Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 256: 119184, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782344

RESUMEN

The remarkable application of tin oxide in various domains is indebted to its photoelectronic merits. However, significant efforts to discover its photocatalytic potential were restricted through arduous challenges, which were the amelioration of light-harvesting and -utilizing. In fact, the uncommon light absorption energy has drawn veil over the brilliance of astounding oxidation potential, which is much more than that of TiO2. Herein, our attention was focused on the taking advantages of self-template structure for simultaneously enjoying the two sides of photoelectronic justification as well as the S-step system for eminent charge dissociation. In this regard, the optimized Cu-modified SnO2 yolk-shell ((5)YS-CuSnO) spheres were engineered through the copper modulation into glycerate-assisted metal-organic structure. As a result, the exceptional light-harvesting was achieved through desirable defects and oxygen vacancy resulted from Cu-doping, and also efficient light-utilization was obtained by the multi-scattering/reflection effect resulted from multi-shell configuration. After the effectual incorporation (40 wt⁒) of (5)YS-CuSnO was encapsulated into the V2O5-decorated wrinkled g-C3N4 lamella (VO-WCN), the dual S-step VO-WCN@(5)YS-CuSnO introduced unprecedented levofloxacin (LFC) decontamination performance, which was kinetically 5.2 and 30.2-times greater than of the (5)YS-CuSnO and bare SnO2 yolk-shell. The conspicuous fulfillment of nanocomposite was manifested in the LFC mineralization, pharmaceutical effluent treatment within 360 min, and successive cycling reactions. The fusion of the extraordinary architecture of YS-CuSnO with S-Step system not only initiates the facile and practical photocatalytic exploitation, but shade light on some undeveloped side of tin oxide.


Asunto(s)
Antibacterianos , Cobre , Fotólisis , Compuestos de Estaño , Compuestos de Estaño/química , Cobre/química , Antibacterianos/química , Compuestos de Nitrógeno/química , Grafito
2.
ACS Nano ; 16(2): 3404-3416, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35133142

RESUMEN

The Seebeck effect refers to the production of an electric voltage when different temperatures are applied on a conductor, and the corresponding voltage-production efficiency is represented by the Seebeck coefficient. We report a Seebeck effect: thermal generation of driving voltage from the heat flowing in a thin PtSe2/PtSe2 van der Waals homostructure at the interface. We refer to the effect as the interface-induced Seebeck effect. By exploiting this effect by directly attaching multilayered PtSe2 over high-resistance PtSe2 thin films as a hybridized single structure, we obtained the highly challenging in-plane Seebeck coefficient of the PtSe2 films that exhibit extremely high resistances. This direct attachment further enhanced the in-plane thermal Seebeck coefficients of the PtSe2/PtSe2 van der Waals homostructure on sapphire substrates. Consequently, we successfully enhanced the in-plane Seebeck coefficients for the PtSe2 (10 nm)/PtSe2 (2 nm) homostructure approximately 42% compared to that of a pure PtSe2 (10 nm) layer at 300 K. These findings represent a significant achievement in understanding the interface-induced Seebeck effect and provide an effective strategy for promising large-area thermoelectric energy harvesting devices using two-dimensional transition metal dichalcogenide materials, which are ideal thermoelectric platforms with high figures of merit.

3.
Nanomaterials (Basel) ; 10(11)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147839

RESUMEN

Two-dimensional MX (M = Ga, In; X = S, Se, Te) homo- and heterostructures are of interest in electronics and optoelectronics. Structural, electronic and optical properties of bulk and layered MX and GaX/InX heterostructures have been investigated comprehensively using density functional theory (DFT) calculations. Based on the quantum theory of atoms in molecules, topological analyses of bond degree (BD), bond length (BL) and bond angle (BA) have been detailed for interpreting interatomic interactions, hence the structure-property relationship. The X-X BD correlates linearly with the ratio of local potential and kinetic energy, and decreases as X goes from S to Te. For van der Waals (vdW) homo- and heterostructures of GaX and InX, a cubic relationship between microscopic interatomic interaction and macroscopic electromagnetic behavior has been established firstly relating to weighted absolute BD summation and static dielectric constant. A decisive role of vdW interaction in layer-dependent properties has been identified. The GaX/InX heterostructures have bandgaps in the range 0.23-1.49 eV, absorption coefficients over 10-5 cm-1 and maximum conversion efficiency over 27%. Under strain, discordant BD evolutions are responsible for the exclusively distributed electrons and holes in sublayers of GaX/InX. Meanwhile, the interlayer BA adjustment with lattice mismatch explains the constraint-free lattice of the vdW heterostructure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA