Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; : e202400334, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925610

RESUMEN

Hydrogels are commonly used as wound dressings to help maintain a moist environment around the wound and isolate contaminants, thus promoting healing. For irregular wounds, the slow healing process and even infection may occur due to the inability of dressings to adhere well to the wound. Prussian blue (PB) is a metal-organic framework (MOF) material with excellent photothermal conversion and superior stability. In this paper, a kind of near-infrared (NIR) light triggered in-situ polymerized antimicrobial hydrogel was prepared. The free radical initiator was encapsulated in the hollow PB by a phase change material (PCM) to maintain stability. The raised temperature triggered by NIR induced the release and decomposition of the initiator. The matrix was formed by the cross-linking of double bonds on modified chitosan. The quaternary amine groups of modified chitosan and the photothermal properties of PB enhanced the antimicrobial properties of the hydrogel. High-quality wound healing was demonstrated in the whole skin defect model. This study provides a new reference for the preparation of in-situ polymerized hydrogel dressings for irregular wounds.

2.
Macromol Rapid Commun ; : e2400339, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925556

RESUMEN

Chirality is ubiquitous in nature, and closely related to biological phenomena. Nature-originated nanomaterials such as cellulose nanocrystals (CNCs) are able to self-assemble into hierarchical chiral nematic CNC films and impart handedness to nano and micro scale. However, the effects of the chiral nematic surfaces on cell adhesion are still unknown. Herein, this work presents evidence that the left-handed self-assembled chiral nematic CNC films (L-CNC) significantly improve the adhesion of L929 fibroblasts compared to randomly arranged isotropic CNC films (I-CNC). The fluidic force microscopy-based single-cell force spectroscopy is introduced to assess the cell adhesion forces on the substrates of L-CNC and I-CNC, respectively. With this method, a maximum adhesion force of 133.2 nN is quantified for mature L929 fibroblasts after culturing for 24 h on L-CNC, whereas the L929 fibroblasts exert a maximum adhesion force of 78.4 nN on I-CNC under the same condition. Moreover, the instant SCFS reveals that the integrin pathways are involved in sensing the chirality of substrate surfaces. Overall, this work offers a starting point for the regulation of cell adhesion via the self-assembled nano and micro architecture of chiral nematic CNC films, with potential practical applications in tissue engineering and regenerative medicine.

3.
Biomacromolecules ; 24(12): 5847-5858, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37956199

RESUMEN

In-depth understanding of the mechanisms underlying the adhesion of myocardial cells holds significant importance for the development of effective therapeutic biomaterials aimed at repairing damaged or pathological myocardial tissues. Herein, we present evidence that myocardial cells (H9C2) exhibit integrin-based mechanosensing during the initial stage of adhesion (within the first 2 h), enabling them to recognize and respond to variations in substrate stiffnesses. Moreover, the bioinformatics analysis of RNA transcriptome sequencing (RNA-seq) reveals that the gene expressions associated with initial stage focal adhesion (Ctgf, Cyr61, Amotl2, Prickle1, Serpine1, Akap12, Hbegf, and Nedd9) are up-regulated on substrates with elevated Young's modulus. The fluorescent immunostaining results also suggest that increased substrate stiffness enhances the expression of Y397-phosphorylated focal adhesion kinase (FAK Y397), talin, and vinculin and the assembly of F-actin in H9C2 cells, thereby facilitating the adhesion of myocardial cells on the substrate. Next, we utilize fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS) to quantitatively evaluate the impact of substrate stiffness on the cell adhesion force and adhesion work, thus providing novel insights into the biomechanical regulation of initial cell adhesion. Our findings demonstrate that the maximum adhesion forces of myocardial cells exhibit a rise from 23.6 to 248.0 nN when exposed to substrates with different moduli. It is worth noting that once the αvß3 integrins are blocked, the disparities in the adhesion forces of myocardial cells on these substrates become negligible. These results exhibit remarkable sensitivity of myocardial cells to mechanical cues of the substrate, highlighting the role of αvß3 integrin as a biomechanical sensor for the regulation of cell adhesion. Overall, this work offers a prospective approach for the regulation of cell adhesion via integrin mechanosensing with potential practical applications in the areas of tissue engineering and regenerative medicine.


Asunto(s)
Señales (Psicología) , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Adhesión Celular/fisiología , Integrinas/metabolismo , Adhesiones Focales/metabolismo
4.
Angew Chem Int Ed Engl ; 62(36): e202306803, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37458367

RESUMEN

Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the "singlet oxygen battery" CARG-1 O2 and released singlet oxygen without external irradiation or oxygen. CARG-1 O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1 O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1 O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Animales , Ratones , Oxígeno Singlete , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Oxígeno
5.
Toxicol Appl Pharmacol ; 436: 115854, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34974051

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most malignant cancers worldwide. Nonylphenol (NP) is an endocrine-disruptor chemical and plays an important role in the development of cancers. However, the effects of NP on CRC remain unclear. In this study, we aimed to investigate the potential mechanisms of NP in the pathogenesis of CRC. METHODS: The levels of AhR, TL1A and HDAC2 in CRC tissues and endothelial cells were assessed by RT-qPCR or western blot. CHIP and dual luciferase reporter assays were used to confirm the interaction between AhR and HDAC2, or HNF4α and TL1A. The CCK8, would healing and tube formation assays were conducted to evaluate the proliferation, migration and angiogenesis of HUVECs. Western blot determined HNF4α protein and HNF4α acetylation levels. The secreted TL1A protein was detected by ELISA. The angiogenesis-related factor CD31 was tested by IHC. RESULTS: The expression level of AhR was significantly up-regulated in CRC tissues and endothelial cells. Moreover, NP activated the AhR pathway mediated colorectal endothelial cell angiogenesis and proliferation, while TL1A overexpression resisted these effects caused by NP. Besides, NP was found to modulate HNF4α deacetylation through AhR/HDAC2 to inhibit TL1A. Furthermore, in vivo experiments proved that NP regulated CRC growth and angiogenesis via AhR/HDAC2/HNF4α/TL1A axis. CONCLUSION: This study revealed that NP promoted CRC growth and angiogenesis through AhR/HDAC2/HNF4α/TL1A pathway and could be a new therapeutic target for CRC treatment.


Asunto(s)
Neoplasias Colorrectales/inducido químicamente , Factor Nuclear 4 del Hepatocito/metabolismo , Histona Desacetilasa 2/metabolismo , Neovascularización Patológica/inducido químicamente , Fenoles/efectos adversos , Receptores de Hidrocarburo de Aril/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
6.
Angew Chem Int Ed Engl ; 61(23): e202200535, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35304808

RESUMEN

New preparation methods of vectors are the key to developing the next generation of biomacromolecule delivery systems. In this study, a controllable disulfide exchange polymerization was established to obtain low-toxicity and efficient bioreducible polyguanidines (mPEG225 -b-PSSn , n=13, 26, 39, 75, 105) by regulating the concentration of activated nucleophiles and reaction time under mild reaction conditions. The relationship between the degrees of polymerization and biocompatibility was studied to identify the optimal polyguanidine mPEG225 -b-PSS26 . Such polyguanidine exhibited good in vitro performance in delivering different functional nucleic acids. The impressive therapeutic effects of mPEG225 -b-PSS26 were further verified in the 4T1 tumor-bearing mice as well as the mice with full-thickness skin defects. Controllable disulfide exchange polymerization provides an attractive strategy for the construction of new biomacromolecule delivery systems.


Asunto(s)
Neoplasias , Ácidos Nucleicos , Animales , Disulfuros , Ratones , Polimerizacion , Compuestos de Sulfhidrilo
7.
Small ; 17(11): e2006004, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33619841

RESUMEN

The unsymmetrical morphology and unique properties of Janus nanoparticles (JNPs) provide superior performances for biomedical applications. In this work, a general and facile strategy is developed to construct a series of symmetrical and unsymmetrical chitosan/gold nanoparticles. Taking advantage of the active motion derived from Janus structure, selective surface functionalization of polysaccharide domain, and photothermal effect of gold nanorods, Janus chitosan/gold nanoparticles (J-Au-CS) are selected as a model system to construct Janus-structured chitosan/gold nanohybrids (J-ACP). Near-infrared (NIR)-responsive J-ACP composed of polycationic chitosan nanospheres and PEGylated gold nanorods hold great potential to realize photoacoustic (PA) imaging-guided complementary photothermal therapy (PTT)/gene therapy for breast cancer. The morphology effect of chitosan/gold nanostructures on enhanced PTT, cellular uptake, and gene transfection is investigated. The feasibility of PA imaging to track the accumulation of J-ACP and guide PTT is also explored. Notably, synergistic therapy is achieved based on PTT-enhanced gene therapy. In addition, the loading function of chitosan/gold nanoparticles for fluorescence imaging is demonstrated. The current work extends the application of JNPs for imaging-guided synergistic cancer therapy and provides flexible candidates with distinct structures for diverse biomedical applications.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas Multifuncionales , Nanopartículas , Técnicas Fotoacústicas , Línea Celular Tumoral , Oro , Humanos , Fototerapia , Terapia Fototérmica
8.
Chem Rev ; 119(3): 1666-1762, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30592420

RESUMEN

Organic/inorganic nanohybrids have attracted widespread interests due to their favorable properties and promising applications in biomedical areas. Great efforts have been made to design and fabricate versatile nanohybrids. Among different organic components, diverse polymers offer unique avenues for multifunctional systems with collective properties. This review focuses on the design, properties, and biomedical applications of organic/inorganic nanohybrids fabricated from inorganic nanoparticles and polymers. We begin with a brief introduction to a variety of strategies for the fabrication of functional organic/inorganic nanohybrids. Then the properties and functions of nanohybrids are discussed, including properties from organic and inorganic parts, synergistic properties, morphology-dependent properties, and self-assembly of nanohybrids. After that, current situations of nanohybrids applied for imaging, therapy, and imaging-guided therapy are demonstrated. Finally, we discuss the prospect of organic/inorganic nanohybrids and highlight the challenges and opportunities for the future investigations.


Asunto(s)
Tecnología Biomédica/instrumentación , Compuestos Inorgánicos/química , Nanoestructuras/química , Compuestos Orgánicos/química , Animales , Tecnología Biomédica/métodos , Humanos , Imagen Multimodal/instrumentación , Imagen Multimodal/métodos
9.
Macromol Rapid Commun ; 42(18): e2100028, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33851449

RESUMEN

Hydrogels with improved mechanical properties can expand to a greater range of applications. The fabrication of conventional toughened hydrogels typically requires precise modifications, multiple components, and complex steps. Here, a straightforward "one-step" polymerization method for the in situ preparation of hydrogels in aqueous solutions, is reported. Inspired by polymerization-induced self-assembly (PISA), water-miscible monomers are copolymerized during the hydrogel fabrication; the growing blocks eventually form physical bridges thus providing a mechanism for effective energy dissipation. The rheological and mechanical properties are evaluated and the results reveal that this strategy can be an effective approach to design mechanically enhanced hydrogels for a wide range of applications.


Asunto(s)
Hidrogeles , Agua , Polimerizacion , Reología
10.
J Am Chem Soc ; 142(47): 20257-20269, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33179921

RESUMEN

Cationic agents, such as ionic liquids (ILs)-based species, have broad-spectrum antibacterial activities. However, the antibacterial mechanisms lack systematic and molecular-level research, especially for Gram-negative bacteria, which have highly organized membrane structures. Here, we designed a series of flexible fluorescent diketopyrrolopyrrole-based ionic liquid derivatives (ILDs) with various molecular sizes (1.95-4.2 nm). The structure-antibacterial activity relationships of the ILDs against Escherichia coli (E. coli) were systematically studied thorough antibacterial tests, fluorescent tracing, morphology analysis, molecular biology, and molecular dynamics (MD) simulations. ILD-6, with a relatively small molecular size, could penetrate through the bacterial membrane, leading to membrane thinning and intracellular activities. ILD-6 showed fast and efficient antimicrobial activity. With the increase of molecular sizes, the corresponding ILDs were proven to intercalate into the bacterial membrane, leading to the destabilization of the lipid bilayer and further contributing to the antimicrobial activities. Moreover, the antibacterial activity of ILD-8 was limited, where the size was not large enough to introduce significant membrane disorder. Relative antibacterial experiments using another common Gram-negative bacteria, Pseudomonas aeruginosa (PAO1), further confirmed the proposed structure-antibacterial activity relationships of ILDs. More impressively, both ILD-6 and ILD-12 displayed significant in vivo therapeutic effects on the PAO1-infected rat model, while ILD-8 performed poorly, which confirmed the antibacterial mechanism of ILDs and proved their potentials for future application. This work clarifies the interactions between molecular sizes of ionic liquid-based species and Gram-negative bacteria and will provide useful guidance for the rational design of high-performance antibacterial agents.

11.
Small ; 16(34): e2002790, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32696542

RESUMEN

Self-assembly of gold nanoparticles demonstrates a promising approach to realize enhanced photoacoustic imaging (PAI) and photothermal therapy (PTT) for accurate diagnosis and efficient cancer therapy. Herein, unique photothermal assemblies with tunable patterns of gold nanoparticles (including arcs, rings, ribbons, and vesicles) on poly(lactic-co-glycolic acid) (PLGA) spheres are constructed taking advantage of emulsion-confined and polymer-directed self-assembly strategies. The influencing factors and formation mechanism to produce the assemblies are investigated in details. Both the emulsion structure and migration behaviors of amphiphilic block copolymer tethered gold nanoparticles are found to contribute to the formation of versatile photothermal assemblies. Hyaluronic acid-modified R-PLGA-Au (RPA) exhibits outstanding photothermal performances under NIR laser irradiation, which is induced by strong plasmonic coupling between adjacent gold nanoparticles. It is interesting that secondary assembly of RPA can be triggered by NIR laser irradiation. Prolonged residence time in tumors is achieved after RPA assemblies are fused into superstructures with larger sizes, realizing real-time monitoring of the therapeutic processes via PAI with enhanced photoacoustic signals. Notably, synergistic effect resulting from PTT-enhanced chemotherapy is realized to demonstrate high antitumor performance. This work provides a facile strategy to construct flexible photothermal assemblies with favorable properties for imaging-guided synergistic therapy.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Técnicas Fotoacústicas , Oro , Humanos , Fototerapia
12.
Small ; 16(4): e1905925, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31880079

RESUMEN

Protein-based therapies are potential treatments for cancer, immunological, and cardiovascular diseases. However, effective delivery systems are needed because of their instability, immunogenicity, and so on. Crosslinked negatively charged heparin polysaccharide nanoparticle (HepNP) is proposed for protein delivery. HepNP can efficiently condense vascular endothelial growth factor (VEGF) because of the unique electronegative sulfonic acid and carboxyl domain of heparin. HepNP is then assembled with VEGF-C (Hep@VEGF-C) or VEGF-A (Hep@VEGF-A) protein for the therapy of myocardial infarction (MI) via intravenous (iv) injection. Hep@VEGF-A-mediated improvement of cardiac function by promoting angiogenesis is limited because of elevated vascular permeability, while Hep@VEGF-C effectively promotes lymphangiogenesis and reduces edema. On this basis, a graded delivery of VEGF-C (0.5-1 h post-MI) and VEGF-A (5 d post-MI) using HepNP is developed. At the dose ratio of 3:1 (Hep@VEGF-C vs Hep@VEGF-A), Hep@VEGF functional complexes substantially reduce the scar formation (≈-39%; p < 0.05) and improve cardiac function (≈+74%; p < 0.05). Such a HepNP delivery system provides a simple and effective therapeutic strategy for cardiovascular diseases by delivering functional proteins. Because of the unique binding ability of heparin with cytokines and growth factors, HepNP also has considerable application prospects in protein therapy for other serious diseases.


Asunto(s)
Circulación Colateral , Corazón , Infarto del Miocardio , Factor A de Crecimiento Endotelial Vascular , Factor C de Crecimiento Endotelial Vascular , Circulación Colateral/efectos de los fármacos , Corazón/efectos de los fármacos , Humanos , Infarto del Miocardio/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Isoformas de Proteínas/farmacología , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor C de Crecimiento Endotelial Vascular/administración & dosificación , Factor C de Crecimiento Endotelial Vascular/química , Factor C de Crecimiento Endotelial Vascular/farmacología
13.
Langmuir ; 36(1): 354-361, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31826611

RESUMEN

The ability to appraise antibacterial potencies of surface-immobilized bactericidal polymers is still a major challenge in the engineering of antibacterial surfaces to combat hospital-acquired (nosocomial) infections. In this work, we fabricated a microfluidic platform with gradiently immobilized bactericidal polymers to enable the rapid appraisal of antibacterial potencies by in situ live/dead staining of bacteria. To this end, a variety of synthetic quaternary polymers, named QPEI-C1, QPEI-C6, QPEI-C8, and QPEI-C10, were gradiently immobilized in microfluidic channels, and their surface densities at different distances along the channels were quantified by using fluorescein-labeled polymers. We found that the surface densities of quaternary polymers could be well-tuned, and the length of the channel, resulting in a 50% reduction of live bacteria (L50), can be used to appraise the antibacterial potency of each bactericidal polymer. For instance, the L50 values of QPEI-C6-, QPEI-C8-, and QPEI-C10-modified channels against Escherichia coli were 35.5, 44.7, and 49.2 mm, respectively, indicating that QPEI-C10 exerted the most potent antibacterial efficacy. More importantly, this microfluidic platform enabled the rapid discrimination of antibacterial potencies of polymers (e.g., QPEI-C8, and QPEI-C10) while the conventional live/dead staining method found no significant difference. This work provides a powerful toolkit by combining advances of microfluidic systems and polymer science for the rapid screening of antibacterial coatings, which would find applications in surface modification of medical devices to combat bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Polietileneimina/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Polietileneimina/síntesis química , Polietileneimina/química , Propiedades de Superficie
14.
Biomacromolecules ; 21(2): 732-742, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31756088

RESUMEN

Tunable adhesion of different cell types on well-defined surfaces has attracted common interests in the field of biomaterial science and surface engineering. Herein, we demonstrate a new strategy for the regulation of cell adhesion by simply controlling the thickness of thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes via surface-initiated atom transfer radical polymerization (ATRP). The adhesion of different cell types (4T1, HEK293, H9C2, HUVEC, and L929) can be easily modulated by varying the thickness of PNIPAAm brushes from 5.9 ± 1.0 nm (PN1) to 69.0 ± 5.0 nm (PN6). The fluorescent staining of different cell types on a variety of surfaces reveals that the thickness of PNIPAAm brushes would regulate the assembly of F-actin and the expression of vinculin and fibronectin, which are essential in regulating the adherent status of cells. Moreover, the cellular morphologies revealed that the adherent cells are well-spread, and multiple pseudopod extensions and protrusions can be observed at the margin of cells. This work provides a facile strategy for regulating tunable adhesion of different cell types, which may find applications in tissue engineering and regenerative medicine.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Polimerizacion , Polímeros/química , Polímeros/metabolismo , Animales , Adhesión Celular/fisiología , Células HEK293 , Humanos , Ratones
15.
Angew Chem Int Ed Engl ; 59(24): 9610-9616, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32119182

RESUMEN

Photodynamic therapy (PDT) has long been shown to be a powerful therapeutic modality for cancer. However, PDT is undiversified and has become stereotyped in recent years. Exploration of distinctive PDT methods is thus highly in demand but remains a severe challenge. Herein, an unprecedented 1+1+1>3 synergistic strategy is proposed and validated for the first time. Three homologous luminogens with aggregation-induced emission (AIE) characteristics were rationally designed based on a simple backbone. Through slight structural tuning, these far-red/near-infrared AIE luminogens are capable of specifically anchoring to mitochondria, cell membrane, and lysosome, and effectively generating reactive oxygen species (ROS). Notably, biological studies demonstrated combined usage of three AIE photosensitizers gives multiple ROS sources simultaneously derived from several organelles, which gives superior therapeutic effect than that from a single organelle at the same photosensitizers concentration. This strategy is conceptually and operationally simple, providing an innovative approach and renewed awareness of improving therapeutic effect through three-pronged PDT.


Asunto(s)
Rayos Infrarrojos , Sustancias Luminiscentes/química , Fotoquimioterapia/métodos , Células HeLa , Humanos , Orgánulos/efectos de los fármacos , Orgánulos/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo
16.
J Am Chem Soc ; 141(42): 16781-16789, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31553608

RESUMEN

Bacterial infectious diseases, especially those caused by Gram-positive bacteria, have been seriously threatening human health. Preparation of a multifunctional system bearing both rapid bacterial differentiation and effective antibacterial effects is highly in demand, but remains a severe challenge. Herein, we rationally designed and successfully developed a sequence of aggregation-induced emission luminogens (AIEgens) with orderly enhanced D-A strength. Evaluation of structure-function relationships reveals that AIEgens having intrinsic positive charge and proper ClogP value are able to stain Gram-positive bacteria. Meanwhile, one of the presented AIEgens (TTPy) can generate reactive oxygen species (ROS) in extraordinarily high efficiency under white light irradiation due to the smaller singlet-triplet energy gap. Thanks to the NIR emission, excellent specificity to Gram-positive bacteria, and effective ROS generation efficiency, TTPy has been proved to perform well in selective photodynamic killing of Gram-positive bacteria in vitro, such as S. aureus and S. epidermidis, even in S. aureus-infected rat wounds.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Animales , Bacterias Grampositivas/fisiología , Ratas , Relación Estructura-Actividad , Factores de Tiempo
17.
J Gene Med ; 21(5): e3084, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30850992

RESUMEN

In this review, we summarize the rational design and versatile application of organic/inorganic hybrid gene carriers as multifunctional delivery systems. Organic/inorganic nanohybrids with both organic and inorganic components in one nanoparticle have attracted intense attention because of their favorable properties. Particularly, nanohybrids comprising cationic polymers and inorganic nanoparticles are considered to be promising candidates as multifunctional gene delivery systems. In this review, we begin with an introduction of gene delivery and gene carriers to demonstrate the incentive for fabricating nanohybrids as multifunctional carriers. Next, the construction strategies and morphology effects of organic/inorganic hybrid gene carriers are summarized and discussed. Both sections provide valuable information for the design and synthesis of hybrid gene carriers with superior properties. Finally, an overview is provided of the application of nanohybrids as multifunctional gene carriers. Diverse therapies and versatile imaging-guided therapies have been achieved via the rational design of nanohybrids. In addition to a simple combination of the functions of organic and inorganic components, the performances arising from the synergistic effects of both components are considered to be more intriguing. In summary, this review might offer guidance for the understanding of organic/inorganic nanohybrids as multifunctional gene delivery systems.


Asunto(s)
Portadores de Fármacos/química , Técnicas de Transferencia de Gen , Compuestos Inorgánicos/química , Nanopartículas/química , Compuestos Orgánicos/química , Animales , Humanos
18.
Small ; 15(20): e1900999, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30957927

RESUMEN

The human society is faced with daunting threats from bacterial infections. Over decades, a variety of antibacterial polymeric nanosystems have exhibited great promise for the eradication of multidrug-resistant bacteria and persistent biofilms by enhancing bacterial recognition and binding capabilities. In this Review, the "state-of-the-art" biodegradable antibacterial polymeric nanosystems, which could respond to bacteria environments (e.g., acidity or bacterial enzymes) for controlled antibiotic release or multimodal antibacterial treatment, are summarized. The current antibacterial polymeric nanosystems can be categorized into antibiotic-containing and intrinsic antibacterial nanosystems. The antibiotic-containing polymeric nanosystems include antibiotic-encapsulated nanocarriers (e.g., polymeric micelles, vesicles, nanogels) and antibiotic-conjugated polymer nanosystems for the delivery of antibiotic drugs. On the other hand, the intrinsic antibacterial polymer nanosystems containing bactericidal moieties such as quaternary ammonium groups, phosphonium groups, polycations, antimicrobial peptides (AMPs), and their synthetic mimics, are also described. The biodegradability of the nanosystems can be rendered by the incorporation of labile chemical linkages, such as carbonate, ester, amide, and phosphoester bonds. The design and synthesis of the degradable polymeric building blocks and their fabrications into nanosystems are also explicated, together with their plausible action mechanisms and potential biomedical applications. The perspectives of the current research in this field are also described.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nanopartículas/química , Polímeros/farmacología , Animales , Humanos , Nanopartículas/ultraestructura
19.
Small ; 15(45): e1904017, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31538412

RESUMEN

Microenvironment-responsive supramolecular assemblies have attracted great interest in the biomedical field due to their potential applications in controlled drug release. In this study, oxidation-responsive supramolecular polycationic assemblies named CPAs are prepared for nucleic acid delivery via the host-guest interaction of ß-cyclodextrin based polycations and a ferrocene-functionalized zinc tetraaminophthalocyanine core. The reactive oxygen species (ROS) can accelerate the disassembly of CPA/pDNA complexes, which would facilitate the release of pDNA in the complexes and further benefit the subsequent transfection. Such improvement in transfection efficiency is proved in A549 cells with high H2 O2 concentration. Interestingly, the transfection efficiencies mediated by CPAs are also different in the presence or absence of light in various cell lines such as HEK 293 and 4T1. The single oxygen (1 O2 ), produced by photosensitizers in the core of CPAs under light, increases the ROS amount and accelerates the disassembly of CPAs/pDNA complexes. In vitro and in vivo studies further illustrate that suppressor tumor gene p53 delivered by CPAs exhibits great antitumor effects under illumination. This work provides a promising strategy for the design and fabrication of oxidation-responsive nanoassemblies with light-enhanced gene transfection performance.


Asunto(s)
Terapia Genética/métodos , Línea Celular Tumoral , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Polielectrolitos/química , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , beta-Ciclodextrinas/química
20.
Biomacromolecules ; 20(11): 4171-4179, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31596574

RESUMEN

Catheter-related infection is a great challenge to modern medicine, which causes significant economic burden and increases patient morbidity. Hence, there is a great requirement for functionalized surfaces with inherently antibacterial properties and biocompatibility that prevent bacterial colonization and attachment of blood cells. Herein, we developed a strategy for constructing polymer brushes with hierarchical architecture on polyurethane (PU) via surface-initiated atom-transfer radical polymerization (SI-ATRP). Surface-functionalized PU (PU-DMH) was readily prepared, which comprised of poly(3-[dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate) (PDMAPS) brushes as the lower layer and antimicrobial peptide-conjugated poly(methacrylic acid) (PMAA) brushes as the upper layer. The PU-DMH surface showed excellent bactericidal property against both Gram-positive and Gram-negative bacteria and could prevent accumulation of bacterial debris on surfaces. Simultaneously, the PU-DMH samples possessed good hemocompatibility and low cytotoxicity. Furthermore, the integrated antifouling and bactericidal properties of PU-DMH under hydrodynamic conditions were confirmed by an in vitro circulating model. The functionalized surface possessed persistent antifouling and bactericidal performances both under static and hydrodynamic conditions. The microbiological and histological results of animal experiments also verified the in vivo anti-infection performance. The present work might find promising clinical applications for preventing catheter-related infection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones Relacionadas con Catéteres/prevención & control , Poliuretanos/farmacología , alfa-Defensinas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Incrustaciones Biológicas , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Infecciones Relacionadas con Catéteres/microbiología , Catéteres/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/patogenicidad , Humanos , Metacrilatos/química , Polimerizacion , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacología , Poliuretanos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA