RESUMEN
Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9-3 µM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel, efficacious, non-toxic cancer drugs acting via CB1 and/or CB2Rs.
Asunto(s)
Antineoplásicos/farmacología , Agonismo Inverso de Drogas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Animales , Antineoplásicos/química , Células CHO , Membrana Celular/química , Cricetulus , Humanos , Ratones , Unión Proteica , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB2/química , Moduladores Selectivos de los Receptores de Estrógeno/química , Tamoxifeno/químicaRESUMEN
The Cre-driver mouse line, which allows for in vivo regulation of target gene(s) in specific cells, is an indispensable tool for recent muscle research. In this study, I aimed to explore new applications of muscle specific Cre-driver mouse line in muscle research. For this purpose, I generated an iPS cells from a myofiber specific conditional mouse with tamoxifen inducible GFP expression, and then I checked whether homologous recombination was induced in the iPS-derived myogenic cells by tamoxifen administration. Fibroblasts were isolated from the tails of Myf6 CE/wt::CAG-EGFP mice, which expressed GFP specifically in Myf6 lineages by tamoxifen injection, and then iPS cells was generated by transfection with a vector based on sendai-virus and containing OSKM genes. Muscle specific conditional mouse-derived iPS cells (mCM-iPSCs) were successfully differentiated to myogenic cells, such as Pax7+ muscle progenitors, MyoD+ myoblasts, and MHC+ myotubes, under myogenic differentiation conditions. Using this model, I examined whether homologous recombination was induced in mCM-iPSC-derived myotubes by 4-hydroxytamoxifen (4OH-TAM) administration. As a result, multinucleated myotubes showed GFP expression, while no GFP signals were detected in both Pax7+ muscle progenitor and non-myogenic cells. These results indicated that homologous recombination could be induced in mCM-iPSC-derived myotubes by tamoxifen administration, and that this system operated normally even in reprogrammed cells. Also, I evidenced that GFP reporter was expressed in myoblasts in addition to multinucleated myotubes when tamoxifen-pulse was applied at an early phase of myogenesis. Taken together, Myf6 CE/wt::CAG-EGFP mouse-derived iPS cells reproduced at least in part Myf6 expression during mouse myogenesis. This study demonstrated a novel application of muscle specific conditional mouse in addition to in vivo application, and mCM-iPSCs could also be used in in vitro investigations with muscle specific conditional knock-out mouse.