Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Pharmacol Sci ; 155(4): 148-151, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880549

RESUMEN

We examined the inhibitory effects of α-linolenic acid (ALA) on the contractions of pig coronary arteries. ALA concentration-dependently inhibited the contractions elicited by U46619 and prostaglandin F2α without affecting those elicited by 80 mM KCl, histamine, acetylcholine, and serotonin. ALA rightward shifted the concentration-response curve of U46619, and Schild plot analysis revealed that ALA competitively antagonized U46619. Furthermore, ALA inhibited the increase in intracellular Ca2+ concentration caused by TP receptor stimulation but not that caused by FP receptor stimulation. These results suggest that ALA behaves as a selective antagonist of TP receptors in coronary arteries.


Asunto(s)
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Calcio , Vasos Coronarios , Receptores de Tromboxanos , Ácido alfa-Linolénico , Animales , Vasos Coronarios/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Porcinos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Calcio/metabolismo , Receptores de Tromboxanos/antagonistas & inhibidores , Receptores de Tromboxanos/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Dinoprost/farmacología , Contracción Muscular/efectos de los fármacos
2.
J Pharmacol Sci ; 154(4): 256-263, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485343

RESUMEN

Platelet-activating factor (PAF) is expected to increase esophageal motility. However, to the best of our knowledge, this has not been examined. Thus, we investigated the contractile effects of PAF on guinea pig (GP) esophageal muscularis mucosae (EMM) and the extracellular Ca2+ influx pathways responsible. PAF (10-9-10-6 M) contracted EMM in a concentration-dependent manner. PAF (10-6 M)-induced contractions were almost completely suppressed by apafant (a PAF receptor antagonist, 3 × 10-5 M). In EMM strips, PAF receptor and PAF-synthesizing/degrading enzyme mRNAs were detected. PAF (10-6 M)-induced contractions were abolished by extracellular Ca2+ removal but were not affected by diltiazem [a voltage-dependent Ca2+ channel (VDCC) inhibitor, 10-5 M]. PAF (10-6 M)-induced contractions in the presence of diltiazem were significantly suppressed by LOE-908 [a receptor-operated Ca2+ channel (ROCC) inhibitor, 3 × 10-5 M], SKF-96365 [an ROCC and store-operated Ca2+ channel (SOCC) inhibitor, 3 × 10-5 M], and LOE-908 plus SKF-96365. Among the tested ROCC/SOCC-related mRNAs, Trpc3, Trpc6, and Trpv4/Orai1, Orai3, and Stim2 were abundantly expressed in EMM strips. These results indicate that PAF potently induces GP EMM contractions that are dependent on extracellular Ca2+ influx through ROCCs/SOCCs, and VDCCs are unlikely to be involved.


Asunto(s)
Diltiazem , Isoquinolinas , Factor de Activación Plaquetaria , Cobayas , Animales , Diltiazem/farmacología , Factor de Activación Plaquetaria/farmacología , Acetamidas , Canales de Calcio/metabolismo , Membrana Mucosa/metabolismo , Calcio/metabolismo
3.
Biol Pharm Bull ; 47(1): 328-333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296462

RESUMEN

Alzheimer's disease (AD) is accompanied by behavioral and psychological symptoms of dementia (BPSD), which is often alleviated by treatment with psychotropic drugs, such as antidepressants, hypnotics, and anxiolytics. If these drugs also inhibit acetylcholinesterase (AChE) activity, they may contribute to the suppression of AD progression by increasing brain acetylcholine concentrations. We tested the potential inhibitory effects of 31 antidepressants, 21 hypnotics, and 12 anxiolytics on recombinant human AChE (rhAChE) activity. At a concentration of 10-4 M, 22 antidepressants, 19 hypnotics, and 11 anxiolytics inhibited rhAChE activity by <20%, whereas nine antidepressants (clomipramine, amoxapine, setiptiline, nefazodone, paroxetine, sertraline, citalopram, escitalopram, and mirtazapine), two hypnotics (triazolam and brotizolam), and one anxiolytic (buspirone) inhibited rhAChE activity by ≥20%. Brotizolam (≥10-6 M) exhibited stronger inhibition of rhAChE activity than the other drugs, with its pIC50 value being 4.57 ± 0.02. The pIC50 values of the other drugs were <4, and they showed inhibitory activities toward rhAChE at the following concentrations: ≥3 × 10-6 M (sertraline and buspirone), ≥10-5 M (amoxapine, nefazodone, paroxetine, citalopram, escitalopram, mirtazapine, and triazolam), and ≥3 × 10-5 M (clomipramine and setiptiline). Among these drugs, only nefazodone inhibited rhAChE activity within the blood concentration range achievable at clinical doses. Therefore, nefazodone may not only improve the depressive symptoms of BPSD through its antidepressant actions but also slow the progression of cognitive symptoms of AD through its AChE inhibitory actions.


Asunto(s)
Amoxapina , Ansiolíticos , Triazolam , Humanos , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Acetilcolinesterasa , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéutico , Sertralina , Clomipramina , Mirtazapina , Paroxetina , Citalopram , Escitalopram , Buspirona , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
4.
J Pharmacol Sci ; 152(2): 123-127, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37169476

RESUMEN

We investigated the extracellular Ca2+ influx pathways involved in platelet-activating factor (PAF)-enhanced guinea pig detrusor smooth muscle (DSM) contractile activities. One micromolar PAF-enhanced DSM contractile activities were completely inhibited by extracellular Ca2+ removal and strongly suppressed by voltage-dependent Ca2+ channel (VDCC) inhibitors. PAF-enhanced DSM contractile activities remaining in the presence of verapamil (10 µM) were not inhibited by LOE-908 (30 µM, an inhibitor of receptor-operated Ca2+ channels (ROCCs)), but were almost completely inhibited by SKF-96365 (30 µM, an inhibitor of store-operated Ca2+ channels (SOCCs) and ROCCs). These results suggest that VDCCs and SOCCs are responsible for PAF-enhanced DSM contractile activities.


Asunto(s)
Músculo Liso , Factor de Activación Plaquetaria , Cobayas , Animales , Factor de Activación Plaquetaria/farmacología , Factor de Activación Plaquetaria/metabolismo , Músculo Liso/metabolismo , Contracción Muscular , Canales de Calcio/metabolismo , Verapamilo , Calcio/metabolismo
5.
J Pharmacol Sci ; 153(3): 119-129, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770153

RESUMEN

We examined whether U46619 (a prostanoid TP receptor agonist) could enhance the contractions of guinea pig urinary bladder smooth muscle (UBSM) in response to acetylcholine (ACh) and an ATP analog (α,ß-methylene ATP (αß-MeATP)) through stimulation of the UBSM TP receptor and whether protein kinase C (PKC) is involved. U46619 (10-7 M) markedly enhanced UBSM contractions induced by electrical field stimulation and ACh/αß-MeATP (3 × 10-6 M each), the potentiation of which was completely suppressed by SQ 29,548 (a TP receptor antagonist, 6 × 10-7 M). PKC inhibitors did not attenuate the ACh-induced contractions enhanced by U46619 although they partly suppressed the U46619-enhanced, αß-MeATP-induced contractions. While phorbol 12-myristate 13-acetate (PMA, a PKC activator, 10-6 M) did not enhance ACh-induced contractions, it enhanced αß-MeATP-induced contractions, an effect that was completely suppressed by PKC inhibitors. αß-MeATP-induced contractions, both with and without U46619 enhancement, were strongly inhibited by diltiazem. U46619/PMA enhanced 50 mM KCl-induced contractions, the potentiation of which was partly/completely attenuated by PKC inhibitors. These findings suggest that U46619 potentiates parasympathetic nerve-associated UBSM contractions by stimulating UBSM TP receptors. PKC-increased Ca2+ influx through voltage-dependent Ca2+ channels may partially play a role in purinergic receptor-mediated UBSM contractions enhanced by TP receptor stimulation.


Asunto(s)
Acetilcolina , Vejiga Urinaria , Cobayas , Animales , Acetilcolina/farmacología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Adenosina Trifosfato/farmacología , Contracción Muscular , Receptores de Tromboxanos
6.
Biol Pharm Bull ; 46(7): 997-1003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37394649

RESUMEN

Platelet-activating factor (PAF) not only acts as a mediator of platelet aggregation, inflammation, and allergy responses but also as a constrictor of various smooth muscle (SM) tissues, including gastrointestinal, tracheal/bronchial, and pregnancy uterine SMs. Previously, we reported that PAF induces basal tension increase (BTI) and oscillatory contraction (OC) in mouse urinary bladder SM (UBSM). In this study, we examined the Ca2+ influx pathways involved in PAF-induced BTI and OC in the mouse UBSM. PAF (10-6 M) induced BTI and OC in mouse UBSM. However, the PAF-induced BTI and OC were completely suppressed by extracellular Ca2+ removal. PAF-induced BTI and OC frequencies were markedly suppressed by voltage-dependent Ca2+ channel (VDCC) inhibitors (verapamil (10-5 M), diltiazem (10-5 M), and nifedipine (10-7 M)). However, these VDCC inhibitors had a minor effect on the PAF-induced OC amplitude. The PAF-induced OC amplitude in the presence of verapamil (10-5 M) was strongly suppressed by SKF-96365 (3 × 10-5 M), an inhibitor of receptor-operated Ca2+ channel (ROCC) and store-operated Ca2+ channel (SOCC), but not by LOE-908 (3 × 10-5 M) (an inhibitor of ROCC). Overall, PAF-induced BTI and OC in mouse UBSM depend on Ca2+ influx and the main Ca2+ influx pathways in PAF-induced BTI and OC may be VDCC and SOCC. Of note, VDCC may be involved in PAF-induced BTI and OC frequency, and SOCC might be involved in PAF-induced OC amplitude.


Asunto(s)
Canales de Calcio Tipo L , Vejiga Urinaria , Embarazo , Femenino , Ratones , Animales , Vejiga Urinaria/fisiología , Factor de Activación Plaquetaria/farmacología , Verapamilo/farmacología , Contracción Muscular , Calcio/metabolismo
7.
Biol Pharm Bull ; 46(2): 354-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724965

RESUMEN

Dimethyl sulfoxide (DMSO) has been used not only as an experimental solvent, but also as a therapeutic agent for interstitial cystitis. The therapeutic effects of DMSO on interstitial cystitis are presumed to involve anti-inflammatory and analgesic effects. However, the effects of DMSO on urinary bladder smooth muscle (UBSM) have not been fully investigated. Thus, in this study, we investigated the effects of DMSO on rat UBSM contractions, and these effects were compared with those of acetone, which has a structure in which the sulfur of DMSO is replaced with carbon. DMSO (0.5-5%) enhanced acetylcholine (ACh)-induced contractions, whereas acetone (3 and 5%) suppressed them. Additionally, DMSO (5%) suppressed carbachol-induced contractions. DMSO/acetone (0.5-5%) inhibited 80 mM KCl-induced contractions in a concentration-dependent manner; however, the inhibitory effects of DMSO were weaker than those of acetone. The enhancing/suppressing effects of DMSO and acetone were almost completely abolished by wash out. DMSO and acetone (0.5-5%) inhibited recombinant human acetylcholinesterase (rhAChE) activity in a concentration-dependent manner. At 0.5 and 1%, the inhibitory effects of DMSO on rhAChE activity were more potent than those of acetone. These findings suggest that DMSO can enhance ACh-induced UBSM contractions and promote urinary bladder motility by inhibiting acetylcholinesterase (AChE), although DMSO also inhibits Ca2+ influx-mediated UBSM contractions. In addition, the sulfur atom in DMSO might play an important role in its enhancing effect on ACh-induced contractions by inhibiting AChE, as acetone did not enhance these contractions.


Asunto(s)
Acetilcolina , Cistitis Intersticial , Humanos , Ratas , Animales , Acetilcolina/farmacología , Acetilcolinesterasa , Dimetilsulfóxido/farmacología , Vejiga Urinaria , Acetona/farmacología , Músculo Liso , Contracción Muscular
8.
Biol Pharm Bull ; 46(2): 309-319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724959

RESUMEN

We examined whether the α1L-adrenoceptor (AR), which shows low affinity (pA2 < 9) for prazosin (an α1-AR antagonist) and high affinity (pA2 ≈ 10) for tamsulosin/silodosin (α1A-AR antagonists), is involved in phenylephrine-induced contractions in the guinea pig (GP) thoracic aorta (TA). Intracellular signaling induced by α1L-AR activation was also examined by focusing on Ca2+ influx pathways. Tension changes of endothelium-denuded TAs were isometrically recorded and mRNA encoding α-ARs/Ca2+ channels and their related molecules were measured using RT-quantitative PCR. Phenylephrine-induced contractions were competitively inhibited by prazosin/tamsulosin, and their pA2 value were calculated to be 8.53/9.74, respectively. These contractions were also inhibited by silodosin concentration-dependently. However, the inhibition was not competitive fashion with the apparent pA2 value being 9.48. In contrast, phenylephrine-induced contractions were not substantially suppressed by L-765314 (an α1B-AR antagonist), BMY 7378 (an α1D-AR antagonist), yohimbine, and idazoxan (α2-AR antagonists). Phenylephrine-induced contractions were markedly inhibited by YM-254890 (a Gq protein inhibitor) or removal of extracellular Ca2+, and partially inhibited by verapamil (a voltage-dependent Ca2+ channel (VDCC) inhibitor). The residual contractions in the presence of verapamil were slightly inhibited by LOE 908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) and strongly inhibited by SKF-96365 (a store-operated Ca2+ channel (SOCC) and ROCC inhibitor). Among the mRNA encoding α-ARs/SOCC-related molecules, α1A-AR (Adra1a)/Orai3, Orai1, and Stim2 were abundant in this tissue. In conclusion, phenylephrine-induced contractions in the GP TA can be triggered by stimulation of Gq protein-coupled α1L-AR, followed by activation of SOCCs and VDCCs.


Asunto(s)
Antagonistas Adrenérgicos alfa , Aorta Torácica , Cobayas , Animales , Fenilefrina/farmacología , Antagonistas Adrenérgicos alfa/metabolismo , Antagonistas Adrenérgicos alfa/farmacología , Tamsulosina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Prazosina/farmacología , Verapamilo/farmacología , Verapamilo/metabolismo , ARN Mensajero/metabolismo , Contracción Muscular
9.
Biol Pharm Bull ; 45(8): 1158-1165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35908896

RESUMEN

Administration of a P2X4 receptor antagonist to asthma model mice improved asthma symptoms, suggesting that P2X4 receptor antagonists may be new therapeutics for asthma. However, the effects of these antagonists on tracheal/bronchial smooth muscle (TSM and BSM) have not been investigated. This study examined the effects of NP-1815-PX, a selective P2X4 receptor antagonist, on guinea pig TSM and BSM contractions. In epithelium-intact TSM, NP-1815-PX (10-5 M) strongly suppressed ATP-induced contractions. ATP-induced contractions were strongly suppressed by indomethacin (3 × 10-6 M) and ONO-8130 (a prostanoid EP1 receptor antagonist, 10-7 M). ATP-induced contractions were partially suppressed by SQ 29,548 (a prostanoid TP receptor antagonist, 3 × 10-7 M), although the difference was not significant. In contrast, ATP-induced contractions were not affected by AL 8810 (a prostanoid FP receptor antagonist, 10-5 M) or L-798,106 (a prostanoid EP3 receptor antagonist, 10-8 M). NP-1815-PX (10-5-10-4 M) strongly suppressed U46619 (a TP receptor agonist)- and prostaglandin F2α (PGF2α)-induced epithelium-denuded TSM and BSM contractions, which were largely inhibited by SQ 29,548. Additionally, NP-1815-PX (10-5-10-4 M) strongly suppressed the U46619-induced increase in intracellular Ca2+ concentrations in human TP receptor-expressing cells. However, NP-1815-PX (10-4 M) did not substantially inhibit the TSM/BSM contractions induced by carbachol, histamine, neurokinin A, or 50 mM KCl. These findings indicate that NP-1815-PX inhibits guinea pig TSM and BSM contractions mediated through the TP receptor, in addition to the P2X4 receptor, whose stimulation mainly induces EP1 receptor-related mechanisms. Thus, these findings support the usefulness of NP-1815-PX as a therapeutic drug for asthma.


Asunto(s)
Asma , Antagonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X4 , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Adenosina Trifosfato/farmacología , Animales , Azepinas , Dinoprostona/farmacología , Cobayas , Humanos , Ratones , Contracción Muscular , Músculo Liso , Oxadiazoles , Prostaglandinas , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores de Tromboxanos
10.
Biol Pharm Bull ; 45(2): 240-244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35110511

RESUMEN

We investigated the potential inhibitory effects of docosahexaenoic acid (DHA) on the contractions of guinea pig tracheal smooth muscles in response to U46619 (a thromboxane A2 (TXA2) mimetic) and prostaglandin F2α (PGF2α) to examine whether this n-3 polyunsaturated fatty acid suppresses prostanoid-induced tracheal contractions. DHA (3 × 10-5 M) significantly suppressed tracheal contractions elicited by lower concentrations of U46619 (10-8 M) and PGF2α (5 × 10-7 M) (vs. control), although it did not suppress the contractions induced by higher concentrations (U46619: 10-7 M; PGF2α: 10-5 M). Supporting these findings, DHA (4 × 10-5 M/6 × 10-5 M) shifted the concentration-response curves for U46619 (10-9-10-6 M) and PGF2α (10-8-10-5 M) to the right. However, the slope of the regression line in the Schild plot of DHA vs. U46619/PGF2α was larger than unity. The tracheal contractions induced by U46619 (10-8 M) and PGF2α (5 × 10-7 M) were significantly suppressed by the prostanoid TP receptor antagonist SQ 29,548 (10-6 M) (vs. ethanol-treated). In contrast, DHA (4 × 10-5 M) did not show significant inhibitory effects on the contractions induced by acetylcholine (10-8-10-4 M), histamine (10-8-10-4 M), and leukotriene D4 (10-11-10-7 M) (vs. ethanol-treated). These findings indicate that DHA selectively suppresses tracheal contractions induced by U46619 and PGF2α. Therefore, DHA may be a useful therapeutic agent against asthma associated with tracheal/bronchial hyper-constriction caused by prostanoids including TXA2 and PGF2α.


Asunto(s)
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Dinoprost/farmacología , Ácidos Docosahexaenoicos/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Tráquea/anatomía & histología , Animales , Cobayas , Oxitócicos/farmacología , Vasoconstrictores/farmacología
11.
Biol Pharm Bull ; 44(8): 1129-1139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34334498

RESUMEN

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are n-3 polyunsaturated fatty acids (PUFAs), and are abundant in fish oil. These n-3 PUFAs have been reported to improve the lower gastrointestinal (LGI) disorders such as ulcerative colitis and Crohn's disease through their anti-inflammatory effects. However, there are few studies on the effect of n-3 PUFAs on motility of the LGI tract, such as the ileum and colon, the parts frequently affected by these inflammatory disorders. To elucidate the effects of DHA and EPA on the LGI tract motility, we performed comparative evaluation of their effects and linoleic acid (LA), an n-6 PUFA, on contractions in the ileal and colonic longitudinal smooth muscles (LSMs) isolated from guinea pigs. In the ileal and colonic LSMs, DHA and EPA (3 × 10-5 M each) significantly inhibited contractions induced by acetylcholine (ACh), histamine, and prostaglandin (PG) F2α (vs. control), and these effects are stronger than that of LA (3 × 10-5 M). In the colonic LSMs, DHA and EPA also significantly inhibited contractions induced by PGD2 (vs. control). In addition, DHA and EPA significantly inhibited CaCl2-induced ileal and colonic LSM contractions in Ca2+-free 80 mM-KCl solution (vs. control). Any ileal and colonic LSM contractions induced by ACh, histamine, PGF2α, and CaCl2 were completely suppressed by verapamil (10-5 M), a voltage-gated/dependent Ca2+ channel (VGCC/VDCC) inhibitor. These findings suggest that DHA and EPA could improve the abnormal contractile functions of the LGI tract associated with inflammatory diseases, partly through inhibition of VGCC/VDCC-dependent ileal and colonic LSM contractions.


Asunto(s)
Colon/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Íleon/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Acetilcolina , Animales , Canales de Calcio/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Cobayas , Histamina , Inflamación , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/fisiopatología , Ácido Linoleico/farmacología , Masculino , Músculo Liso/metabolismo , Músculo Liso/fisiología , Prostaglandinas
12.
Biol Pharm Bull ; 44(8): 1140-1150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34334499

RESUMEN

The clinical applications of antipsychotics for symptoms unrelated to schizophrenia, such as behavioral and psychological symptoms, in patients with Alzheimer's disease, and the likelihood of doctors prescribing antipsychotics for elderly people are increasing. In elderly people, drug-induced and aging-associated urinary disorders are likely to occur. The most significant factor causing drug-induced urinary disorders is a decrease in urinary bladder smooth muscle (UBSM) contraction induced by the anticholinergic action of therapeutics. However, the anticholinergic action-associated inhibitory effects of antipsychotics on UBSM contraction have not been sufficiently assessed. In this study, we examined 26 clinically available antipsychotics to determine the extent to which they inhibit acetylcholine (ACh)-induced contraction in rat UBSM to predict the drugs that should not be used by elderly people to avoid urinary disorders. Of the 26 antipsychotics, six (chlorpromazine, levomepromazine (phenothiazines), zotepine (a thiepine), olanzapine, quetiapine, clozapine (multi-acting receptor targeted antipsychotics (MARTAs))) competitively inhibited ACh-induced contractions at concentrations corresponding to clinically significant doses. Further, 11 antipsychotics (perphenazine, fluphenazine, prochlorperazine (phenothiazines), haloperidol, bromperidol, timiperone, spiperone (butyrophenones), pimozide (a diphenylbutylpiperidine), perospirone, blonanserin (serotonin-dopamine antagonists; SDAs), and asenapine (a MARTA)) significantly suppressed ACh-induced contraction; however, suppression occurred at concentrations substantially exceeding clinically achievable blood levels. The remaining nine antipsychotics (pipamperone (a butyrophenone), sulpiride, sultopride, tiapride, nemonapride (benzamides), risperidone, paliperidone (SDAs), aripiprazole, and brexpiprazole (dopamine partial agonists)) did not inhibit ACh-induced contractions at concentrations up to 10-5 M. These findings suggest that chlorpromazine, levomepromazine, zotepine, olanzapine, quetiapine, and clozapine should be avoided by elderly people with urinary disorders.


Asunto(s)
Acetilcolina/metabolismo , Antipsicóticos/efectos adversos , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos , Acetilcolina/farmacología , Envejecimiento , Animales , Antipsicóticos/uso terapéutico , Clorpromazina/efectos adversos , Antagonistas Colinérgicos/efectos adversos , Clozapina/efectos adversos , Dibenzotiepinas/efectos adversos , Masculino , Trastornos Mentales/complicaciones , Trastornos Mentales/tratamiento farmacológico , Metotrimeprazina/efectos adversos , Olanzapina/efectos adversos , Fumarato de Quetiapina/efectos adversos , Ratas Wistar , Enfermedades Urológicas/complicaciones
13.
Biol Pharm Bull ; 43(3): 493-502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32115508

RESUMEN

The ß-adrenoceptor (ß-AR)-mediated pharmacological effects of catecholamine (CA) metabolites are not well known. We examined the effects of seven CA metabolites on smooth muscle relaxation in mouse and guinea pig (GP) tracheas and rat thoracic aorta. Among them, metadrenaline (MA) significantly relaxed GP trachea (ß2-AR dominant), even in the presence of clorgiline, a monoamine oxidase-A inhibitor. In mouse trachea (ß1-AR dominant), normetadrenaline (NMA) and MA (10-4 M each) apparently did not affect isoprenaline (ISO)-induced relaxation, but significantly inhibited it in the presence of clorgiline. ISO-induced relaxation was also unaffected by 3,4-dihydroxyphenylglycol (DHPG) (10-4 M), but significant suppression was observed with the addition of 3,5-dinitrocatechol, a catechol-O-methyltransferase inhibitor. In GP trachea, NMA, MA, 3,4-dihydroxymandelic acid (DOMA), and DHPG (10-4 M each) significantly augmented ISO-induced relaxation. However, in the presence of clorgiline plus 3,5-dinitrocatechol, both NMA and MA (10-4 M) significantly suppressed ISO-induced relaxation. DHPG (10-4 M) also significantly suppressed ISO-induced relaxation in the presence of 3,5-dinitrocatechol. In rat thoracic aorta, DHPG (10-4 M) significantly suppressed relaxation induced by CGP-12177 A (a ß3-AR partial agonist) in the presence of 3,5-dinitrocatechol plus propranolol. Our findings indicate that 1) MA may possess ß2-AR agonistic action; 2) NMA and MA augment ß2-AR-mediated tracheal relaxation in the absence of CA metabolic inhibitors, though themselves possessing ß1-, ß2-AR antagonistic action (ß2 > ß1); 3) DHPG exhibits ß1-, ß2-, ß3-AR antagonistic action, and this is particularly marked for ß3-AR. Our observations may help explain some of the pathologies associated with pheochromocytoma, which is characterized by increased CA metabolite levels.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Aorta/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Tráquea/efectos de los fármacos , Animales , Carbacol/farmacología , Cobayas , Isoproterenol/farmacología , Masculino , Ratones , Propranolol/farmacología , Ratas , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
14.
Pharmacology ; 105(7-8): 369-376, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31655826

RESUMEN

INTRODUCTION: Benzodiazepine anxiolytics are believed to cause urination disorders due to their anticholinergic effects. OBJECTIVE: This study was carried out to investigate the potential inhibitory effects of 15 clinically available anxiolytics in Japan on acetylcholine (ACh)-induced contractions in rat detrusor smooth muscle (DSM) to predict whether these anxiolytics could induce urination disorders. METHODS: -Effects of anxiolytics on contractions induced by ACh and 80 mmol/L KCl solution in rat DSM and effects of anxiolytics on specific binding of [N-methyl-3H]scopolamine ([3H]NMS) in mouse cerebral cortex were investigated. RESULTS AND CONCLUSIONS: ACh-induced contractions in rat DSM were inhibited by clotiazepam and diazepam (benzodiazepine anxiolytics) at concentrations that were clinically relevant. These contractions were also significantly inhibited by paroxetine, escitalopram (selective serotonin reuptake inhibitors -[SSRIs]), and hydroxyzine (a histamine H1 receptor antagonist), albeit at concentrations that substantially exceeded clinically achievable blood levels. At a concentration of 10-5 mol/L, paroxetine, escitalopram, and hydroxyzine inhibited 80 mmol/L high-KCl solution-induced rat DSM contractions but not clotiazepam and diazepam. Paroxetine, escitalopram, and hydroxyzine also inhibited specific binding of [3H]NMS in mouse cerebral cortex but clotiazepam and diazepam did not. In contrast to the effects of the abovementioned anxiolytics, ACh-induced contractions were not significantly affected by tofisopam, alprazolam, lorazepam, bromazepam, oxazolam, chlordiazepoxide, clonazepam, ethyl loflazepate (benzodiazepine anxiolytics), fluvoxamine (an SSRI), or tandospirone (a serotonin 5-HT1A receptor agonist). These findings suggest that most clinically used anxiolytics are not likely to result in anticholinergic-induced urination disorders within their clinically achievable blood concentration ranges. However, clotiazepam and diazepam may induce urination disorders within their clinical dose ranges via nonanticholinergic inhibition of DSM contractility.


Asunto(s)
Acetilcolina/antagonistas & inhibidores , Ansiolíticos/toxicidad , Benzodiazepinas/toxicidad , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos , Animales , Masculino , Ratones , Contracción Muscular/fisiología , Músculo Liso/fisiología , Ratas , Ratas Wistar , Derivados de Escopolamina/metabolismo , Vejiga Urinaria/fisiología , Trastornos Urinarios/inducido químicamente
15.
Respir Res ; 16: 99, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26289430

RESUMEN

BACKGROUND: Various signals are known to participate in the pathogenesis of lung fibrosis. Our aim was to determine which signal is predominantly mobilized in the early inflammatory phase and thereafter modulates the development of lung fibrosis. METHODS: Mice received a single dose of 3 mg/kg body weight of bleomycin (BLM) and were sacrificed at designated days post-instillation (dpi). Lung homogenates and sections from mice in the early inflammatory phase were subjected to phospho-protein array analysis and immunofluorescence studies, respectively. Bronchoalveolar lavage fluid (BALF) from mice was subjected to an enzyme-linked immunosorbent assay (EIA) for interleukin (IL)-6 and evaluation of infiltrated cell populations. The effects of endogenous and exogenous IL-6 on the BLM-induced apoptotic signal in A549 cells and type 2 pneumocytes were elucidated. In addition, the effect of IL-6-neutralizing antibody on BLM-induced lung injury was evaluated. RESULTS: Phospho-protein array revealed that BLM induced phosphorylation of molecules downstream of the IL-6 receptor such as Stat3 and Akt in the lung at 3 dpi. At 3 dpi, immunofluorescence studies showed that signals of phospho-Stat3 and -Akt were localized in type 2 pneumocytes, and that BLM-induced IL-6-like immunoreactivity was predominantly observed in type 2 pneumocytes. Activation of caspases in BLM-treated A549 cells and type 2 pneumocytes was augmented by application of IL-6-neutralizing antibody, a PI3K inhibitor or a Stat3 inhibitor. EIA revealed that BLM-induced IL-6 in BALF was biphasic, with the first increase from 0.5 to 3 dpi followed by the second increase from 8 to 10 dpi. Blockade of the first increase of IL-6 by IL-6-neutralizing antibody enhanced apoptosis of type 2 pneumocytes and neutrophilic infiltration and markedly accelerated fibrosis in the lung. In contrast, blockade of the second increase of IL-6 by IL-6-neutralizing antibody ameliorated lung fibrosis. CONCLUSIONS: The present study demonstrated that IL-6 could play a bidirectional role in the pathogenesis of lung fibrosis. In particular, upregulation of IL-6 at the early inflammatory stage of BLM-injured lung has antifibrotic activity through regulating the cell fate of type 2 pneumocytes in an autocrine/paracrine manner.


Asunto(s)
Interleucina-6/fisiología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Animales , Apoptosis/fisiología , Líquido del Lavado Bronquioalveolar , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Lab Invest ; 94(11): 1247-59, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25199053

RESUMEN

Cell-based therapy is recognized as one of potential therapeutic options for lung fibrosis. However, preparing stem/progenitor cells is complicated and not always efficient. Here, we show easily prepared cell populations having therapeutic capacity for lung inflammatory disease that are named as 'lung mixed culture-derived epithelial cells' (LMDECs). LMDECs expressed surfactant protein (SP)-C and gave rise to type I alveolar epithelial cells (AECs) in vitro and in vivo that partly satisfied type II AEC-like characteristics. An intratracheal delivery of not HEK 293 cells but LMDECs to the lung ameliorated bleomycin (BLM)-induced lung injury. A comprehensive analysis of bronchoalveolar fluid by western blot array revealed that LMDEC engraftment could improve the microenvironment in the BLM-instilled lung in association with stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 signaling axis. SDF-1 enhanced both migration activity and differentiating efficiency of LMDECs. Further classification of LMDECs by flow cytometric study showed that a major population of LMDECs (LMDEC(Maj), 84% of total LMDECs) was simultaneously SP-C(+), CD44(+), CD45(+), and hematopoietic cell lineage(+) and that LMDECs included bronchioalveolar stem cells (BASCs) showing SP-C(+)Clara cell secretory protein(+)stem cell antigen (Sca)1(+) as a small population (1.8% of total LMDECs). CD44(+)-sorted LMDEC(Maj) and Sca1(+)-sorted LMDECs equally ameliorated fibrosis induced by BLM like LMDECs did. However, infiltrated neutrophils were observed in Sca1(+)-sorted LMDEC-treated alveoli that was not typical in LMDEC(Maj)- or LMDEC-treated alveoli. These findings suggest that the protective effect of LMDECs against BLM-induced lung injury depends greatly on that of LMDEC(Maj). Furthermore, the cells expressing both alveolar epithelial and hematopoietic cell lineage markers (SP-C(+)CD45(+)) that have characteristics corresponding to LMDEC(Maj) were observed in the alveoli of lung and increased approximately threefold in response to BLM instillation. Taken together, LMDECs newly classified in the present study are easily culture expanded and have a potential role in future regenerative cell therapy for pulmonary fibrosis.


Asunto(s)
Técnicas de Cultivo de Célula , Células Epiteliales/trasplante , Fibrosis Pulmonar/terapia , Animales , Bleomicina , Microambiente Celular , Femenino , Masculino , Ratones Endogámicos C57BL
17.
J Recept Signal Transduct Res ; 34(4): 299-306, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24593255

RESUMEN

CONTEXT: There are few short-term mouse models of chronic obstructive pulmonary disease (COPD) mimicking the human disease. In addition, p38 is recently recognized as a target for the treatment of COPD. However, the precise mechanism how p38 contributes to the pathogenesis of COPD is still unknown. OBJECTIVE: We attempted to create a new mouse model for COPD by intra-tracheal administration of a mixture of lipopolysaccharide (LPS) and cigarette smoke solution (CSS), and investigated the importance of the p38 mitogen-activated protein kinase (p38) pathway in the pathogenesis of COPD. METHODS: Mice were administered LPS + CSS once a day on days 0-4 and 7-11. Thereafter, CSS alone was administered to mice once a day on days 14-18. On day 28, histopathological changes of the lung were evaluated, and bronchoalveolar lavage fluid (BALF) was subjected to western blot array for cytokines. Transgenic (TG) mice expressing a constitutive-active form of MKK6, a p38-specific activator in the lung, were subjected to our experimental protocol of COPD model. RESULTS: LPS + CSS administration induced enlargement of alveolar air spaces and destruction of lung parenchyma. BALF analyses of the LPS + CSS group revealed an increase in expression levels of several cytokines involved in the pathogenesis of human COPD. These results suggest that our experimental protocol can induce COPD in mice. Likewise, histopathological findings of the lung and induction of cytokines in BALF from MKK6 c.a.-TG mice were more marked than those in WT mice. CONCLUSION: In a new experimental COPD mouse model, p38 accelerates the development of emphysema.


Asunto(s)
Enfisema/genética , MAP Quinasa Quinasa 6/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Modelos Animales de Enfermedad , Enfisema/etiología , Enfisema/patología , Humanos , Lipopolisacáridos/toxicidad , MAP Quinasa Quinasa 6/genética , Ratones , Ratones Transgénicos , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/patología , Fumar/efectos adversos , Productos de Tabaco/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis
18.
Sci Rep ; 14(1): 11720, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778154

RESUMEN

We studied the inhibitory actions of docosahexaenoic acid (DHA) on the contractions induced by carbachol (CCh), angiotensin II (Ang II), and bradykinin (BK) in guinea pig (GP) gastric fundus smooth muscle (GFSM), particularly focusing on the possible inhibition of store-operated Ca2+ channels (SOCCs). DHA significantly suppressed the contractions induced by CCh, Ang II, and BK; the inhibition of BK-induced contractions was the strongest. Although all contractions were greatly dependent on external Ca2+, more than 80% of BK-induced contractions remained even in the presence of verapamil, a voltage-dependent Ca2+ channel inhibitor. BK-induced contractions in the presence of verapamil were not suppressed by LOE-908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) but were suppressed by SKF-96365 (an SOCC and ROCC inhibitor). BK-induced contractions in the presence of verapamil plus LOE-908 were strongly inhibited by DHA. Furthermore, DHA inhibited GFSM contractions induced by cyclopiazonic acid (CPA) in the presence of verapamil plus LOE-908 and inhibited the intracellular Ca2+ increase due to Ca2+ addition in CPA-treated 293T cells. These findings indicate that Ca2+ influx through SOCCs plays a crucial role in BK-induced contraction in GP GFSM and that this inhibition by DHA is a new mechanism by which this fatty acid inhibits GFSM contractions.


Asunto(s)
Angiotensina II , Bradiquinina , Carbacol , Ácidos Docosahexaenoicos , Fundus Gástrico , Contracción Muscular , Músculo Liso , Animales , Cobayas , Ácidos Docosahexaenoicos/farmacología , Bradiquinina/farmacología , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Carbacol/farmacología , Contracción Muscular/efectos de los fármacos , Angiotensina II/farmacología , Fundus Gástrico/efectos de los fármacos , Fundus Gástrico/fisiología , Fundus Gástrico/metabolismo , Verapamilo/farmacología , Calcio/metabolismo , Masculino , Humanos , Canales de Calcio/metabolismo , Células HEK293 , Bloqueadores de los Canales de Calcio/farmacología , Imidazoles/farmacología
19.
J Biol Chem ; 287(29): 24228-38, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22637476

RESUMEN

One of the mitogen-activated protein kinases, p38, has been found to play a crucial role in various inflammatory responses. In this study, we analyzed the roles of p38α in multiple sclerosis, using an animal model, experimental autoimmune encephalomyelitis (EAE). p38α(+/-) mice (p38α(-/-) showed embryonic lethality) showed less severe neurological signs than WT mice. Adoptive transfer of lymph node cells (LNC) from sensitized WT mice with MOG(35-55) to naive WT-induced EAE was much more severe compared with the case using LNC from sensitized p38α(+/-) mice. Comprehensive analysis of cytokines from MOG(35-55)-challenged LNC by Western blot array revealed that production of IL-17 was significantly reduced by a single copy disruption of the p38α gene or a p38 inhibitor. Likewise, by a luciferase reporter assay, an electrophoresis mobility shift assay, and characterization of the relationship between p38 activity and IL-17 mRNA expression, we confirmed that p38 positively regulates transcription of the Il17 gene. Furthermore, oral administration of a highly specific p38α inhibitor (UR-5269) to WT mice at the onset of EAE markedly suppressed the progression of EAE compared with a vehicle group. These results suggest that p38α participates in the pathogenesis of EAE through IL-17 induction.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Animales , Ensayo de Cambio de Movilidad Electroforética , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/genética , Inhibidores Enzimáticos/uso terapéutico , Femenino , Interleucina-17/genética , Interleucina-17/metabolismo , Masculino , Ratones , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/genética , Regiones Promotoras Genéticas , Estabilidad del ARN/genética
20.
Sci Rep ; 12(1): 2783, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177680

RESUMEN

In this study, we investigated the effects of platelet-activating factor (PAF) on the basal tone and spontaneous contractile activities of guinea pig (GP) and mouse urinary bladder (UB) smooth muscle (UBSM) tissues to determine whether PAF could induce UBSM tissue contraction. In addition, we examined the mRNA expression of the PAF receptor, PAF-synthesizing enzyme (lysophosphatidylcholine acyltransferase, LPCAT), and PAF-degrading enzyme (PAF acetylhydrolase, PAF-AH) in GP and mouse UB tissues using RT-qPCR. PAF (10-9-10-6 M) strongly enhanced the basal tone and spontaneous contractile activities (amplitude and frequency) of GP and mouse UBSM tissues in a concentration-dependent manner. The enhancing effects of PAF (10-6 M) on both GP and mouse UBSM contractile activities were strongly suppressed by pretreatment with apafant (a PAF receptor antagonist, GP: 10-5 M; mouse: 3 × 10-5 M). The PAF receptor (Ptafr), LPCAT (Lpcat1, Lpcat2), and PAF-AH (Pafah1b3, Pafah2) mRNAs were detected in GP and mouse UB tissues. These findings reveal that PAF strongly enhances the contractile mechanical activities of UBSM tissues through its receptor and suggest that the PAF-synthesizing and -degrading system exists in UBSM tissues. PAF may serve as both an endogenous UBSM constrictor and an endogenous mediator leading to detrusor overactivity.


Asunto(s)
Contracción Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Factor de Activación Plaquetaria/farmacología , Vejiga Urinaria/metabolismo , Animales , Cobayas , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA