Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomed Opt Express ; 8(4): 2106-2123, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28736658

RESUMEN

White light endoscopy is widely used for diagnostic imaging of the interior of organs and body cavities, but the inability to correlate individual 2D images with 3D organ morphology limits its utility for quantitative or longitudinal studies of disease physiology or cancer surveillance. As a result, most endoscopy videos, which carry enormous data potential, are used only for real-time guidance and are discarded after collection. We present a computational method to reconstruct and visualize a 3D model of organs from an endoscopic video that captures the shape and surface appearance of the organ. A key aspect of our strategy is the use of advanced computer vision techniques and unmodified, clinical-grade endoscopy hardware with few constraints on the image acquisition protocol, which presents a low barrier to clinical translation. We validate the accuracy and robustness of our reconstruction and co-registration method using cystoscopy videos from tissue-mimicking bladder phantoms and show clinical utility during cystoscopy in the operating room for bladder cancer evaluation. As our method can powerfully augment the visual medical record of the appearance of internal organs, it is broadly applicable to endoscopy and represents a significant advance in cancer surveillance opportunities for big-data cancer research.

2.
Biomed Opt Express ; 7(12): 4995-5009, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28018720

RESUMEN

Despite the trend to pair white light endoscopy with secondary image modalities for in vivo characterization of suspicious lesions, challenges remain to co-register such data. We present an algorithm to co-register two different optical imaging modalities as a mother-daughter endoscopy pair. Using white light cystoscopy (mother) and optical coherence tomography (OCT) (daughter) as an example, we developed the first forward-viewing OCT endoscope that fits in the working channel of flexible cystoscopes and demonstrated our algorithm's performance with optical phantom and clinical imaging data. The ability to register multimodal data opens opportunities for advanced analysis in cancer imaging applications.

3.
Biomed Opt Express ; 7(9): 3170-3183, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27699090

RESUMEN

Preservation of prostatic nerves is critical to recovery of a man's sexual potency after radical prostatectomy. A real-time imaging method of prostatic nerves will be helpful for nerve-sparing radical prostatectomy (NSRP). Polarization-sensitive optical coherence tomography (PS-OCT), which provides both structural and birefringent information of tissue, was applied for detection of prostatic nerves in both rat and human prostate specimens, ex vivo. PS-OCT imaging of rat prostate specimens visualized highly scattering and birefringent fibrous structures superficially, and these birefringent structures were confirmed to be nerves by histology or multiphoton microscopy (MPM). PS-OCT could easily distinguish these birefringent structures from surrounding other tissue compartments such as prostatic glands and fats. PS-OCT imaging of human prostatectomy specimens visualized two different birefringent structures, appearing fibrous and sheet-like. The fibrous ones were confirmed to be nerves by histology, and the sheet-like ones were considered to be fascias surrounding the human prostate. PS-OCT imaging of human prostatectomy specimens along the perimeter showed spatial variation in the amount of birefringent fibrous structures which was consistent with anatomy. These results demonstrate the feasibility of PS-OCT for detection of prostatic nerves, and this study will provide a basis for intraoperative use of PS-OCT.

4.
Biomed Opt Express ; 7(2): 648-62, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26977369

RESUMEN

Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation.

5.
Biomed Opt Express ; 6(4): 1464-76, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25909028

RESUMEN

Quantitative image analysis and parameter extraction using a specific implementation of polarization-sensitive optical coherence tomography (OCT) provides differential diagnosis of mucosal pathologies in in-vivo human bladders. We introduce a cross-polarization (CP) OCT image metric called Integral Depolarization Factor (IDF) to enable automatic diagnosis of bladder conditions (assessment the functional state of collagen fibers). IDF-based diagnostic accuracy of identification of the severe fibrosis of normal bladder mucosa is 79%; recurrence of carcinoma on the post-operative scar is 97%; and differentiation between neoplasia and acute inflammation is 75%. The promising potential of CP OCT combined with image analysis in human urology is thus demonstrated in vivo.

6.
Biomed Opt Express ; 6(8): 2908-22, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26309755

RESUMEN

Experimentation demonstrates long-range surface plasmon polariton waveguides as a useful biosensor to selectively detect gram negative or gram positive bacteria in human urine having a low concentration of constituents. The biosensor can detect bacteria at concentrations of 10(5) CFU/ml, the internationally recommended threshold for diagnostic of urinary tract infection. Using a negative control urine solution of bacterial concentration 1000☓ higher than the targeted bacteria, we obtain a ratio of 5.4 for the positive to negative signals.

7.
Biomed Opt Express ; 5(2): 621-9, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24575354

RESUMEN

Partial bladder outlet obstruction causes prominent morphological changes in the bladder wall, which leads to bladder dysfunction. In this paper, we demonstrate that polarized light imaging can be used to identify the location of obstruction induced structural changes that other imaging modalities fail to detect. We induced 2-week and 6-week partial outlet obstruction in rats, harvested obstructed bladders, then measured their retardances while distended to high pressures and compared them to controls. Our results show that the retardance of the central part of the ventral side (above the ureters) closer to the urethra can be used as a potential metric of the distending bladder obstruction.

8.
Biomed Opt Express ; 4(10): 1964-77, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24156057

RESUMEN

Prostate brachytherapy, administered by implanting tiny radioactive seeds to treat prostate cancer, currently relies on transrectal ultrasound imaging for intraoperative visualization of the metallic seeds. Photoacoustic (PA) imaging has been suggested as a feasible alternative to ultrasound imaging due to its superior sensitivity to metal surrounded by tissue. However, PA images suffer from poor contrast when seeds are distant from the light source. We propose a transperineal light delivery method and investigate the application of a short-lag spatial coherence (SLSC) beamformer to enhance low-contrast photoacoustic signals that are distant from this type of light source. Performance is compared to a conventional delay-and-sum beamformer. A pure gelatin phantom was implanted with black ink-coated brachytherapy seeds and the mean contrast was improved by 3-25 dB with the SLSC beamformer for fiber-seed distances ranging 0.6-6.3 cm, when approximately 10% of the receive aperture elements were included in the short-lag sum. For fiber-seed distances greater than 3-4 cm, the mean contrast-to-noise ratio (CNR) was approximately doubled with the SLSC beamformer, while mean signal-to-noise ratios (SNR) were mostly similar with both beamformers. Lateral resolution was decreased by 2 mm, but improved with larger short-lag values at the expense of poorer CNR and SNR. Similar contrast and CNR improvements were achieved with an uncoated brachytherapy seed implanted in ex vivo tissue. Results indicate that the SLSC beamformer has potential to enhance the visualization of prostate brachytherapy seeds that are distant from the light source.

9.
Biomed Opt Express ; 2(8): 2243-54, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21833361

RESUMEN

Brachytherapy seed therapy is an increasingly common way to treat prostate cancer through localized radiation. The current standard of care relies on transrectal ultrasound (TRUS) for imaging guidance during the seed placement procedure. As visualization of individual metallic seeds tends to be difficult or inaccurate under TRUS guidance, guide needles are generally tracked to infer seed placement. In an effort to improve seed visualization and placement accuracy, the use of photoacoustic (PA) imaging, which is highly sensitive to metallic objects in soft tissue, was investigated for this clinical application. The PA imaging properties of bare (i.e., embedded in pure gelatin) and tissue-embedded (at depths of up to 13 mm) seeds were investigated with a multi-wavelength (750 to 1090 nm) PA imaging technique. Results indicate that, much like ultrasonic (US) imaging, an angular dependence (i.e., seed orientation relative to imaging transducer) of the PA signal exists. Despite this shortcoming, however, PA imaging offers improved contrast, over US imaging, of a seed in prostate tissue if sufficient local fluence is achieved. Additionally, although the PA signal of a bare seed is greatest for lower laser wavelengths (e.g., 750 nm), the scattering that results from tissue tends to favor the use of higher wavelengths (e.g., 1064 nm, which is the primary wavelength of Nd:YAG lasers) when the seed is located in tissue. A combined PA and US imaging approach (i.e., PAUS imaging) shows strong potential to visualize both the seed and the surrounding anatomical environment of the prostate during brachytherapy seed placement procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA