Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(3): 1924-1942, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38534742

RESUMEN

Ultraviolet (UV) radiation plays a crucial role in the development of melanoma and non-melanoma skin cancers. The types of UV radiation are differentiated by wavelength: UVA (315 to 400 nm), UVB (280 to 320 nm), and UVC (100 to 280 nm). UV radiation can cause direct DNA damage in the forms of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). In addition, UV radiation can also cause DNA damage indirectly through photosensitization reactions caused by reactive oxygen species (ROS), which manifest as 8-hydroxy-2'-deoxyguanine (8-OHdG). Both direct and indirect DNA damage can lead to mutations in genes that promote the development of skin cancers. The development of melanoma is largely influenced by the signaling of the melanocortin one receptor (MC1R), which plays an essential role in the synthesis of melanin in the skin. UV-induced mutations in the BRAF and NRAS genes are also significant risk factors in melanoma development. UV radiation plays a significant role in basal cell carcinoma (BCC) development by causing mutations in the Hedgehog (Hh) pathway, which dysregulates cell proliferation and survival. UV radiation can also induce the development of squamous cell carcinoma via mutations in the TP53 gene and upregulation of MMPs in the stroma layer of the skin.

2.
Chemistry ; : e202402965, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174490

RESUMEN

We reported herein a visible light mediated de Mayo-type reaction between 1,3-diketones and BCB. The reaction proceeds through a [2π+2σ] cycloaddition and retro-aldol sequence, producing cis-difunctionalized cyclobutanes in high yields with good regio- and diastereoselectivity.

3.
Photochem Photobiol Sci ; 23(5): 919-930, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589652

RESUMEN

Exposure to ultraviolet radiation (UVR) leads to skin DNA damage, specifically in the form of cyclobutane pyrimidine dimers, with thymidine dimers being the most common. Quantifying these dimers can indicate the extent of DNA damage resulting from UVR exposure. Here, a new liquid chromatography-mass spectrometry (LC-MS) method was used to quantify thymidine dimers in the urine after a temporary increase in real-life UVR exposure. Healthy Danish volunteers (n = 27) experienced increased UVR exposure during a winter vacation. Individual exposure, assessed via personally worn electronic UVR dosimeters, revealed a mean exposure level of 32.9 standard erythema doses (SEDs) during the last week of vacation. Morning urine thymidine dimer concentrations were markedly elevated both 1 and 2 days post-vacation, and individual thymidine dimer levels correlated with UVR exposure during the last week of the vacation. The strongest correlation with erythema-weighted personal UVR exposure (Power model, r2 = 0.64, p < 0.001) was observed when both morning urine samples were combined to measure 48-h thymidine dimer excretion, whereas 24-h excretion based on a single sample provided a weaker correlation (Power model, r2 = 0.55, p < 0.001). Sex, age, and skin phototype had no significant effect on these correlations. For the first time, urinary thymidine dimer excretion was quantified by LC-MS to evaluate the effect of a temporary increase in personal UVR exposure in a real-life setting. The high sensitivity to elevated UVR exposure and correlation between urinary excretion and measured SED suggest that this approach may be used to quantify DNA damage and repair and to evaluate photoprevention strategies.


Asunto(s)
Dímeros de Pirimidina , Rayos Ultravioleta , Humanos , Dímeros de Pirimidina/análisis , Masculino , Adulto , Femenino , Daño del ADN , Persona de Mediana Edad , Espectrometría de Masas , Cromatografía Liquida , Adulto Joven , Exposición a la Radiación/análisis , Voluntarios Sanos
4.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891771

RESUMEN

Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.


Asunto(s)
Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1 , Rayos Ultravioleta , Vitamina D , Humanos , Rayos Ultravioleta/efectos adversos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Vitamina D/farmacología , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Daño del ADN/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Queratinocitos/efectos de los fármacos , Calcitriol/farmacología , Calcitriol/metabolismo , Reparación del ADN/efectos de los fármacos , Fosforilación/efectos de los fármacos
5.
Angew Chem Int Ed Engl ; 63(24): e202401682, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38587230

RESUMEN

Polyesters, a highly promising class of circular polymers for achieving a closed-loop sustainable plastic economy, inherently exhibit material stability defects, especially in thermal and hydrolytic instability. Here, we introduce a class of polyesters, P(4R-BL) (R=Ph, Bu), featuring conformationally rigid 1,3-cyclobutane rings in the backbone. These polyesters not only exhibit superior thermostability (Td,5%=376-380 °C) but also demonstrate exceptional hydrolytic resistance with good integrity even after 1 year in basic and acidic aqueous solutions, distinguishing themselves from typical counterparts. Tailoring the flexibility of the side group R enables the controlled thermal and mechanical performance of P(4Ph-BL) and P(4Bu-BL) to rival durable syndiotactic polystyrene (SPS) and low-density polyethylene (LDPE), respectively. Significantly, despite their high stability, both polyesters can be effectively depolymerized into pristine monomers, establishing a circular life cycle.

6.
Angew Chem Int Ed Engl ; 63(33): e202406103, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818671

RESUMEN

Fundamental understanding of mechanochemical reactivity is important for designing new mechanophores. Besides the core structure of mechanophores, substituents on a mechanophore can affect its mechanochemical reactivity through electronic stabilization of the intermediate or effectiveness of force transduction from the polymer backbone to the mechanophore. The latter factor represents a unique mechanical effect in considering polymer mechanochemistry. Here, we show that regioisomeric linkage that is not directly adjacent to the first cleaving bond in cyclobutane can still significantly affect the mechanochemical reactivity of the mechanophore. We synthesized three non-scissile 1,2-diphenyl cyclobutanes, varying their linkage to the polymer backbone via the o, m, or p-position of the diphenyl substituents. Even though the regioisomers share the same substituted cyclobutane core structure and similar electronic stabilization of the diradical intermediate from cleaving the first C-C bond, the p isomer exhibited significantly higher mechanochemical reactivity than the o and m isomers. The observed difference in reactivity can be rationalized as the much more effective force transduction to the scissile bond through the p-position than the other two substitution positions. These findings point to the importance of considering force-bearing linkages that are more distant from the bond to be cleaved when incorporating mechanophores into polymer backbones.

7.
Angew Chem Int Ed Engl ; 63(9): e202316557, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38251921

RESUMEN

The spiro[3.3]heptane core, with the non-coplanar exit vectors, was shown to be a saturated benzene bioisostere. This scaffold was incorporated into the anticancer drug sonidegib (instead of the meta-benzene), the anticancer drug vorinostat (instead of the phenyl ring), and the anesthetic drug benzocaine (instead of the para-benzene). The patent-free saturated analogs obtained showed a high potency in the corresponding biological assays.


Asunto(s)
Antineoplásicos , Benceno , Heptanos , Fenómenos Químicos , Antineoplásicos/farmacología
8.
Angew Chem Int Ed Engl ; 63(30): e202405408, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728168

RESUMEN

Ring-opening polymerization (ROP) offers a striking solution to solve problems encountered in step-growth condensation polymerization, including precise control over molecular weight, molecular weight distribution, and topology. This has inspired our interest in ROP of cycloalkanes with an ultimate goal to rethink polyolefins, which clearly poses a number of challenges. Practicality of ROP of cycloalkanes is actually limited by their low polymerizability and elusive mechanisms which arise from significantly varied ring size and non-polar C-C bonds in monomers. In this work, by using Lewis acid/Brønsted base/C(sp3)-H initiator system previously developed in our laboratory, we focus on cyclobutanes and explore the positional and electronic effects of substituents on the ring, namely electron push-pull effect, in promoting controlled polymerization to afford densely functionalized poly(cyclobutanes), as well as catalytic degradation of obtained polymers for upcycling. More importantly, experiments and DFT calculations unveil considerable population of Lewis-acid-induced thermostabilized 1,4-zwitterions, which distinguish cyclobutanes from cyclopropanes and others. All these findings would shed light on catalytic synthesis and degradation of saturated all-carbon main-chain polymers, as well as small molecule transformations of cyclobutanes.

9.
Angew Chem Int Ed Engl ; 63(19): e202319831, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38465464

RESUMEN

We have developed a general and practical approach towards 2-oxabicyclo[2.1.1]hexanes with two and three exit vectors via an iodocyclization reaction. The obtained compounds have been easily converted into the corresponding building blocks for use in medicinal chemistry. 2-Oxabicyclo[2.1.1]hexanes have been incorporated into the structure of five drugs and three agrochemicals, and validated biologically as bioisosteres of ortho- and meta-benzenes.

10.
J Biol Chem ; 298(5): 101863, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339490

RESUMEN

Nucleotide excision repair functions to protect genome integrity, and ongoing studies using excision repair sequencing (XR-seq) have contributed to our understanding of how cells prioritize repair across the genome. In this method, the products of excision repair bearing damaged DNA are captured, sequenced, and then mapped genome-wide at single-nucleotide resolution. However, reagent requirements and complex procedures have limited widespread usage of this technique. In addition to the expense of these reagents, it has been hypothesized that the immunoprecipitation step using antibodies directed against damaged DNA may introduce bias in different sequence contexts. Here, we describe a newly developed adaptation called dA-tailing and adaptor ligation (ATL)-XR-seq, a relatively simple XR-seq method that avoids the use of immunoprecipitation targeting damaged DNA. ATL-XR-seq captures repair products by 3'-dA-tailing and 5'-adapter ligation instead of the original 5'- and 3'-dual adapter ligation. This new approach avoids adapter dimer formation during subsequent PCR, omits inefficient and time-consuming purification steps, and is very sensitive. In addition, poly(dA) tail length heterogeneity can serve as a molecular identifier, allowing more repair hotspots to be mapped. Importantly, a comparison of both repair mapping methods showed that no major bias is introduced by the anti-UV damage antibodies used in the original XR-seq procedure. Finally, we also coupled the described dA-tailing approach with quantitative PCR in a new method to quantify repair products. These new methods provide powerful and user-friendly tools to qualitatively and quantitatively measure excision repair.


Asunto(s)
Mapeo Cromosómico , Daño del ADN , Reparación del ADN , Mapeo Cromosómico/métodos , ADN , Genoma , Oligonucleótidos , Dímeros de Pirimidina , Rayos Ultravioleta
11.
Exp Dermatol ; 32(9): 1582-1587, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37545424

RESUMEN

Far-UVC radiation sources of wavelengths 222 nm and 233 nm represent an interesting potential alternative for the antiseptic treatment of the skin due to their high skin compatibility. Nevertheless, no studies on far-UVC-induced DNA damage in different skin types have been published to date, which this study aims for. After irradiating the skin with far-UVC of the wavelengths 222 and 233 nm as well as broadband UVB, the tissue was screened for cyclobutane pyrimidine dimer-positive (CPD+ ) cells using immunohistochemistry. The epidermal DNA damage was lower in dark skin types than in fair skin types after irradiation at 233 nm. Contrary to this, irradiation at 222 nm caused no skin type-dependent differences, which can be attributed to the decreased penetration depth of radiation. UVB showed the relatively strongest differences between light and dark skin types when using a suberythemal dose of 3 mJ/cm2 . As melanin is known for its photoprotective effect, we evaluated the ratio of melanin content in the stratum basale and stratum granulosum in samples of different skin types using two-photon excited fluorescence lifetime imaging (TPE-FLIM) finding a higher ratio up to skin type IV-V. As far-UVC is known to penetrate only into the upper layers of the viable skin, the aforementioned melanin ratio could explain the less pronounced differences between skin types after irradiation with far-UVC compared to UVB.


Asunto(s)
Daño del ADN , Melaninas , Dímeros de Pirimidina , Epidermis , Rayos Ultravioleta
12.
Chemistry ; 29(3): e202202373, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36282627

RESUMEN

A visible-light organophotocatalytic [2+2] cycloaddition of electron-deficient styrenes is described. Photocatalytic [2+2] cycloadditions are typically performed with electron-rich styrene derivatives or α,ß-unsaturated carbonyl compounds, and with transition-metal-based catalysts. We have discovered that an organic cyanoarene photocatalyst is able to deliver high-value cyclobutane products bearing electron-deficient aryl substituents in good yields. A range of electron-deficient substituents are tolerated, and both homodimerisations and intramolecular [2+2] cycloadditions to fused bicyclic systems are available by using this methodology.

13.
Photochem Photobiol Sci ; 22(6): 1309-1321, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36729358

RESUMEN

Sensitivity to ultraviolet-B (UVB, 280-315 nm) radiation varies widely among rice (Oryza sativa) cultivars due to differences in the activity of cyclobutane pyrimidines dimer (CPD) photolyase. Interestingly, cultivars with high UVB sensitivity and low CPD photolyase activity have been domesticated in tropical areas with high UVB radiation. Here, we investigated how differences in CPD photolyase activity affect plant resistance to the rice blast fungus, Magnaporthe oryzae, which is one of the other major stresses. We used Asian and African rice cultivars and transgenic lines with different CPD photolyase activities to evaluate the interaction effects of CPD photolyase activity on resistance to M. oryzae. In UVB-resistant rice plants overexpressing CPD photolyase, 12 h of low-dose UVB (0.4 W m-2) pretreatment enhanced sensitivity to M. oryzae. In contrast, UVB-sensitive rice (transgenic rice with antisense CPD photolyase, A-S; and rice cultivars with low CPD photolyase activity) showed resistance to M. oryzae. Several defense-related genes were upregulated in UVB-sensitive rice compared to UVB-resistant rice. UVB-pretreated A-S plants showed decreased multicellular infection and robust accumulation of reactive oxygen species. High UVB-induced CPD accumulation promoted defense responses and cross-protection mechanisms against rice blast disease. This may indicate a trade-off between high UVB sensitivity and biotic stress tolerance in tropical rice cultivars.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , Oryza , Dímeros de Pirimidina , Oryza/efectos de la radiación , Enfermedades de las Plantas
14.
Bioorg Med Chem ; 85: 117274, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37031566

RESUMEN

Reactive oxygen species (ROS) are a heterogeneous group of highly reactive ions and molecules derived from molecular oxygen (O2) which can cause DNA damage and lead to skin cancer. NADPH oxidase 1 (Nox1) is a major producer of ROS in the skin upon exposure to ultraviolet light. Functionally, Nox1 forms a holoenzyme complex that generates two superoxide molecules and reduces NADPH. The signaling activation occurs when the organizer subunit Noxo1 translocates to the plasma membrane bringing a cytochrome p450, through interaction with Cyba. We propose to design inhibitors that prevent Cyba-Noxo1 binding as a topical application to reduce UV-generated ROS in human skin cells. Design started from an apocynin backbone structure to generate a small molecule to serve as an anchor point. The initial compound was then modified by addition of a polyethylene glycol linked biotin. Both inhibitors were found to be non-toxic in human keratinocyte cells. Further in vitro experiments using isothermal calorimetric binding quantification showed the modified biotinylated compound bound Noxo1 peptide with a KD of 2 nM. Both using isothermal calorimetric binding and MALDI (TOF) MS showed that binding of a Cyba peptide to Noxo1 was blocked. In vivo experiments were performed using donated skin explants with topical application of the two inhibitors. Experiments show that ultraviolet light exposure of with the lead compound was able to reduce the amount of cyclobutene pyrimidine dimers in DNA, a molecule known to lead to carcinogenesis. Further synthesis showed that the polyethylene glycol but not the biotin was essential for inhibition.


Asunto(s)
Biotina , NADPH Oxidasas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Biotina/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Superóxidos/metabolismo , NADPH Oxidasa 1/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo
15.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108745

RESUMEN

The irradiation of 2-aryl-4-(E-3'-aryl-allylidene)-5(4H)-oxazolones 1 with blue light (456 nm) in the presence of [Ru(bpy)3](BF4)2 (bpy = 2,2'-bipyridine, 5% mol) gives the unstable cyclobutane-bis(oxazolones) 2 by [2+2]-photocycloaddition of two oxazolones 1. Each oxazolone contributes to the formation of 2 with a different C=C bond, one of them reacting through the exocyclic C=C bond, while the other does so through the styryl group. Treatment of unstable cyclobutanes 2 with NaOMe/MeOH produces the oxazolone ring opening reaction, affording stable styryl-cyclobutane bis(amino acids) 3. The reaction starts with formation of the T1 excited state of the photosensitizer 3[Ru*(bpy)3]2+, which reacts with S0 of oxazolones 1 through energy transfer to give the oxazolone T1 state 3(oxa*)-1, which is the reactive species and was characterized by transient absorption spectroscopy. Measurement of the half-life of 3(oxa*)-1 for 1a, 1b and 1d shows large values for 1a and 1b (10-12 µs), while that of 1d is shorter (726 ns). Density functional theory (DFT) modeling displays strong structural differences in the T1 states of the three oxazolones. Moreover, study of the spin density of T1 state 3(oxa*)-1 provides clues to understanding the different reactivity of 4-allylidene-oxazolones described here with respect to the previously reported 4-arylidene-oxazolones.


Asunto(s)
Ciclobutanos , Oxazolona , Aminoácidos , Reacción de Cicloadición , Fármacos Fotosensibilizantes
16.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902353

RESUMEN

The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator, NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development. We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage, immune suppression, or skin tumour development in mice. In this study, topical application of NPS-2143 (228 or 2280 pmol/cm2) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the known photoprotective agent 1,25(OH)2 vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photocarcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks (p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D, which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result, together with the failure to reduce UV-induced immunosuppression, may explain why the reduction in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation.


Asunto(s)
Receptores Sensibles al Calcio , Neoplasias Cutáneas , Femenino , Animales , Ratones , Humanos , Ratones Pelados , Receptores Sensibles al Calcio/metabolismo , Rayos Ultravioleta , Daño del ADN , Neoplasias Cutáneas/metabolismo , Dímeros de Pirimidina/metabolismo , Piel/metabolismo
17.
Angew Chem Int Ed Engl ; 62(7): e202218008, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36539352

RESUMEN

Cyclobutenones provide a straightforward four-carbon ring platform for further structural elaborations in that every carbon atom of the ring could be potentially functionalized. We report here a nickel catalyzed enantioconvergent Negishi coupling of 4-iodocyclobutenones with an array of aryl or alkenyl zinc reagents to access enantioenriched 4-substituted cyclobutenones, from which a modular approach to the synthesis of 1,2,3,4-tetrasubstituted cyclobutanes was demonstrated.

18.
J Biol Chem ; 296: 100581, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33771559

RESUMEN

The formation of UV-induced DNA damage and its repair are influenced by many factors that modulate lesion formation and the accessibility of repair machinery. However, it remains unknown which genomic sites are prioritized for immediate repair after UV damage induction, and whether these prioritized sites overlap with hotspots of UV damage. We identified the super hotspots subject to the earliest repair for (6-4) pyrimidine-pyrimidone photoproduct by using the eXcision Repair-sequencing (XR-seq) method. We further identified super coldspots for (6-4) pyrimidine-pyrimidone photoproduct repair and super hotspots for cyclobutane pyrimidine dimer repair by analyzing available XR-seq time-course data. By integrating datasets of XR-seq, Damage-seq, adductSeq, and cyclobutane pyrimidine dimer-seq, we show that neither repair super hotspots nor repair super coldspots overlap hotspots of UV damage. Furthermore, we demonstrate that repair super hotspots are significantly enriched in frequently interacting regions and superenhancers. Finally, we report our discovery of an enrichment of cytosine in repair super hotspots and super coldspots. These findings suggest that local DNA features together with large-scale chromatin features contribute to the orders of magnitude variability in the rates of UV damage repair.


Asunto(s)
Daño del ADN , Reparación del ADN/genética , Genoma Humano/genética , Genoma Humano/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Humanos , Dímeros de Pirimidina/metabolismo
19.
Mol Biol Evol ; 38(10): 4505-4519, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34175934

RESUMEN

UV irradiation induces the formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts in DNA. These two types of lesions can be directly photorepaired by CPD photolyases and 6-4 photolyases, respectively. Recently, a new class of 6-4 photolyases named iron-sulfur bacterial cryptochromes and photolyases (FeS-BCPs) were found, which were considered as the ancestors of all photolyases and their homologs-cryptochromes. However, a controversy exists regarding 6-4 photoproducts only constituting ∼10-30% of the total UV-induced lesions that primordial organisms would hardly survive without a CPD repair enzyme. By extensive phylogenetic analyses, we identified a novel class of proteins, all from eubacteria. They have relatively high similarity to class I/III CPD photolyases, especially in the putative substrate-binding and FAD-binding regions. However, these proteins are shorter, and they lack the "N-terminal α/ß domain" of normal photolyases. Therefore, we named them short photolyase-like. Nevertheless, similar to FeS-BCPs, some of short photolyase-likes also contain four conserved cysteines, which may also coordinate an iron-sulfur cluster as FeS-BCPs. A member from Rhodococcus fascians was cloned and expressed. It was demonstrated that the protein contains a FAD cofactor and an iron-sulfur cluster, and has CPD repair activity. It was speculated that this novel class of photolyases may be the real ancestors of the cryptochrome/photolyase family.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , Criptocromos/genética , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Filogenia , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta
20.
Chemistry ; 28(16): e202200088, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35084786

RESUMEN

The total enantioselective synthesis of (+)-eucophylline 1 was achieved using as a key-structural motif a chiral piperidinone bearing the natural product all-carbon quaternary stereocenter. The elaboration of the latter is based on two strategies relying on the free-radical carbo-cyanation and sulfonyl-cyanation respectively of enantiopure substituted cyclopropenes and cyclobutenes. Co- or Ni-boride reduction of the nitrile functional group along with the cyclopropane and cyclobutane ring-opening then led to the formation of the chiral piperidinone ring. Further elaboration of the latter into the key 1-azabicyclo[3.3.1]nonane motif followed by its coupling with a 2-cyanoaniline allowed the formation of the tetrahydrobenzo[b][1,8]-naphthyridine skeleton of 1, which was finally accessible in 17 steps and 5.9 % overall yield from 1,1-dibromobutene.


Asunto(s)
Compuestos de Azabiciclo , Ciclobutanos , Compuestos de Azabiciclo/química , Ciclobutanos/química , Radicales Libres , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA