Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533639

RESUMEN

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Asunto(s)
Ritmo Circadiano , Miocitos Cardíacos , Receptores de Glucocorticoides , Animales , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Ratones , Miocitos Cardíacos/metabolismo , Masculino , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/genética , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Conexina 43/metabolismo , Conexina 43/genética , Ratones Noqueados , Potenciales de Acción
2.
PLoS Comput Biol ; 18(4): e1009388, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35476614

RESUMEN

Myocardial ischemia, injury and infarction (MI) are the three stages of acute coronary syndrome (ACS). In the past two decades, a great number of studies focused on myocardial ischemia and MI individually, and showed that the occurrence of reentrant arrhythmias is often associated with myocardial ischemia or MI. However, arrhythmogenic mechanisms in the tissue with various degrees of remodeling in the ischemic heart have not been fully understood. In this study, biophysical detailed single-cell models of ischemia 1a, 1b, and MI were developed to mimic the electrophysiological remodeling at different stages of ACS. 2D tissue models with different distributions of ischemia and MI areas were constructed to investigate the mechanisms of the initiation of reentrant waves during the progression of ischemia. Simulation results in 2D tissues showed that the vulnerable windows (VWs) in simultaneous presence of multiple ischemic conditions were associated with the dynamics of wave propagation in the tissues with each single pathological condition. In the tissue with multiple pathological conditions, reentrant waves were mainly induced by two different mechanisms: one is the heterogeneity along the excitation wavefront, especially the abrupt variation in conduction velocity (CV) across the border of ischemia 1b and MI, and the other is the decreased safe factor (SF) for conduction at the edge of the tissue in MI region which is attributed to the increased excitation threshold of MI region. Finally, the reentrant wave was observed in a 3D model with a scar reconstructed from MRI images of a MI patient. These comprehensive findings provide novel insights for understanding the arrhythmic risk during the progression of myocardial ischemia and highlight the importance of the multiple pathological stages in designing medical therapies for arrhythmias in ischemia.


Asunto(s)
Arritmias Cardíacas , Isquemia Miocárdica , Electrofisiología Cardíaca , Simulación por Computador , Humanos , Isquemia , Isquemia Miocárdica/complicaciones
3.
Biochem Biophys Res Commun ; 596: 49-55, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35114584

RESUMEN

The T618I KCNH2-encoded hERG mutation is the most frequently observed mutation in genotyped cases of the congenital short QT syndrome (SQTS), a cardiac condition associated with ventricular fibrillation and sudden death. Most T618I hERG carriers exhibit a pronounced U wave on the electrocardiogram and appear vulnerable to ventricular, but not atrial fibrillation (AF). The basis for these effects is unclear. This study used the action potential (AP) voltage clamp technique to determine effects of the T618I mutation on hERG current (IhERG) elicited by APs from different cardiac regions. Whole-cell patch-clamp recordings were made at 37 °C of IhERG from hERG-transfected HEK-293 cells. Maximal IhERG during a ventricular AP command was increased ∼4-fold for T618I IhERG and occurred much earlier during AP repolarization. The mutation also increased peak repolarizing currents elicited by Purkinje fibre (PF) APs. Maximal wild-type (WT) IhERG current during the PF waveform was 87.2 ± 4.5% of maximal ventricular repolarizing current whilst for the T618I mutant, the comparable value was 47.7 ± 2.7%. Thus, the T618I mutation exacerbated differences in repolarizing IhERG between PF and ventricular APs; this could contribute to heterogeneity of ventricular-PF repolarization and consequently to the U waves seen in T618I carriers. The comparatively shorter duration and lack of pronounced plateau of the atrial AP led to a smaller effect of the T618I mutation during the atrial AP, which may help account for the lack of reported AF in T618I carriers. Use of a paired ventricular AP protocol revealed an alteration to protective IhERG transients that affect susceptibility to premature excitation late in AP repolarization/early in diastole. These observations may help explain altered arrhythmia susceptibility in this form of the SQTS.


Asunto(s)
Potenciales de Acción/genética , Arritmias Cardíacas/genética , Canal de Potasio ERG1/genética , Mutación , Técnicas de Placa-Clamp/métodos , Electrocardiografía/métodos , Células HEK293 , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Ramos Subendocárdicos/metabolismo
4.
PLoS Comput Biol ; 17(3): e1008177, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690622

RESUMEN

Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the "funny" current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.


Asunto(s)
Relojes Biológicos , Simulación por Computador , Potenciales de Acción/fisiología , Animales , Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Modelos Biológicos , Ingeniería de Tejidos
5.
J Chem Inf Model ; 62(17): 4008-4017, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36006049

RESUMEN

The structure of a protein is of great importance in determining its functionality, and this characteristic can be leveraged to train data-driven prediction models. However, the limited number of available protein structures severely limits the performance of these models. AlphaFold2 and its open-source data set of predicted protein structures have provided a promising solution to this problem, and these predicted structures are expected to benefit the model performance by increasing the number of training samples. In this work, we constructed a new data set that acted as a benchmark and implemented a state-of-the-art structure-based approach for determining whether the performance of the function prediction model can be improved by putting additional AlphaFold-predicted structures into the training set and further compared the performance differences between two models separately trained with real structures only and AlphaFold-predicted structures only. Experimental results indicated that structure-based protein function prediction models could benefit from virtual training data consisting of AlphaFold-predicted structures. First, model performances were improved in all three categories of Gene Ontology terms (GO terms) after adding predicted structures as training samples. Second, the model trained only on AlphaFold-predicted virtual samples achieved comparable performances to the model based on experimentally solved real structures, suggesting that predicted structures were almost equally effective in predicting protein functionality.


Asunto(s)
Proteínas , Proteínas/química
6.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457119

RESUMEN

A number of distinct electrophysiological mechanisms that modulate the myogenic spontaneous pacemaker activity in the sinoatrial node (SAN) of the mammalian heart have been investigated extensively. There is agreement that several (3 or 4) different transmembrane ionic current changes (referred to as the voltage clock) are involved; and that the resulting net current interacts with direct and indirect effects of changes in intracellular Ca2+ (the calcium clock). However, significant uncertainties, and important knowledge gaps, remain concerning the functional roles in SAN spontaneous pacing of many of the individual ion channel- or exchanger-mediated transmembrane current changes. We report results from patch clamp studies and mathematical modeling of the hyperpolarization-activated current, If, in the generation/modulation of the diastolic depolarization, or pacemaker potential, produced by individual myocytes that were enzymatically isolated from the adult mouse sinoatrial node (SAN). Amphotericin-mediated patch microelectrode recordings at 35 °C were made under control conditions and in the presence of 5 or 10 nM isoproterenol (ISO). These sets of results were complemented and integrated with mathematical modeling of the current changes that take place in the range of membrane potentials (-70 to -50 mV), which corresponds to the 'pacemaker depolarization' in the adult mouse SAN. Our results reveal a very small, but functionally important, approximately steady-state or time-independent current generated by residual activation of If channels that are expressed in these pacemaker myocytes. Recordings of the pacemaker depolarization and action potential, combined with measurements of changes in If, and the well-known increases in the L-type Ca2+ current, ICaL, demonstrated that ICaL activation, is essential for myogenic pacing. Moreover, after being enhanced (approximately 3-fold) by 5 or 10 nM ISO, ICaL contributes significantly to the positive chronotropic effect. Our mathematical model has been developed in an attempt to better understand the underlying mechanisms for the pacemaker depolarization and action potential in adult mouse SAN myocytes. After being updated with our new experimental data describing If, our simulations reveal a novel functional component of If in adult mouse SAN. Computational work carried out with this model also confirms that in the presence of ISO the residual activation of If and opening of ICaL channels combine to generate a net current change during the slow diastolic depolarization phase that is essential for the observed accelerated pacemaking rate of these SAN myocytes.


Asunto(s)
Miocitos Cardíacos , Nodo Sinoatrial , Potenciales de Acción , Animales , Cationes/farmacología , Canales Iónicos/fisiología , Isoproterenol/farmacología , Mamíferos , Ratones , Miocitos Cardíacos/fisiología
7.
PLoS Comput Biol ; 16(7): e1008048, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32658888

RESUMEN

Heart failure (HF) is associated with an increased propensity for atrial fibrillation (AF), causing higher mortality than AF or HF alone. It is hypothesized that HF-induced remodelling of atrial cellular and tissue properties promotes the genesis of atrial action potential (AP) alternans and conduction alternans that perpetuate AF. However, the mechanism underlying the increased susceptibility to atrial alternans in HF remains incompletely elucidated. In this study, we investigated the effects of how HF-induced atrial cellular electrophysiological (with prolonged AP duration) and tissue structural (reduced cell-to-cell coupling caused by atrial fibrosis) remodelling can have an effect on the generation of atrial AP alternans and their conduction at the cellular and one-dimensional (1D) tissue levels. Simulation results showed that HF-induced atrial electrical remodelling prolonged AP duration, which was accompanied by an increased sarcoplasmic reticulum (SR) Ca2+ content and Ca2+ transient amplitude. Further analysis demonstrated that HF-induced atrial electrical remodelling increased susceptibility to atrial alternans mainly due to the increased sarcoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ reuptake, modulated by increased phospholamban (PLB) phosphorylation, and the decreased transient outward K+ current (Ito). The underlying mechanism has been suggested that the increased SR Ca2+ content and prolonged AP did not fully recover to their previous levels at the end of diastole, resulting in a smaller SR Ca2+ release and AP in the next beat. These produced Ca2+ transient alternans and AP alternans, and further caused AP alternans and Ca2+ transient alternans through Ca2+→AP coupling and AP→Ca2+ coupling, respectively. Simulation of a 1D tissue model showed that the combined action of HF-induced ion channel remodelling and a decrease in cell-to-cell coupling due to fibrosis increased the heart tissue's susceptibility to the formation of spatially discordant alternans, resulting in an increased functional AP propagation dispersion, which is pro-arrhythmic. These findings provide insights into how HF promotes atrial arrhythmia in association with atrial alternans.


Asunto(s)
Remodelación Atrial , Insuficiencia Cardíaca/fisiopatología , Potenciales de Acción , Algoritmos , Animales , Fibrilación Atrial/fisiopatología , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Simulación por Computador , Perros , Conductividad Eléctrica , Atrios Cardíacos/fisiopatología , Ventrículos Cardíacos/fisiopatología , Humanos , Ratones , Modelos Cardiovasculares , Contracción Miocárdica , Miocitos Cardíacos/patología , Fosforilación , Retículo Sarcoplasmático/metabolismo
8.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946248

RESUMEN

Robust, spontaneous pacemaker activity originating in the sinoatrial node (SAN) of the heart is essential for cardiovascular function. Anatomical, electrophysiological, and molecular methods as well as mathematical modeling approaches have quite thoroughly characterized the transmembrane fluxes of Na+, K+ and Ca2+ that produce SAN action potentials (AP) and 'pacemaker depolarizations' in a number of different in vitro adult mammalian heart preparations. Possible ionic mechanisms that are responsible for SAN primary pacemaker activity are described in terms of: (i) a Ca2+-regulated mechanism based on a requirement for phasic release of Ca2+ from intracellular stores and activation of an inward current-mediated by Na+/Ca2+ exchange; (ii) time- and voltage-dependent activation of Na+ or Ca2+ currents, as well as a cyclic nucleotide-activated current, If; and/or (iii) a combination of (i) and (ii). Electrophysiological studies of single spontaneously active SAN myocytes in both adult mouse and rabbit hearts consistently reveal significant expression of a rapidly activating time- and voltage-dependent K+ current, often denoted IKr, that is selectively expressed in the leading or primary pacemaker region of the adult mouse SAN. The main goal of the present study was to examine by combined experimental and simulation approaches the functional or physiological roles of this K+ current in the pacemaker activity. Our patch clamp data of mouse SAN myocytes on the effects of a pharmacological blocker, E4031, revealed that a rapidly activating K+ current is essential for action potential (AP) repolarization, and its deactivation during the pacemaker potential contributes a small but significant component to the pacemaker depolarization. Mathematical simulations using a murine SAN AP model confirm that well known biophysical properties of a delayed rectifier K+ current can contribute to its role in generating spontaneous myogenic activity.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Miocitos Cardíacos/fisiología , Potasio/metabolismo , Potenciales de Acción , Animales , Cationes Monovalentes/metabolismo , Células Cultivadas , Corazón/fisiología , Transporte Iónico , Ratones , Modelos Cardiovasculares , Marcapaso Artificial , Conejos , Intercambiador de Sodio-Calcio/metabolismo
9.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33514068

RESUMEN

Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Fibrilación Atrial/tratamiento farmacológico , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Antiarrítmicos/química , Antiarrítmicos/farmacología , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Simulación por Computador , Disopiramida/química , Disopiramida/farmacología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/patología , Humanos , Ratones , Propafenona/química , Propafenona/uso terapéutico , Quinidina/química , Quinidina/farmacología , Proteína del Homeodomínio PITX2
10.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299303

RESUMEN

Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.


Asunto(s)
Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Proteínas de Homeodominio/genética , Modelos Cardiovasculares , Factores de Transcripción/genética , Animales , Fibrilación Atrial/fisiopatología , Remodelación Atrial/genética , Remodelación Atrial/fisiología , Tipificación del Cuerpo/genética , Simulación por Computador , Genes Homeobox , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Corazón/embriología , Proteínas de Homeodominio/fisiología , Humanos , Canales Iónicos/genética , Canales Iónicos/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Factores de Transcripción/fisiología , Proteína del Homeodomínio PITX2
11.
Biochem Biophys Res Commun ; 526(4): 1085-1091, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32321643

RESUMEN

The human Ether-à-go-go Related Gene (hERG) encodes a potassium channel responsible for the cardiac rapid delayed rectifier K+ current, IKr, which regulates ventricular repolarization. Loss-of-function hERG mutations underpin the LQT2 form of congenital long QT syndrome. This study was undertaken to elucidate the functional consequences of a variant of uncertain significance, T634S, located at a highly conserved position at the top of the S6 helix of the hERG channel. Whole-cell patch-clamp recordings were made at 37 °C of hERG current (IhERG) from HEK 293 cells expressing wild-type (WT) hERG, WT+T634S and hERG-T634S alone. When the T634S mutation was expressed alone little or no IhERG could be recorded. Co-expressing WT and hERG-T634S suppressed IhERG tails by ∼57% compared to WT alone, without significant alteration of voltage dependent activation of IhERG. A similar suppression of IhERG was observed under action potential voltage clamp. Comparable reduction of IKr in a ventricular AP model delayed repolarization and led to action potential prolongation. A LI-COR® based On/In-Cell Western assay showed that cell surface expression of hERG channels in HEK 293 cells was markedly reduced by the T634S mutation, whilst total cellular hERG expression was unaffected, demonstrating impaired trafficking of the hERG-T634S mutant. Incubation with E-4031, but not lumacaftor, rescued defective hERG-T634S channel trafficking and IhERG density. In conclusion, these data identify hERG-T634S as a rescuable trafficking defective mutation that reduces IKr sufficiently to delay repolarization and, thereby, potentially produce a LQT2 phenotype.


Asunto(s)
Secuencia Conservada , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Mutación con Pérdida de Función/genética , Serina/genética , Treonina/genética , Potenciales de Acción , Secuencia de Aminoácidos , Canal de Potasio ERG1/química , Humanos , Activación del Canal Iónico , Transporte de Proteínas
12.
Am J Physiol Heart Circ Physiol ; 316(3): H527-H542, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576220

RESUMEN

Efforts to identify the mechanisms for the initiation and maintenance of human atrial fibrillation (AF) often focus on changes in specific elements of the atrial "substrate," i.e., its electrophysiological properties and/or structural components. We used experimentally validated mathematical models of the human atrial myocyte action potential (AP), both at baseline in sinus rhythm (SR) and in the setting of chronic AF, to identify significant contributions of the Ca2+-independent transient outward K+ current ( Ito) to electrophysiological instability and arrhythmia initiation. First, we explored whether changes in the recovery or restitution of the AP duration (APD) and/or its dynamic stability (alternans) can be modulated by Ito. Recent reports have identified disease-dependent spatial differences in expression levels of the specific K+ channel α-subunits that underlie Ito in the left atrium. Therefore, we studied the functional consequences of this by deletion of 50% of native Ito (Kv4.3) and its replacement with Kv1.4. Interestingly, significant changes in the short-term stability of the human atrial AP waveform were revealed. Specifically, this K+ channel isoform switch produced discontinuities in the initial slope of the APD restitution curve and appearance of APD alternans. This pattern of in silico results resembles some of the changes observed in high-resolution clinical electrophysiological recordings. Important insights into mechanisms for these changes emerged from known biophysical properties (reactivation kinetics) of Kv1.4 versus those of Kv4.3. These results suggest new approaches for pharmacological management of AF, based on molecular properties of specific K+ isoforms and their changed expression during progressive disease. NEW & NOTEWORTHY Clinical studies identify oscillations (alternans) in action potential (AP) duration as a predictor for atrial fibrillation (AF). The abbreviated AP in AF also involves changes in K+ currents and early repolarization of the AP. Our simulations illustrate how substitution of Kv1.4 for the native current, Kv4.3, alters the AP waveform and enhances alternans. Knowledge of this "isoform switch" and related dynamics in the AF substrate may guide new approaches for detection and management of AF.


Asunto(s)
Potenciales de Acción , Atrios Cardíacos/metabolismo , Modelos Cardiovasculares , Canales de Potasio con Entrada de Voltaje/metabolismo , Función Atrial , Humanos , Cinética
13.
PLoS Comput Biol ; 14(11): e1006594, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30500818

RESUMEN

Cardiac electrical alternans (CEA), manifested as T-wave alternans in ECG, is a clinical biomarker for predicting cardiac arrhythmias and sudden death. However, the mechanism underlying the spontaneous transition from CEA to arrhythmias remains incompletely elucidated. In this study, multiscale rabbit ventricular models were used to study the transition and a potential role of INa in perpetuating such a transition. It was shown CEA evolved into either concordant or discordant action potential (AP) conduction alternans in a homogeneous one-dimensional tissue model, depending on tissue AP duration and conduction velocity (CV) restitution properties. Discordant alternans was able to cause conduction failure in the model, which was promoted by impaired sodium channel with either a reduced or increased channel current. In a two-dimensional homogeneous tissue model, a combined effect of rate- and curvature-dependent CV broke-up alternating wavefronts at localised points, facilitating a spontaneous transition from CEA to re-entry. Tissue inhomogeneity or anisotropy further promoted break-up of re-entry, leading to multiple wavelets. Similar observations have also been seen in human atrial cellular and tissue models. In conclusion, our results identify a mechanism by which CEA spontaneously evolves into re-entry without a requirement for premature ventricular complexes or pre-existing tissue heterogeneities, and demonstrated the important pro-arrhythmic role of impaired sodium channel activity. These findings are model-independent and have potential human relevance.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/fisiopatología , Biomarcadores/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Corazón/fisiopatología , Algoritmos , Animales , Anisotropía , Biología Computacional , Simulación por Computador , Electrocardiografía , Atrios Cardíacos , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Cardiovasculares , Conejos
14.
Europace ; 21(6): 981-989, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753421

RESUMEN

AIMS: Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS: We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION: Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Sistema de Conducción Cardíaco/fisiopatología , Potenciales de Acción , Biopsia , Calsecuestrina/metabolismo , Femenino , Humanos , Canales Iónicos/metabolismo , Masculino , Persona de Mediana Edad , Rianodina/metabolismo
15.
Circulation ; 135(7): 683-699, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-27899394

RESUMEN

BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Krüppel-like factor-4. This complex leads to Krüppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Krüppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.


Asunto(s)
Arritmias Cardíacas/prevención & control , MAP Quinasa Quinasa 7/metabolismo , Animales , Arritmias Cardíacas/fisiopatología , Epigénesis Genética , Humanos , Factor 4 Similar a Kruppel , Ratones , Miocitos Cardíacos/metabolismo , Ratas
16.
PLoS Comput Biol ; 13(3): e1005270, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28253254

RESUMEN

Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities.


Asunto(s)
Algoritmos , Complejos Atriales Prematuros/diagnóstico , Complejos Atriales Prematuros/fisiopatología , Diagnóstico por Computador/métodos , Electrocardiografía/métodos , Sistema de Conducción Cardíaco/fisiopatología , Mapeo del Potencial de Superficie Corporal/métodos , Simulación por Computador , Humanos , Modelos Cardiovasculares , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
PLoS Comput Biol ; 13(6): e1005587, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28622331

RESUMEN

A recent experimental study investigating patients with lone atrial fibrillation identified six novel mutations in the KCNA5 gene. The mutants exhibited both gain- and loss-of-function of the atrial specific ultra-rapid delayed rectifier K+ current, IKur. The aim of this study is to elucidate and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were investigated at the cellular level. In tissue, we assessed the effects of the mutations on the vulnerability to unidirectional conduction patterns and dynamics of re-entrant excitation waves. Gain-of-function mutations shortened the action potential duration in single cells, and stabilised and accelerated re-entrant excitation in tissue. Loss-of-function mutations had heterogeneous effects on action potential duration and promoted early-after-depolarisations following beta-adrenergic stimulation. In the tissue model, loss-of-function mutations facilitated breakdown of excitation waves at more physiological excitation rates than the wild-type, and the generation of early-after-depolarisations promoted unidirectional patterns of excitation. Gain- and loss-of-function IKur mutations produced multiple mechanisms of atrial arrhythmogenesis, with significant differences between the two groups of mutations. This study provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results on both pro- and anti-arrhythmic effects of blocking IKur.


Asunto(s)
Fibrilación Atrial/genética , Variación Genética/genética , Sistema de Conducción Cardíaco/fisiopatología , Canal de Potasio Kv1.5/genética , Modelos Cardiovasculares , Modelos Genéticos , Simulación por Computador , Humanos , Activación del Canal Iónico/genética , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Transducción de Señal/genética , Relación Estructura-Actividad
18.
PLoS Comput Biol ; 13(8): e1005714, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28859079

RESUMEN

Intracellular calcium cycling is a vital component of cardiac excitation-contraction coupling. The key structures responsible for controlling calcium dynamics are the cell membrane (comprising the surface sarcolemma and transverse-tubules), the intracellular calcium store (the sarcoplasmic reticulum), and the co-localisation of these two structures to form dyads within which calcium-induced-calcium-release occurs. The organisation of these structures tightly controls intracellular calcium dynamics. In this study, we present a computational model of intracellular calcium cycling in three-dimensions (3-D), which incorporates high resolution reconstructions of these key regulatory structures, attained through imaging of tissue taken from the sheep left ventricle using serial block face scanning electron microscopy. An approach was developed to model the sarcoplasmic reticulum structure at the whole-cell scale, by reducing its full 3-D structure to a 3-D network of one-dimensional strands. The model reproduces intracellular calcium dynamics during control pacing and reveals the high-resolution 3-D spatial structure of calcium gradients and intracellular fluxes in both the cytoplasm and sarcoplasmic reticulum. We also demonstrated the capability of the model to reproduce potentially pro-arrhythmic dynamics under perturbed conditions, pertaining to calcium-transient alternans and spontaneous release events. Comparison with idealised cell models emphasised the importance of structure in determining calcium gradients and controlling the spatial dynamics associated with calcium-transient alternans, wherein the probabilistic nature of dyad activation and recruitment was constrained. The model was further used to highlight the criticality in calcium spark propagation in relation to inter-dyad distances. The model presented provides a powerful tool for future investigation of structure-function relationships underlying physiological and pathophysiological intracellular calcium handling phenomena at the whole-cell. The approach allows for the first time direct integration of high-resolution images of 3-D intracellular structures with models of calcium cycling, presenting the possibility to directly assess the functional impact of structural remodelling at the cellular scale.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Ventrículos Cardíacos/citología , Modelos Cardiovasculares , Retículo Sarcoplasmático/metabolismo , Función Ventricular/fisiología , Animales , Simulación por Computador , Humanos , Ovinos , Análisis Espacio-Temporal
19.
PLoS Comput Biol ; 13(6): e1005593, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28609477

RESUMEN

Gain-of-function mutations in KCNJ2-encoded Kir2.1 channels underlie variant 3 (SQT3) of the short QT syndrome, which is associated with atrial fibrillation (AF). Using biophysically-detailed human atria computer models, this study investigated the mechanistic link between SQT3 mutations and atrial arrhythmogenesis, and potential ion channel targets for treatment of SQT3. A contemporary model of the human atrial action potential (AP) was modified to recapitulate functional changes in IK1 due to heterozygous and homozygous forms of the D172N and E299V Kir2.1 mutations. Wild-type (WT) and mutant formulations were incorporated into multi-scale homogeneous and heterogeneous tissue models. Effects of mutations on AP duration (APD), conduction velocity (CV), effective refractory period (ERP), tissue excitation threshold and their rate-dependence, as well as the wavelength of re-entry (WL) were quantified. The D172N and E299V Kir2.1 mutations produced distinct effects on IK1 and APD shortening. Both mutations decreased WL for re-entry through a reduction in ERP and CV. Stability of re-entrant excitation waves in 2D and 3D tissue models was mediated by changes to tissue excitability and dispersion of APD in mutation conditions. Combined block of IK1 and IKr was effective in terminating re-entry associated with heterozygous D172N conditions, whereas IKr block alone may be a safer alternative for the E299V mutation. Combined inhibition of IKr and IKur produced a synergistic anti-arrhythmic effect in both forms of SQT3. In conclusion, this study provides mechanistic insights into atrial proarrhythmia with SQT3 Kir2.1 mutations and highlights possible pharmacological strategies for management of SQT3-linked AF.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Fibrilación Atrial/fisiopatología , Acoplamiento Excitación-Contracción , Sistema de Conducción Cardíaco/fisiopatología , Modelos Cardiovasculares , Canales de Potasio de Rectificación Interna/genética , Potenciales de Acción , Arritmias Cardíacas/complicaciones , Fibrilación Atrial/complicaciones , Simulación por Computador , Predisposición Genética a la Enfermedad/genética , Atrios Cardíacos/fisiopatología , Humanos , Activación del Canal Iónico/genética , Modelos Genéticos , Mutación/genética , Contracción Miocárdica , Potasio/metabolismo
20.
J Mol Cell Cardiol ; 111: 86-95, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28803858

RESUMEN

A recent study has identified six novel genetic variations (D322H, E48G, A305T, D469E, Y155C, P488S) in KCNA5 (encoding Kv1.5 which carries the atrial-specific ultra-rapid delayed rectifier current, IKur) in patients with early onset of lone atrial fibrillation. These mutations are distinctive, resulting in either gain-of-function (D322H, E48G, A305T) or loss-of-function (D469E, Y155C, P488S) of IKur channels. Though affecting potassium channels, they may modulate the cellular active force and therefore atrial mechanical functions, which remains to be elucidated. The present study aimed to assess the inotropic effects of the identified six KCNA5 mutations on the human atria. Multiscale electromechanical models of the human atria were used to investigate the impact of the six KCNA5 mutations on atrial contractile functions. It was shown that the gain-of-function mutations reduced active contractile force primarily through decreasing the calcium transient (CaT) via a reduction in the L-type calcium current (ICaL) as a secondary effect of modulated action potential, whereas the loss-of-function mutations mediated positive inotropic effects by increased CaT via enhancing the reverse mode of the Na+/Ca2+ exchanger. The 3D atrial electromechanical coupled model predicted different functional impacts of the KCN5A mutation variants on atrial mechanical contraction by either reducing or increasing atrial output, which is associated with the gain-of-function mutations or loss-of-function mutations in KCNA5, respectively. This study adds insights to the functional impact of KCNA5 mutations in modulating atrial contractile functions.


Asunto(s)
Simulación por Computador , Atrios Cardíacos/fisiopatología , Canal de Potasio Kv1.5/genética , Mutación/genética , Fenómenos Biomecánicos , Cardiotónicos , Humanos , Activación del Canal Iónico , Modelos Cardiovasculares , Contracción Miocárdica , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA