Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Chemphyschem ; 24(24): e202300868, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38047520

RESUMEN

The front cover artwork is provided by CBio3 Laboratory and Computational Toxicology and Artificial Intelligence Laboratory (LaToxCIA) both at the University of Costa Rica. The image shows the formalisms commonly used to determine the pH-dependent lipophilicity profile of ionizable compounds. Herein, for 4-phenylbutylamine it is accurately predicted when the apparent ion pair partitioning is considered. Read the full text of the Research Article at 10.1002/cphc.202300548.

2.
Chemphyschem ; 24(24): e202300548, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37788220

RESUMEN

Lipophilicity is a physicochemical property with wide relevance in drug design, computational biology, food, environmental and medicinal chemistry. Lipophilicity is commonly expressed as the partition coefficient for neutral molecules, whereas for molecules with ionizable groups, the distribution coefficient (D) at a given pH is used. The logDpH is usually predicted using a pH correction over the logPN using the pKa of ionizable molecules, while often ignoring the apparent ion pair partitioning ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ . In this work, we studied the impact of ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ on the prediction of both the experimental lipophilicity of small molecules and experimental lipophilicity-based applications and metrics such as lipophilic efficiency (LipE), distribution of spiked drugs in milk products, and pH-dependent partition of water contaminants in synthetic passive samples such as silicones. Our findings show that better predictions are obtained by considering the apparent ion pair partitioning. In this context, we developed machine learning algorithms to determine the cases that P I app ${P_{\rm{I}}^{{\rm{app}}} }$ should be considered. The results indicate that small, rigid, and unsaturated molecules with logPN close to zero, which present a significant proportion of ionic species in the aqueous phase, were better modeled using the apparent ion pair partitioning ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ . Finally, our findings can serve as guidance to the scientific community working in early-stage drug design, food, and environmental chemistry.

3.
Phys Chem Chem Phys ; 25(27): 17952-17965, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37376995

RESUMEN

In recent years the use of partition systems other than the widely used biphasic n-octanol/water has received increased attention to gain insight into the molecular features that dictate the lipophilicity of compounds. Thus, the difference between n-octanol/water and toluene/water partition coefficients has proven to be a valuable descriptor to study the propensity of molecules to form intramolecular hydrogen bonds and exhibit chameleon-like properties that modulate solubility and permeability. In this context, this study reports the experimental toluene/water partition coefficients (log Ptol/w) for a series of 16 drugs that were selected as an external test set in the framework of the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) blind challenge. This external set has been used by the computational community to calibrate their methods in the current edition (SAMPL9) of this contest. Furthermore, the study also investigates the performance of two computational strategies for the prediction of log Ptol/w. The first relies on the development of two machine learning (ML) models, which are built up by combining the selection of 11 molecular descriptors in conjunction with either the multiple linear regression (MLR) or the random forest regression (RFR) model to target a dataset of 252 experimental log Ptol/w values. The second consists of the parametrization of the IEF-PCM/MST continuum solvation model from B3LYP/6-31G(d) calculations to predict the solvation free energies of 163 compounds in toluene and benzene. The performance of the ML and IEF-PCM/MST models has been calibrated against external test sets, including the compounds that define the SAMPL9 log Ptol/w challenge. The results are used to discuss the merits and weaknesses of the two computational approaches.

4.
J Comput Aided Mol Des ; 35(8): 923-931, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34251523

RESUMEN

A multiple linear regression model called MLR-3 is used for predicting the experimental n-octanol/water partition coefficient (log PN) of 22 N-sulfonamides proposed by the organizers of the SAMPL7 blind challenge. The MLR-3 method was trained with 82 molecules including drug-like sulfonamides and small organic molecules, which resembled the main functional groups present in the challenge dataset. Our model, submitted as "TFE-MLR", presented a root-mean-square error of 0.58 and mean absolute error of 0.41 in log P units, accomplishing the highest accuracy, among empirical methods and also in all submissions based on the ranked ones. Overall, the results support the appropriateness of multiple linear regression approach MLR-3 for computing the n-octanol/water partition coefficient in sulfonamide-bearing compounds. In this context, the outstanding performance of empirical methodologies, where 75% of the ranked submissions achieved root-mean-square errors < 1 log P units, support the suitability of these strategies for obtaining accurate and fast predictions of physicochemical properties as partition coefficients of bioorganic compounds.


Asunto(s)
1-Octanol/química , Simulación por Computador , Modelos Químicos , Teoría Cuántica , Termodinámica , Agua/química , Modelos Lineales , Solubilidad
5.
J Comput Aided Mol Des ; 35(7): 803-811, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34244905

RESUMEN

Within the scope of SAMPL7 challenge for predicting physical properties, the Integral Equation Formalism of the Miertus-Scrocco-Tomasi (IEFPCM/MST) continuum solvation model has been used for the blind prediction of n-octanol/water partition coefficients and acidity constants of a set of 22 and 20 sulfonamide-containing compounds, respectively. The log P and pKa were computed using the B3LPYP/6-31G(d) parametrized version of the IEFPCM/MST model. The performance of our method for partition coefficients yielded a root-mean square error of 1.03 (log P units), placing this method among the most accurate theoretical approaches in the comparison with both globally (rank 8th) and physical (rank 2nd) methods. On the other hand, the deviation between predicted and experimental pKa values was 1.32 log units, obtaining the second best-ranked submission. Though this highlights the reliability of the IEFPCM/MST model for predicting the partitioning and the acid dissociation constant of drug-like compounds compound, the results are discussed to identify potential weaknesses and improve the performance of the method.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Dipéptidos/química , Programas Informáticos/estadística & datos numéricos , Sulfonamidas/química , Simulación por Computador/estadística & datos numéricos , Humanos , Ligandos , Modelos Estadísticos , Octanoles/química , Teoría Cuántica , Solubilidad , Sulfonamidas/uso terapéutico , Termodinámica , Agua/química
6.
J Comput Aided Mol Des ; 34(4): 443-451, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31776809

RESUMEN

The IEFPCM/MST continuum solvation model is used for the blind prediction of n-octanol/water partition of a set of 11 fragment-like small molecules within the SAMPL6 Part II Partition Coefficient Challenge. The partition coefficient of the neutral species (log P) was determined using an extended parametrization of the B3LYP/6-31G(d) version of the Miertus-Scrocco-Tomasi continuum solvation model in n-octanol. Comparison with the experimental data provided for partition coefficients yielded a root-mean square error (rmse) of 0.78 (log P units), which agrees with the accuracy reported for our method (rmse = 0.80) for nitrogen-containing heterocyclic compounds. Out of the 91 sets of log P values submitted by the participants, our submission is within those with an rmse < 1 and among the four best ranked physical methods. The largest errors involve three compounds: two with the largest positive deviations (SM13 and SM08), and one with the largest negative deviations (SM15). Here we report the potentiometric determination of the log P for SM13, leading to a value of 3.62 ± 0.02, which is in better agreement with most empirical predictions than the experimental value reported in SAMPL6. In addition, further inclusion of several conformations for SM08 significantly improved our results. Inclusion of these refinements led to an overall error of 0.51 (log P units), which supports the reliability of the IEFPCM/MST model for predicting the partitioning of neutral compounds.


Asunto(s)
Octanoles/química , Termodinámica , Agua/química , Simulación por Computador , Compuestos Heterocíclicos/química , Conformación Molecular , Teoría Cuántica , Solventes/química
7.
Mol Inform ; 43(7): e202400052, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994633

RESUMEN

Compound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product-likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product-likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small-molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Productos Biológicos/farmacología , América Latina , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Descubrimiento de Drogas , Quimioinformática , Bases de Datos de Compuestos Químicos
8.
Antibiotics (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978417

RESUMEN

Antibiotic resistance (ABR) has direct and indirect repercussions on public health and threatens to decrease the therapeutic effect of antibiotic treatments and lead to more infection-related deaths. There are several mechanisms by which ABR can be transferred from one microorganism to another. The risk of transfer is often related to environmental factors. The food supply chain offers conditions where ABR gene transfer can occur by multiple pathways, which generates concerns regarding food safety. This work reviews mechanisms involved in ABR gene transfer, potential transmission routes in the food supply chain, the prevalence of antibiotic residues in food and ABR organisms in processing lines and final products, and implications for public health. Finally, the paper will elaborate on the application of antimicrobial peptides as new alternatives to antibiotics that might countermeasure ABR and is compatible with current food trends.

9.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37895859

RESUMEN

The number of databases of natural products (NPs) has increased substantially. Latin America is extraordinarily rich in biodiversity, enabling the identification of novel NPs, which has encouraged both the development of databases and the implementation of those that are being created or are under development. In a collective effort from several Latin American countries, herein we introduce the first version of the Latin American Natural Products Database (LANaPDB), a public compound collection that gathers the chemical information of NPs contained in diverse databases from this geographical region. The current version of LANaPDB unifies the information from six countries and contains 12,959 chemical structures. The structural classification showed that the most abundant compounds are the terpenoids (63.2%), phenylpropanoids (18%) and alkaloids (11.8%). From the analysis of the distribution of properties of pharmaceutical interest, it was observed that many LANaPDB compounds satisfy some drug-like rules of thumb for physicochemical properties. The concept of the chemical multiverse was employed to generate multiple chemical spaces from two different fingerprints and two dimensionality reduction techniques. Comparing LANaPDB with FDA-approved drugs and the major open-access repository of NPs, COCONUT, it was concluded that the chemical space covered by LANaPDB completely overlaps with COCONUT and, in some regions, with FDA-approved drugs. LANaPDB will be updated, adding more compounds from each database, plus the addition of databases from other Latin American countries.

10.
Eur J Pharm Sci ; 168: 106066, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767947

RESUMEN

A wide set of well-known drugs, most of them included in the Abraham´s reference database, covering a wide variety of chemical structures and therapeutical functionalities were chosen in order to determine some molecular properties from solvent/water partition measurements. Partition data from aqueous solutions and four different solvents (n-dodecane, toluene, chloroform and n-octanol) were measured and reported. From them, Abraham´s molecular descriptors of selected compounds (A, B and S, accounting for hydrogen bond donor, hydrogen bond acceptor and dipolarity/polaritzability, respectively) were estimated. A and B values derived from the experimental measurements strongly agree with the tabulated ones showing the suitability of the used procedure to achieve reliable values for new molecules. However, obtained S values differ from those previously reported for several compounds. Moreover, values for a new indicator of the propensity to form intramolecular hydrogen bonds (Δlog Poct-tol) were estimated from the experimental data and also calculated according to both, the Abraham´s model and the molecular structures (SMD). The quality of both series of calculated descriptors was evaluated by contrast with the experimental values and satisfactory results were obtained in both instances. Thus, the Abraham´s way is useful when molecular descriptors are available but very good estimations can be achieved by SMD, which only requires the drug´s molecular structure.


Asunto(s)
Preparaciones Farmacéuticas , Agua , 1-Octanol , Enlace de Hidrógeno , Solventes
11.
ACS Omega ; 7(17): 14897-14909, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557697

RESUMEN

The design of new pharmaceutical solids with improved physical and chemical properties can be reached through in-detail knowledge of the noncovalent intermolecular interactions between the molecules in the context of crystal packing. Although crystallization from solutions is well-known for obtaining new solids, the effect of some variables on crystallization is not yet thoroughly understood. Among these variables, solvents are noteworthy. In this context, the present study aimed to investigate the effect of ethanol (EtOH), acetonitrile (MeCN), and acetone (ACTN) on obtaining irbesartan (IBS) crystal forms with 2,3-dibromosuccinic acid. Crystal structures were solved by single-crystal diffraction, and the intermolecular interactions were analyzed using the Hirshfeld surfaces analysis. The characterization of physicochemical properties was carried out by powder X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), thermal analysis, and solution-state NMR techniques. Two different IBS salts were obtained, one from MeCN and ACTN (compound 1) and a different one from EtOH (compound 2). The experimental results were in agreement with the findings obtained through quantum mechanics continuum solvation models. Compound 1 crystallized as a monoclinic system P21/c, whereas compound 2 in a triclinic system P1̅. In both structures, a net of strong hydrogen bonds is present, and their existence was confirmed by the FT-IR results. In addition, the IBS cation acts as a H-bond donor through the N1 and N6 nitrogen atoms which interact with the bromide anion and the water molecule O1W in compound 1. Meanwhile, N1 and N6 nitrogen atoms interact with the oxygen atoms provided by two symmetry-related 2,3-dibromo succinate anions in compound 2. Solution-state NMR data agreed with the protonation of the imidazolone ring in the crystal structure of compound 1. Both salts presented a different thermal behavior not only in melting temperature but also in thermal stability.

12.
Sci Rep ; 11(1): 23003, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34837010

RESUMEN

In SARS-CoV-2 replication complex, the Non-structural protein 9 (Nsp9) is an important RNA binding subunit in the RNA-synthesizing machinery. The dimeric forms of coronavirus Nsp9 increase their nucleic acid binding affinity and the N-finger motif appears to play a critical role in dimerization. Here, we present a structural, lipophilic and energetic study about the Nsp9 dimer of SARS-CoV-2 through computational methods that complement hydrophobicity scales of amino acids with molecular dynamics simulations. Additionally, we presented a virtual N-finger mutation to investigate whether this motif contributes to dimer stability. The results reveal for the native dimer that the N-finger contributes favorably through hydrogen bond interactions and two amino acids bellowing to the hydrophobic region, Leu45 and Leu106, are crucial in the formation of the cavity for potential drug binding. On the other hand, Gly100 and Gly104, are responsible for stabilizing the α-helices and making the dimer interface remain stable in both, native and mutant (without N-finger motif) systems. Besides, clustering results for the native dimer showed accessible cavities to drugs. In addition, the energetic and lipophilic analysis reveal that the higher binding energy in the native dimer can be deduced since it is more lipophilic than the mutant one, increasing non-polar interactions, which is in line with the result of MM-GBSA and SIE approaches where the van der Waals energy term has the greatest weight in the stability of the native dimer. Overall, we provide a detailed study on the Nsp9 dimer of SARS-CoV-2 that may aid in the development of new strategies for the treatment and prevention of COVID-19.


Asunto(s)
SARS-CoV-2 , COVID-19 , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Proteínas no Estructurales Virales
13.
J Phys Chem Lett ; 10(4): 883-889, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30741551

RESUMEN

Lipophilicity is a fundamental property to characterize the structure and function of proteins, motivating the development of lipophilicity scales. We report a versatile strategy to derive a pH-adapted scale that relies on theoretical estimates of distribution coefficients from conformational ensembles of amino acids. This is accomplished by using an accurately parametrized version of the IEFPCM/MST continuum solvation model as an effective way to describe the partitioning between n-octanol and water, in conjunction with a formalism that combines partition coefficients of neutral and ionic species of residues and the corresponding p Ka values of ionizable groups. Two weighting schemes are considered to derive solvent-like and protein-like scales, which have been calibrated by comparison with other experimental scales developed in different chemical/biological environments and pH conditions as well as by examining properties such as the retention time of small peptides and the recognition of antigenic peptides. A straightforward extension to nonstandard residues is enabled by this efficient methodological strategy.

14.
J Phys Chem B ; 121(42): 9868-9880, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28957625

RESUMEN

Hydrophobicity is a key physicochemical descriptor used to understand the biological profile of (bio)organic compounds as well as a broad variety of biochemical, pharmacological, and toxicological processes. This property is estimated from the partition coefficient between aqueous and nonaqueous environments for neutral compounds (PN) and corrected for the pH-dependence of ionizable compounds as the distribution coefficient (D). Here, we have extended the parametrization of the Miertus-Scrocco-Tomasi continuum solvation model in n-octanol to nitrogen-containing heterocyclic compounds, as they are present in many biologically relevant molecules (e.g., purines and pyrimidines bases, amino acids, and drugs), to obtain accurate log PN values for these molecules. This refinement also includes solvation calculations for ionic species in n-octanol with the aim of reproducing the experimental partition of ionic compounds (PI). Finally, the suitability of different formalisms to estimate the distribution coefficient for a wide range of pH values has been examined for a set of small acidic and basic compounds. The results indicate that in general the simple pH-dependence model of the ionizable compound in water suffices to predict the partitioning at or around physiological pH. However, at extreme pH values, where ionic species are predominant, more elaborate models provide a better prediction of the n-octanol/water distribution coefficient, especially for amino acid analogues. Finally, the results also show that these formalisms are better suited to reproduce the experimental pH-dependent distribution curves of log D for both acidic and basic compounds as well as for amino acid analogues.


Asunto(s)
1-Octanol/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Bibliotecas de Moléculas Pequeñas/química , Solventes/química , Concentración de Iones de Hidrógeno , Solubilidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA