Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neuroinflammation ; 21(1): 216, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218899

RESUMEN

Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Factores de Transcripción STAT , Transducción de Señal , alfa-Sinucleína , Animales , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/antagonistas & inhibidores , Factores de Transcripción STAT/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/inmunología , Humanos , Ratones Transgénicos , Ratones Endogámicos C57BL , Quinasas Janus/metabolismo , Quinasas Janus/antagonistas & inhibidores , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/inmunología , Pirimidinas/farmacología
2.
Pharmacol Res ; 182: 106318, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35728766

RESUMEN

BACKGROUND: Psoriasis is a chronic inflammatory disease, with lesions mainly manifesting as scaly erythematous plaques. The mild or moderate of psoriasis is the main type of patients in hospital, and topical application remains the preferred treatment option for psoriasis therapy, therefore, the development of novel topical agents has an essential role in psoriasis therapy. OBJECTIVE: To identify potential drugs for psoriasis topical treatment. METHODS: We performed drug screening by Imiquimod (IMQ)-induced psoriatic like inflammation in mouse model, followed mouse epidermis by RNA-seq to find the key molecules affecting the drug. The qRT-PCR, WB were performed to test mRNA and protein expression, and Chip assay had been conducted to examine Stat3 bound to promoter of FABP5. RESULTS: In this study, we identified VX-509, which topical application significantly attenuated IMQ-induced psoriatic like inflammation in mouse model. And then, we verified Epidermal Fatty acid binding protein (E-FABP/FABP5) was significantly decreased in VX-509 treated mouse epidermis by RNA-seq. FABP5 is a key molecule in lipid metabolism, administration of FABP5 inhibitor or knock down of FABP5 expression remarkably abrogated psoriatic inflammation as well as lipid metabolism. Mechanistically, our finding showed that VX-509 blocked IL-22 induced signaling pathway, particular in activation of Stat3. Furthermore, we identified Stat3 is a transcriptional factor associated with FABP5 promoters and VX-509 treatment remarkably attenuated IL-22-induced FABP5 expression through Stat3 in KCs. CONCLUSIONS: This study demonstrated administration of VX-509 is a potential promising topical drug for treatment of psoriasis, FABP5 is a critical targeted molecule in psoriasis therapy.


Asunto(s)
Queratinocitos , Psoriasis , Animales , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/uso terapéutico , Compuestos Heterocíclicos con 2 Anillos , Imiquimod/metabolismo , Inflamación/metabolismo , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/metabolismo , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Piel/patología , Valina/análogos & derivados
3.
Biochem Biophys Res Commun ; 458(4): 908-12, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25704089

RESUMEN

The JAK2 inhibitor AZD1480 has been reported to inhibit La protein expression. We previously demonstrated that the inhibition of La expression could inhibit hepatitis A virus (HAV) internal ribosomal entry-site (IRES)-mediated translation and HAV replication in vitro. In this study, we analyzed the effects of AZD1480 on HAV IRES-mediated translation and replication. HAV IRES-mediated translation in COS7-HAV-IRES cells was inhibited by 0.1-1 µM AZD1480, a dosage that did not affect cell viability. Results showed a significant reduction in intracellular HAV HA11-1299 genotype IIIA RNA levels in Huh7 cells treated with AZD1480. Furthermore, AZD1480 inhibited the expression of phosphorylated-(Tyr-705)-signal transducer and activator of transcription 3 (STAT3) and La in Huh7 cells. Therefore, we propose that AZD1480 can inhibit HAV IRES activity and HAV replication through the inhibition of the La protein.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis A/efectos de los fármacos , Hepatitis A/tratamiento farmacológico , Janus Quinasa 2/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Hepatitis A/metabolismo , Hepatitis A/virología , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/fisiología , Humanos , ARN Viral/genética , Factor de Transcripción STAT3/metabolismo
4.
Res Sq ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766241

RESUMEN

Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of a-synuclein (a-Syn) into insoluble aggregates called Lewy pathology. The Line 61 a-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human a-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human a-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-a-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-a-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.

5.
J Cancer ; 15(14): 4566-4576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006090

RESUMEN

Background: OTUB1, an essential deubiquitinating enzyme, is upregulated in various types of cancer. Previous studies have shown that OTUB1 may be an oncogene in glioblastoma multiforme (GBM), but its specific regulatory mechanism remains unclear. This study aimed to investigate the mechanism by which OTUB1 and the JAK2/STAT1 signaling pathway co-regulate the growth of GBM. Methods: Using bioinformatics, GBM tissues, and cells, we evaluated the expression and clinical significance of OTUB1 in GBM. Subsequently, we explored the regulatory mechanisms of OTUB1 on malignant behaviors in GBM in vitro and in vivo. In addition, we added the JAK2 inhibitor AZD1480 to explore the regulation of OTUB1 for JAK2/STAT1 pathway in GBM. Results: We found that OTUB1 expression was upregulated in GBM. Silencing OTUB1 promotes apoptosis and cell cycle arrest at G1 phase, inhibiting cell proliferation. Moreover, OTUB1 knockdown effectively inhibited the invasion and migration of GBM cells, and the opposite phenomenon occurred with overexpression. In vivo experiments revealed that OTUB1 knockdown inhibited tumor growth, further emphasizing its crucial role in GBM progression. Mechanistically, we found that OTUB1 was negatively correlated with the JAK2/STAT1 pathway in GBM. The addition of the JAK2 inhibitor AZD1480 significantly reversed the effects of silencing OTUB1 on GBM. Conclusion: Our study reveals a novel mechanism by which OTUB1 inhibits the JAK2/STAT1 signaling pathway. This contributes to a better understanding of OTUB1's role in GBM and provides a potential avenue for targeted therapeutic intervention.

6.
J Pers Med ; 12(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35207737

RESUMEN

BACKGROUND: Gallbladder cancer is commonly associated with inflammation, which indicates that inflammation-related cytokines and cytokine receptors are related to the progression of gallbladder cancers. Interleukin 4 (IL4) is a well-known cytokine that promotes the differentiation of naive helper T cells (Th0) to T helper type 2 cells (Th2). IL13 is a cytokine that is secreted by Th2 cells. IL4 and IL13 are closely related in immune responses. However, the role of IL4Rα and IL13Rα1 signaling pathway has not been fully understood in the development of gallbladder cancer. METHODS: In human gallbladder carcinomas, the expression of IL4Rα and IL13Rα1 were evaluated with immunohistochemical staining in tissue microarray tissue sections. After knockdown of IL4Rα or IL13Rα1, cell assays to measure the proliferation and apoptosis and Western blotting analysis were conducted in SNU308 human gallbladder cancer cells. Since Janus kinases2 (JAK2) was considered as one of the down-stream kinases under IL4Rα and IL13Rα1 complex, the same kinds of experiments were performed in SNU308 cells treated with AZD1480, Janus-associated kinases2 (JAK2) inhibitor, to demonstrate the cytotoxic effect of AZD1480 in SNU308 cells. RESULTS: Immunohistochemical expression of IL4Rα was significantly associated with the expression of IL13Rα1 in human carcinoma tissue. In univariate analysis, nuclear expression of IL4Rα, cytoplasmic expression of IL4Rα, nuclear expression of IL13Rα1, and cytoplasmic expression of IL13Rα1 were significantly associated with shorter overall survival and shorter relapse-free survival. Multivariate analysis revealed nuclear expression of IL4Rα as an independent poor prognostic indicator of overall survival and relapse-free survival. Then, we found that knockdown of IL4Rα or IL13Rα1 decreased viability and induced apoptosis in SNU308 cells via activation of FOXO3 and similarly, AZD1480 decreased viability and induced apoptosis in SNU308 cells with dose dependent manner. CONCLUSIONS: Taken together, our results suggest that IL4Rα and IL13Rα1 might be involved in the development of human gallbladder cancer cells and IL4Rα and IL13Rα1 complex/JAK2 signaling pathway could be efficient therapeutic targets for gallbladder cancer treatment.

7.
J Microbiol Biotechnol ; 29(12): 2006-2013, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31581384

RESUMEN

The isolation of respiratory viruses, especially from clinical specimens, often shows poor efficiency with classical cell culture methods. The lack of suitable methods to generate virus particles inhibits the development of diagnostic assays, treatments, and vaccines. We compared three inoculation methods, classical cell culture, the addition of a JAK2 inhibitor AZD1480, and centrifugation-enhanced inoculation (CEI), to replicate human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV). In addition, a combined method using AZD1480 treatment and CEI was used on throat swabs to verify that this method could increase virus isolation efficiency from human clinical specimens. Both CEI and AZD1480 treatment increased HRSV and HMPV genome replication. Also, the combined method using CEI and AZD1480 treatment enhanced virus proliferation synergistically. The combined method is particularly suited for the isolation of interferon-sensitive or slowly growing viruses from human clinical specimens.


Asunto(s)
Centrifugación/métodos , Pneumovirus/aislamiento & purificación , Pirazoles/farmacología , Pirimidinas/farmacología , Cultivo de Virus/métodos , Humanos , Metapneumovirus/efectos de los fármacos , Metapneumovirus/genética , Metapneumovirus/crecimiento & desarrollo , Metapneumovirus/aislamiento & purificación , Pneumovirus/efectos de los fármacos , Pneumovirus/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Manejo de Especímenes , Replicación Viral
8.
Biomed Pharmacother ; 95: 1799-1808, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28962085

RESUMEN

The aim of our study is to investigate the protective effect of apigenin and the role of the JAK2/STAT3 signaling pathway in renal ischemia/reperfusion injury (IRI) in rats. For in vivo experiments, rat kidneys were subjected to 45min of ischemia, followed by 24h of reperfusion. The kidneys were pretreated for 24h with apigenin (4mg/kg) intraperitoneally in the absence or presence of the JAK2 kinase-specific inhibitor AZD1480 (30mg/kg). The serum creatinine and urea nitrogen levels were analyzed. Histologic examinations were evaluated. Expression of p-JAK2, p-STAT3, Bcl-2, Bax and Caspase-3 was detected by immunohistochemistry or western blot. For In vitro experiments, NRK-52E cells were exposed to I/R in the absence or presence of apigenin and JAK2 siRNA was used to explore JAK2/STAT3 activity. Cell viability, cell apoptosis and expression of p-JAK2, p-STAT3, Bcl-2, Bax and Caspase-3 were examined in NRK-52E culture after I/R. Consequently, apigenin conferred a renoprotective effect on the kidneys against IRI, as evidenced by decreased serum creatinine and urea nitrogen, mitigated renal histologic damage, improved NRK-52E cell viability and a decreased apoptotic index, including up-regulation of the anti-apoptotic protein Bcl-2 and down-regulation of the pro-apoptotic proteins Bax and Caspase3. However, AZD1480 and JAK2 siRNA blocked the apigenin-mediated renoprotective effects by attenuating the JAK2/STAT3 signaling pathway as well as abolished the effect of anti-oxidative stress and anti-apoptosis of apigenin. Our study demonstrates that apigenin pretreatment can protect against renal IRI via the activation of the JAK2/STAT3 signaling pathway.


Asunto(s)
Apigenina/farmacología , Enfermedades Renales/prevención & control , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Línea Celular , Supervivencia Celular/efectos de los fármacos , Creatinina/sangre , Janus Quinasa 2/metabolismo , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Oncotarget ; 8(65): 109319-109331, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29312610

RESUMEN

Many tyrosine kinase inhibitors (TKIs) have failed to reach human use due to insufficient activity in clinical trials. However, the failed TKIs may still benefit patients if their other kinase targets are identified by providing treatment focused on syndromes driven by these kinases. Here, we searched for novel targets of AZD1480, an inhibitor of JAK2 kinase that recently failed phase two cancer clinical trials due to a lack of activity. Twenty seven human receptor tyrosine kinases (RTKs) and 153 of their disease-associated mutants were in-cell profiled for activity in the presence of AZD1480 using a newly developed RTK plasmid library. We demonstrate that AZD1480 inhibits ALK, LTK, FGFR1-3, RET and TRKA-C kinases and uncover a physical basis of this specificity. The RTK activity profiling described here facilitates inhibitor repurposing by enabling rapid and efficient identification of novel TKI targets in cells.

10.
Leuk Res ; 39(2): 157-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25530567

RESUMEN

The anti-tumor activity of AZD1480, a potent, selective inhibitor of Janus-associated kinases 1 and 2, was demonstrated in preclinical models of myeloproliferative neoplasms. In a phase I clinical study, 35 patients with myelofibrosis received 2.5-70mg AZD1480 orally once daily (QD) or 10 or 15mg twice daily (BID) continuously during repeated 28-day cycles. Two patients experienced dose-limiting toxicities: one patient in the 2.5mg QD cohort had a grade 3 lung infiltration/acute pneumonia, and one patient receiving 50mg QD had grade 3 presyncope. Dosing was stopped at 70mg QD after the first patient experienced an adverse neurological event (AE) and evidence of low-grade neurological toxicity in patients on lower doses after the initial month of therapy became apparent. The most common AZD1480-related AEs were dizziness and anemia. AZD1480 was absorbed quickly and eliminated from the plasma rapidly, with a mean terminal half-life of 2.45-8.06h; accumulation was not observed after repeated daily dosing for 28 days. Four patients showed evidence of clinical improvement based on IWG-MRT 2006 criteria. AZD1480 was relatively well tolerated, however, low-grade, reversible neurological toxicity was therapy limiting and led to study termination.


Asunto(s)
Janus Quinasa 2/antagonistas & inhibidores , Mielofibrosis Primaria/tratamiento farmacológico , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Anciano , Anciano de 80 o más Años , Anemia/inducido químicamente , Mareo/inducido químicamente , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mielofibrosis Primaria/enzimología , Pirazoles/efectos adversos , Pirimidinas/efectos adversos
11.
Mol Oncol ; 8(8): 1419-28, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24953013

RESUMEN

Aurora kinase A is a frequently amplified and overexpressed gene in upper gastrointestinal adenocarcinomas (UGCs). Using in vitro cell models of UGCs, we investigated whether AURKA can regulate Signal Transducer and Activator of Transcription 3 (STAT3). Our data indicate that overexpression of AURKA in FLO-1 and AGS cells increase STAT3 phosphorylation at the Tyr705 site, whereas AURKA genetic depletion by siRNA results in decreased phosphorylation levels of STAT3 in FLO-1 and MKN45 cells. Immunofluorescence analysis showed that AURKA overexpression enhanced STAT3 nuclear translocation while AURKA genetic knockdown reduced the nuclear translocation of STAT3 in AGS and FLO-1 cells, respectively. Using a luciferase reporter assay, we demonstrated that AURKA expression induces transcriptional activity of STAT3. Pharmacological inhibition of AURKA by MLN8237 reduced STAT3 phosphorylation along with down-regulation of STAT3 pro-survival targets, BCL2 and MCL1. Moreover, by using clonogenic cells survival assay, we showed that MLN8237 single dose treatment reduced the ability of FLO-1 and AGS cells to form colonies. Additional experiments utilizing cell models of overexpression and knockdown of AURKA indicated that STAT3 upstream non-receptor tyrosine kinase Janus kinase 2 (JAK2) is mediating the effect of AURKA on STAT3. The inhibition of JAK2 using JAK2-specific inhibitor AZD1480 or siRNA knockdown, in presence of AURKA overexpression, abrogated the AURKA-mediated STAT3 activation. These results confirm that the AURKA-JAK2 axis is the main mechanism by which AURKA regulates STAT3 activity. In conclusion, we report, for the first time, that AURKA promotes STAT3 activity through regulating the expression and phosphorylation levels of JAK2. This highlights the importance of targeting AURKA as a therapeutic approach to treat gastric and esophageal cancers.


Asunto(s)
Aurora Quinasa A/metabolismo , Neoplasias Esofágicas/metabolismo , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Aurora Quinasa A/genética , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Neoplasias Esofágicas/genética , Técnica del Anticuerpo Fluorescente , Humanos , Janus Quinasa 2/genética , ARN Interferente Pequeño , Factor de Transcripción STAT3/genética , Neoplasias Gástricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA