down-regulated miRNAs and the candidate target genes of the down-regulated 21U-RNAs are enriched in the up-regulated protein-coding genes; and (4) PRG-1 regulates protein-coding genes by down-regulating small RNAs (miRNAs and 21U-RNAs) that target genes that participate in the development of C. elegans. CONCLUSIONS: In prg-1-mutated C. elegans, the expression of miRNAs and 21U-RNAs was reduced, and the protein-coding targets, which were associated with the development of C. elegans, were up-regulated. This may be the mechanism underlying PRG-1 function.


Asunto(s)
Proteínas Argonautas/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Regulación de la Expresión Génica/fisiología , ARN Mensajero/genética , ARN/genética , Animales , Regulación hacia Abajo , Regulación hacia Arriba
19.
RNA ; 18(4): 626-39, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22345127

RESUMEN

Noncoding RNAs are increasingly being recognized as important players in eukaryote biology. However, despite major efforts in mapping the Caenorhabditis elegans transcriptome over the last couple of years, nonpolyadenylated and intermediate-size noncoding RNAs (is-ncRNAs) are still incompletely explored. We have combined an enzymatic approach with full-length RNA-Seq of is-ncRNAs in C. elegans. A total of 473 novel is-ncRNAs has been identified, of which a substantial fraction was associated with transcription factor binding sites and developmentally regulated expression patterns. Analysis of sequence and secondary structure permitted classification of more than 200 is-ncRNAs into several known RNA classes, while another 33 is-ncRNAs were identified as belonging to two previously uncharacterized groups of is-ncRNAs. Three of the unclassified is-ncRNAs contain the 5' Alu domain common to SRP RNAs and specifically bound with the SRP9/14 heterodimer in vitro. One of these (inc394) showed 65% sequence identity with the human, neuron-specific BC200 RNA. Structure-based clustering analysis and in vitro binding experiments supported the notion that the nematode stem-bulge RNAs (sbRNAs) are homologs (or functional analogs) of the Y RNAs. Moreover, analysis of the differential libraries showed that some mature snoRNAs undergo secondary 5' cap modification after processing of the primary transcript, thus suggesting the existence of a wider range of functional RNAs arising from processed and modified fragments of primary transcripts.


Asunto(s)
Caenorhabditis elegans/genética , Análisis de Secuencia de ARN , Transcriptoma , Animales , Exones , Intrones
20.
Cell Death Dis ; 15(4): 279, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637504

RESUMEN

Cisplatin (DDP)-based chemoradiotherapy is one of the standard treatments for nasopharyngeal carcinoma (NPC). However, the sensitivity and side effects of DDP to patients remain major obstacles for NPC treatment. This research aimed to study DDP sensitivity regulated by cancer-associated fibroblasts (CAFs) through modulating ferroptosis. We demonstrated that DDP triggered ferroptosis in NPC cells, and it inhibited tumor growth via inducing ferroptosis in xenograft model. CAFs secreted high level of FGF5, thus inhibiting DDP-induced ferroptosis in NPC cells. Mechanistically, FGF5 secreted by CAFs directly bound to FGFR2 in NPC cells, leading to the activation of Keap1/Nrf2/HO-1 signaling. Rescued experiments indicated that FGFR2 overexpression inhibited DDP-induced ferroptosis, and CAFs protected against DDP-induced ferroptosis via FGF5/FGFR2 axis in NPC cells. In vivo data further showed the protective effects of FGF5 on DDP-triggered ferroptosis in NPC xenograft model. In conclusion, CAFs inhibited ferroptosis to decrease DDP sensitivity in NPC through secreting FGF5 and activating downstream FGFR2/Nrf2 signaling. The therapeutic strategy targeting FGF5/FGFR2 axis from CAFs might augment DDP sensitivity, thus decreasing the side effects of DDP in NPC treatment.


Asunto(s)
Fibroblastos Asociados al Cáncer , Ferroptosis , Neoplasias Nasofaríngeas , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular Tumoral , Neoplasias Nasofaríngeas/patología , Resistencia a Antineoplásicos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Factor 5 de Crecimiento de Fibroblastos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA