Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(13): 3890-3897, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526426

RESUMEN

Chemical reaction kinetics at the nanoscale are intertwined with heterogeneity in structure and composition. However, mapping such heterogeneity in a liquid environment is extremely challenging. Here we integrate graphene liquid cell (GLC) transmission electron microscopy and four-dimensional scanning transmission electron microscopy to image the etching dynamics of gold nanorods in the reaction media. Critical to our experiment is the small liquid thickness in a GLC that allows the collection of high-quality electron diffraction patterns at low dose conditions. Machine learning-based data-mining of the diffraction patterns maps the three-dimensional nanocrystal orientation, groups spatial domains of various species in the GLC, and identifies newly generated nanocrystallites during reaction, offering a comprehensive understanding on the reaction mechanism inside a nanoenvironment. This work opens opportunities in probing the interplay of structural properties such as phase and strain with solution-phase reaction dynamics, which is important for applications in catalysis, energy storage, and self-assembly.

2.
Nat Mater ; 22(1): 92-99, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36280702

RESUMEN

Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO2 nanoparticles their phase transformation upon Mg2+ insertion leads to the formation of domains of similar chemical identity but different orientations at nanometre length scale, following the nucleation, growth and coalescence process. Electrolytes have a substantial impact on the transformation microstructure ('island' versus 'archipelago'). Further, large strain gradients build up from the development of phase domains across their boundaries with high impact on the chemical diffusion coefficient by a factor of ten or more. Our findings thus provide critical insights into the microstructure formation mechanism and its impact on the ion-insertion process, suggesting new rules of transformation structure control for energy storage materials.

3.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039708

RESUMEN

We introduce an intermediate-temperature (350 °C) dry molten sodium hydroxide-mediated binder-free electrodeposition process to grow the previously electrochemically inaccessible air- and moisture-sensitive layered sodium transition metal oxides, NaxMO2 (M = Co, Mn, Ni, Fe), in both thin and thick film form, compounds which are conventionally synthesized in powder form by solid-state reactions at temperatures ≥700 °C. As a key motivation for this work, several of these oxides are of interest as cathode materials for emerging sodium-ion-based electrochemical energy storage systems. Despite the low synthesis temperature and short reaction times, our electrodeposited oxides retain the key structural and electrochemical performance observed in high-temperature bulk synthesized materials. We demonstrate that tens of micrometers thick >75% dense NaxCoO2 and NaxMnO2 can be deposited in under 1 h. When used as cathodes for sodium-ion batteries, these materials exhibit near theoretical gravimetric capacities, chemical diffusion coefficients of Na+ ions (∼10-12 cm2⋅s-1), and high reversible areal capacities in the range ∼0.25 to 0.76 mA⋅h⋅cm-2, values significantly higher than those reported for binder-free sodium cathodes deposited by other techniques. The method described here resolves longstanding intrinsic challenges associated with traditional aqueous solution-based electrodeposition of ceramic oxides and opens a general solution chemistry approach for electrochemical processing of hitherto unexplored air- and moisture-sensitive high valent multinary structures with extended frameworks.

4.
Nano Lett ; 23(16): 7442-7448, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37566785

RESUMEN

The catalytic performance of atomically dispersed catalysts (ADCs) is greatly influenced by their atomic configurations, such as atom-atom distances, clustering of atoms into dimers and trimers, and their distributions. Scanning transmission electron microscopy (STEM) is a powerful technique for imaging ADCs at the atomic scale; however, most STEM analyses of ADCs thus far have relied on human labeling, making it difficult to analyze large data sets. Here, we introduce a convolutional neural network (CNN)-based algorithm capable of quantifying the spatial arrangement of different adatom configurations. The algorithm was tested on different ADCs with varying support crystallinity and homogeneity. Results show that our algorithm can accurately identify atom positions and effectively analyze large data sets. This work provides a robust method to overcome a major bottleneck in STEM analysis for ADC catalyst research. We highlight the potential of this method to serve as an on-the-fly analysis tool for catalysts in future in situ microscopy experiments.

5.
Nano Lett ; 19(7): 4712-4720, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251071

RESUMEN

An emergent theme in mono- and multivalent ion batteries is to utilize nanoparticles (NPs) as electrode materials based on the phenomenological observations that their short ion diffusion length and large electrode-electrolyte interface can lead to improved ion insertion kinetics compared to their bulk counterparts. However, the understanding of how the NP size fundamentally relates to their electrochemical behaviors (e.g., charge storage mechanism, phase transition associated with ion insertion) is still primitive. Here, we employ spinel λ-MnO2 particles as a model cathode material, which have effective Mg2+ ion intercalation but with their size effect poorly understood to investigate their operating mechanism via a suite of electrochemical and structural characterizations. We prepare two differently sized samples, the small nanoscopic λ-MnO2 particles (81 ± 25 nm) and big micron-sized ones (814 ± 207 nm) via postsynthesis size-selection. Analysis of the charge storage mechanisms shows that the stored charge from Mg2+ ion intercalation dominates in both systems and is ∼10 times higher in small particles than that in the big ones. From both X-ray diffraction and atomic-resolution scanning transmission electron microscopy imaging, we reveal a fundamental difference in phase transition of the differently sized particles during Mg2+ ion intercalation: the small NPs undergo a solid-solution-like phase transition which minimizes lattice mismatch and energy penalty for accommodating new phases, whereas the big particles follow conventional multiphase transformation. We show that this pathway difference is related to the improved electrochemical performance (e.g., rate capability, cycling performance) of small particles over the big ones which provides important insights in encoding within the particle dimension, that is, the single-phase transition pathway in high-performance electrode materials for multivalent ion batteries.

7.
Microsc Microanal ; 29(Supplement_1): 1713, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613907
11.
Microsc Microanal ; 29(Supplement_1): 1390-1391, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613580
18.
Phys Rev Lett ; 118(15): 157601, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28452544

RESUMEN

We present evidence of lattice-rotation vortices having an average radius of ∼7 nm at the ferroelectric domain boundary of (1-x)Pb(Zn_{1/3}Nb_{2/3})O_{3}-xPbTiO_{3} (x=0.08). Maps of crystal orientations and domain symmetry breaking are obtained using scanning convergent beam electron diffraction, which show fractional rotation vortices near the 50° monoclinic domain walls. The merging of 2D and 1D topological defects is consistent with inhomogeneous boundary charge and expected to have a large impact on the domain-switching mechanisms in relaxor ferroelectric crystals and ferroelectric devices.

19.
Microsc Microanal ; 23(1): 145-154, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28228174

RESUMEN

Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.

20.
Nano Lett ; 16(12): 7988-7992, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960506

RESUMEN

Thermal annealing is a common, and often much-needed, process to optimize the surface structure and composition of bimetallic nanoparticles for high catalytic performance. Such thermal treatment is often carried out either in air or under an inert atmosphere by a trial-and-error approach. Herewith, we present a new chemical vapor-assisted treatment, which can preserve the octahedral morphology of Ag-Pt nanoparticles while modifying the surface into preferred composition arrangements with site-selectivity for high catalytic activity. In situ environmental transmission electron microscope (ETEM) study reveals a relatively homogeneous distribution of Ag and Pt is generated on the surface of Ag-Pt nanoparticles upon exposure to carbon monoxide (CO), whereas Pt atoms preferably segregate to the edge regions when the gas atmosphere is switched to argon. Density functional theory (DFT) calculations suggest stabilization of Pt atoms is energetically favored in the form of mixed surface alloys when CO vapor is present. Without CO, Ag and Pt phase separate under the similar mild treatment condition. There exists a close correlation between the tunable surface structures and the catalytic activities of Ag-Pt octahedral nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA