Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 733
Filtrar
Más filtros

Intervalo de año de publicación
1.
Anal Biochem ; 689: 115493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403259

RESUMEN

Aflatoxin B1 (AF-B1) are toxins secreted by secondary metabolites of molds that have adverse effects on humans and animals resulting in huge economic losses. Here we report on field useable, cost effective and direct electrochemical sensor based on conducting polymer composite electrode, Poly (3,4-ethylenedioxythiophene): polystyrene sulphonic acid (PEDOT-PSS) for label-free detection of AF-B1. Structural and morphological characterization of composite electrodes were carried out using XRD and SEM. We compared two different electroanalytical techniques namely, transient capacitance and differential pulse voltammetry, to select the most prominent technique for analyzing the mycotoxin easily. For direct detection of AF-B1, transient capacitance measurement at 77 and 1000 Hz was employed wherein sensor showed linearity in 18.18-300.0 ng mL-1 range at 77 Hz for AF-B1. Best limit of detection (LOD) for AF-B1 was 55.41 ng mL-1 (369 pM) at 77 Hz with very good repeatability. DPV showed linearity in the range 18.18-342.85 ng mL-1 with LOD 435 pM. For demonstration of application of this sensor directly using minimum sample preparation, AF-B1 sensing has been confirmed successfully using white button mushrooms and okra stored at ambient conditions. Sensor response with real samples suggest usefulness of sensor to monitor stored farm products easily.


Asunto(s)
Aflatoxina B1 , Técnicas Biosensibles , Animales , Humanos , Aflatoxina B1/análisis , Técnicas Biosensibles/métodos , Inmunoensayo , Electrodos , Técnicas Electroquímicas/métodos , Límite de Detección
2.
Environ Res ; 245: 117369, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827372

RESUMEN

Using poly (vanillin-co-chitosan)/functionalized MWCNTs/GCE (PV-CS/f-MWCNTs/GCE) as a polymeric nanocomposite modified electrode, the present investigation has been conducted on the electrochemical detection of α-lipoic acid (α-LA) to prevent the activation of microglia inflammation of the nervous system. The manufacture of modified polymeric nanocomposite electrodes was carried out using the established electropolymerization process. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analyses of structure revealed that the electropolymerization of poly (vanillin-co-chitosan) on the surface of the f-MWCNTs modified electrode was successful. Vanillin-co-chitosan electropolymerization on f-MWCNTs as electroactive sheets can enhance the signal for α-LA electrochemical sensors, according to research on the electrochemical characteristics utilizing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methodologies. The PV-CS/f-MWCNTs/GCE demonstrated that it had a sensitivity of 0.04664 µA/µM, a detection limit of 0.012 µM, and an excellent response, linear range, and wide linear range to α-LA from 0 to 3000 µM. The results of the application of PV-CS/f-MWCNTs/GCE for determining the concentration of α-LA in a prepared real sample of human serum by DPV and human lipoic acid ELISA Kit analyses via standard addition method illustrated the substantial conformity between the findings of both assays. The results of the DPV analyses resulted in acceptable recovery values (97.60%-99.10%) and appropriate values of the Relative Standard Deviation (RSD) (3.58%-5.07%), which demonstrated the great applicability and accuracy of the results of PV-CS/f-MWCNTs/GCE for determining α-LA concentration in biological fluids and pharmaceutical specimens.


Asunto(s)
Benzaldehídos , Quitosano , Nanocompuestos , Ácido Tióctico , Humanos , Quitosano/química , Enfermedades Neuroinflamatorias , Nanocompuestos/química , Electrodos
3.
Environ Res ; 252(Pt 1): 118860, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582422

RESUMEN

The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 µM. The achieved sensitivities of 24.62 µA µM-1 cm-2 and 22.10 µA µM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 µM and 0.16 µM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.


Asunto(s)
Antimonio , Catecoles , Técnicas Electroquímicas , Hidroquinonas , Pirólisis , Hidroquinonas/química , Hidroquinonas/análisis , Catecoles/análisis , Catecoles/química , Antimonio/química , Antimonio/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Sulfuros/química
4.
Mikrochim Acta ; 191(8): 452, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970687

RESUMEN

Novel zeolitic imidazolate frameworks (ZIFs), classical subtypes of metal organic frameworks (MOFs), and nanostructures are electro-engineered onto carbon fiber (CF), leading to a unique freestanding electrochemical platform of budlike nano Zn-ZIFs decorated CF (BN-Zn-ZIFs/CF). The unique morphology, structure, and composition are characterized by electron microscopy and energy spectrum analysis. Notably, the BN-Zn-ZIFs/CF platform displays superb electrocatalysis towards the oxidation of isoeugenol with encouragingly low overpotential and high current response. The strong electrocatalytic oxidation capability of BN-Zn-ZIFs/CF makes it an excellent sensing platform for isoeugenol detection. BN-Zn-ZIFs/CF sensor exhibits high-performance isoeugenol sensing with an extremely low limit of detection (13 nM) and wide detection range (0.1-700 µM). Besides, the BN-Zn-ZIFs/CF sensor can greatly resist interference from common ions, major biomolecules, and some amino acids. Moreover, excellent reliability, stability, and practicality are obtained. Our work demonstrates that the as-prepared BN-Zn-ZIFs/CF can act as an high-performance electrochemical sensor for the isoeugenol detection, the well-developed ZIF nanocrystal-modified conductive substrates can be a unique platform for the efficient sensing of other molecules, and the electrochemical engineering strategy can be an effective method for the growing of fresh MOF nanocrystals at conductive substrates in various electrochemical applications.

5.
Mikrochim Acta ; 191(8): 484, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060755

RESUMEN

Luteolin (Lu), a compound with various biochemical and pharmacological activities beneficial to human health, has attracted researchers' attention. This study proposes an efficient and scalable method using ultrasound to intercalate graphene oxide (GO)-coated silica spheres (SiO2) into MXenes, resulting in a 3D conductive interconnected structural composite material. Characterization of the composite material was conducted using SEM, TEM, XRD, XPS, and Raman spectroscopy. MXenes exhibit excellent electrical conductivity, and the SiO2@GO surface with abundant hydroxyl and silanol groups provides high-binding active sites that facilitate Lu molecule enrichment. The formation of the 3D conductive interconnected structural composites enhances charge transport, significantly improving sensor sensitivity. Consequently, the sensor demonstrates excellent detection capabilities (detection range 0.03-7000 nM, detection limit 12 pM). Furthermore, the sensor can be applied to quantitative determination of Lu in real samples, including chrysanthemums, Jiaduobao, honeysuckle, purple perilla, and peanut shells, achieving recoveries between 98.2 and 104.7%.


Asunto(s)
Técnicas Electroquímicas , Grafito , Límite de Detección , Luteolina , Dióxido de Silicio , Grafito/química , Dióxido de Silicio/química , Luteolina/análisis , Luteolina/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Contaminación de Alimentos/análisis , Nanocompuestos/química , Arachis/química , Conductividad Eléctrica
6.
Mikrochim Acta ; 191(5): 270, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630200

RESUMEN

A comparative analysis of molecularly imprinted polymers based on different synthesis techniques was performed for the recognition of molnupiravir (MOL). The polymerizations were performed with 3-thienyl boronic acid (3-TBA) as a functional monomer by electropolymerization (EP) and with guanine methacrylate (GuaM) as a functional monomer by photopolymerization (PP). Morphological and electrochemical characterizations of the developed sensors were investigated to verify the constructed sensors. Moreover, quantum chemical calculations were used to evaluate changes on the electrode surface at the molecular and electronic levels. The dynamic linear range of both designed sensors under optimized experimental conditions was found to be 7.5 × 10-12-2.5 × 10-10 M and 7.5 × 10-13-2.5 × 10-11 M for EP and PP, respectively. The effect of various interfering agents on MOL peak current was assessed for the selectivity of the study. In the presence of 100 times more interfering agents, the RSD and recovery values were determined. The RSD values of GuaM/MOL@MIP/GCE and poly(Py-co-3-PBA)/MOL@MIP/GCE sensors were found to be 1.99% and 1.72%, respectively. Furthermore, the recovery values of the MIP-based sensors were 98.18-102.69% and 98.05-103.72%, respectively. In addition, the relative selectivity coefficient (k') of the proposed sensor was evaluated, and it exhibited good selectivity for MOL with respect to the NIP sensor. The prepared sensor was successfully applied to determine MOL in commercial serum samples and capsule form. In conclusion, the developed sensors provided excellent reproducibility, repeatability, high sensitivity, and selectivity against the MOL molecule.


Asunto(s)
Ácidos Borónicos , Citidina/análogos & derivados , Hidroxilaminas , Polímeros Impresos Molecularmente , Reproducibilidad de los Resultados , Electrodos , Guanina , Metacrilatos
7.
Mikrochim Acta ; 191(6): 342, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795174

RESUMEN

An innovative electrochemical sensing method is introduced for dihydroxy benzene (DHB) isomers, specifically hydroquinone (HQ) and pyrocatechol (PCC), employing a zinc-oxide/manganese-oxide/reduced-graphene-oxide (ZnO/MnO2/rGO) nanocomposite (NC) as an electrode modifier material. Comprehensive characterization confirmed well-dispersed ZnO/MnO2 nanoparticles on rGO sheets. Electrochemical analysis revealed the ZnO/MnO2/rGO-NC-based modified electrode possesses low electrical resistance (126.2 Ω), high electrocatalytic activity, and rapid electron transport, attributed to the synergies between ZnO, MnO2 and rGO. The modified electrode demonstrated exceptional electrochemical performance in terms of selectivity for the simultaneous detection of HQ and PCC. Differential pulse voltammetry studies validated the proposed sensor's ability to detect HQ and PCC within linear response ranges of 0.01-115 µM and 0.03-60.53 µM, with detection limits of 0.0055 µM and 0.0053 µM, respectively. Practical validation using diverse water samples showcased excellent percent recovery of HQ and PCC using the ZnO/MnO2/rGO-based electrochemical sensor, underscoring the sensor's potential for real-world applications in environmental monitoring.

8.
Mikrochim Acta ; 191(6): 362, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822867

RESUMEN

Rapid and accurate in situ determination of dopamine is of great significance in the study of neurological diseases. In this work, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS)/graphene oxide (GO) fibers were fabricated by an effective method based on microfluidic wet spinning technology. The composite microfibers with stratified and dense arrangement were continuously prepared by injecting PEDOT: PSS and GO dispersion solutions into a microfluidic chip. PEDOT: PSS/GO fiber microelectrodes with high electrochemical activity and enhanced electrochemical oxidation activity of dopamine were constructed by controlling the structure composition of the microfibers with varying flow rate. The fabricated fiber microelectrode had a low detection limit (4.56 nM) and wide detection range (0.01-8.0 µM) for dopamine detection with excellent stability, repeatability, and reproducibility. In addition, the PEDOT: PSS/GO fiber microelectrode prepared was successfully used for the detection of dopamine in human serum and PC12 cells. The strategy for the fabrication of multi-component fiber microelectrodes is a new and effective approach for monitoring the intercellular neurotransmitter dopamine and has high potential as an implantable neural microelectrode.


Asunto(s)
Dopamina , Grafito , Microelectrodos , Poliestirenos , Células PC12 , Dopamina/sangre , Humanos , Ratas , Animales , Poliestirenos/química , Grafito/química , Límite de Detección , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Tiofenos/química , Dispositivos Laboratorio en un Chip , Polímeros
9.
Mikrochim Acta ; 191(6): 315, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720091

RESUMEN

A novel solid-phase microextraction fiber based on MXene-chitosan-polyurea (MXene/CS/EPPU) nanocomposite decorated on a graphenized pencil lead fiber (MXene/CS/EPPU/GPLF) was prepared and utilized for electro-enhanced solid-phase microextraction (EE-SPME) of diclofenac (DCF) in biological samples. After extraction and desorption of DCF, it was determined by differential pulse voltammetry (DPV). For this purpose, the working electrode was prepared by deposition of the mentioned MXene/CS/EPPU nanocomposite onto the graphenized pencil lead. The synthesized SPME fiber was characterized using scanning electron microscopy and X-ray diffraction techniques. The effect of various parameters influencing the extraction and the desorption process were investigated, including applied voltage in the extraction and desorption steps, extraction and desorption times, and pH. The developed method exhibited a rather wide linearity in the range 2-1200 ng mL-1 (R2 = 0.985) for the determination of DCF in plasma samples. The limit of detection and the limit of quantification for plasma samples were estimated to be 0.58 and 1.9 ng mL-1 based on the 3Sb/m and 10Sb/m definitions, respectively. The method's accuracy and applicability have been evaluated by the analysis of plasma samples, leading to the relative recoveries in the range 87.0% and 98.0% with the relative standard deviations lower than 3.1%.

10.
Mikrochim Acta ; 191(7): 407, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898338

RESUMEN

A smartphone-based electrochemical aptasensing platform was developed for the point-of-care testing (POCT) of carcinoembryonic antigen (CEA) based on the ferrocene (Fc) and PdPt@PCN-224 dual-signal labeled strategy. The prepared PdPt@PCN-224 nanocomposite showed a strong catalytic property for the reduction of H2O2. Phosphate group-labeled aptamer could capture PdPt@PCN-224 by Zr-O-P bonds to form PdPt@PCN-224-P-Apt. Therefore, a dual signal labeled probe was formed by the hybridization between Fc-DNA and PdPt@PCN-224-P-Apt. The presence of CEA forced PdPt@PCN-224-P-Apt to leave the electrode surface due to the specific affinity, leading to the decrease of the reduction current of H2O2. At the same time, the Fc-DNA strand changed to hairpin structure, which made Fc closer to the electrode and resulted in the increase of the oxidation current of Fc. Thus, CEA can be accurately determined through both signals: the decrease of H2O2 reduction current and the increase of Fc oxidation current, which could avoid the false positive signal. Under the optimal conditions, the prepared aptasensor exhibited a wide linear range from 1 pg·mL-1 to 100 ng·mL-1 and low detection limits of 0.98 pg·mL-1 and 0.27 pg·mL-1 with Fc and PdPt@PCN-224 as signal labels, respectively. The aptasensor developed in this study has successfully demonstrated its capability to detect CEA in real human serum samples. These findings suggest that the proposed sensing platform will hold great potential for clinical tumor diagnosis and monitoring.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Compuestos Ferrosos , Peróxido de Hidrógeno , Límite de Detección , Paladio , Pruebas en el Punto de Atención , Teléfono Inteligente , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/análisis , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , Técnicas Biosensibles/métodos , Peróxido de Hidrógeno/química , Paladio/química , Compuestos Ferrosos/química , Metalocenos/química , Platino (Metal)/química
11.
Mikrochim Acta ; 191(7): 428, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940957

RESUMEN

A novel nitrogen-doped ordered mesoporous carbon (OMC) pore-embedded growth Pt-Ru-Fe nanoparticles (Pt1-Ru7.5-Fex@N-OMCs) composite was designed and synthesized for the first time. SBA-15 was used as a template, and dopamine was used as a carbon and nitrogen source and metal linking reagent. The oxidative self-polymerization reaction of dopamine was utilized to polymerize dopamine into two-dimensional ordered SBA-15 template pores. Iron porphyrin was introduced as an iron source at the same time as polymerization of dopamine, which was introduced inside and outside the pores using dopamine-metal linkage. Carbonization of polydopamine, nitrogen doping and iron nanoparticle formation were achieved by one-step calcination. Then the templates were etched to form Fex@N-OMCs, and finally the Pt1-Ru7.5-Fex@N-OMCs composites were stabilized by the successful introduction of platinum-ruthenium nanoparticles through the substitution reaction. The composite uniformly embeds the transition metal nanoparticles inside the OMC pores with high specific surface area, which limits the size of the metal nanoparticles inside the pores. At the same time, the metal nanoparticles are also loaded onto the surface of the OMCs, realizing the uniform loading of metal nanoparticles both inside and outside the pores. This enhances the active sites of the composite, promotes the mass transfer process inside and outside the pores, and greatly enhances the electrocatalytic performance of the catalyst. The material shows high electrocatalytic performance for adrenaline, which is characterized by a wide linear range, high sensitivity and low detection limit, and can realize the detection of actual samples.

12.
Mikrochim Acta ; 191(7): 381, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858277

RESUMEN

Nanosized sodium bismuth perovskite titanate (NBT) was synthesized and first used as the electrochemical immune sensing platform for the sensitive detection of carcinoembryonic antigen (CEA). Gold nanoparticles (Au NPs) grew on the surface of NBT through forming Au-N bond to obtain Au@NBT, and a label-free electrochemical immunosensor was proposed using Au@NBT as an immunosensing recognizer towards CEA. The well-ordered crystal structure of NBT was not changed at all after the modification of Au NPs outside, but significantly improved the conductivity, catalytic activity, and biocompatibility of the Au@NBT-modified electrode. The unique cubic crystal nanostructure of NBT offered a large active area for both Au NP modification and the subsequent immobilization of biomolecules over the electrode surface, triggering the effective generation of promising properties of the proposed Au@NBT-based electrochemical immunosensor. As expected, favorable detection performances were achieved using this immunosensor towards CEA detection, where a good linear relationship between the current response and CEA concentration was obtained in the concentration range 10 fg mL-1 to 100 ng mL-1 with a low detection limit (LOD) of 13.17 fg mL-1. Also, the significantly enhanced selectivity, and stability guaranteed the promising electrochemical properties of this immunosensor. Furthermore, the analysis of real serum samples verified the high feasibility of this new method in clinical CEA detection. This work opens a new window for the application of nanoperovskite in the early detection of CEA.


Asunto(s)
Bismuto , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Oro , Límite de Detección , Nanopartículas del Metal , Titanio , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/inmunología , Titanio/química , Técnicas Electroquímicas/métodos , Humanos , Inmunoensayo/métodos , Oro/química , Nanopartículas del Metal/química , Bismuto/química , Técnicas Biosensibles/métodos , Óxidos/química , Anticuerpos Inmovilizados/inmunología , Compuestos de Calcio/química , Electrodos
13.
Mikrochim Acta ; 191(8): 456, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980419

RESUMEN

Polydopamine (PDA) has garnered significant interest for applications in biosensors, drug delivery, and tissue engineering. However, similar polycatecholamines like polynorepinephrine (PNE) with additional hydroxyl groups and poly-α-methylnorepinephrine (PAMN) with additional hydroxyl and methyl groups remain unexplored in the biosensing domain. This research introduces three innovative biosensing platforms composed of ternary nanocomposite based on reduced graphene oxide (RGO), gold nanoparticles (Au NPs), and three sister polycatecholamine compounds (PDA, PNE, and PAMN). The study compares and evaluates the performance of the three biosensing systems for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). The formation of the nanocomposites was meticulously examined through UV-Visible, Raman, XRD, and FT-IR studies with FE-SEM and HR-TEM analysis. Cyclic voltammetry and differential pulse voltammetry measurements were also performed to determine the electrochemical characteristics of the modified electrodes. Electrochemical biosensing experiments reveal that the RGO-PDA-Au, RGO-PNE-Au, and RGO-PAMN-Au-based biosensors detected target DNA up to a broad detection range of 0.1 × 10-8 to 0.1 × 10-18 M, with a low detection limit (LOD) of 0.1 × 10-18, 0.1 × 10-16, and 0.1 × 10-17 M, respectively. The bioelectrodes were proved to be highly selective with excellent sensitivities of 3.62 × 10-4 mA M-1 (PDA), 7.08 × 10-4 mA M-1 (PNE), and 6.03 × 10-4 mA M-1 (PAMN). This study pioneers the exploration of two novel mussel-inspired polycatecholamines in biosensors, opening avenues for functional nanocoatings that could drive further advancements in this field.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Grafito , Indoles , Límite de Detección , Nanopartículas del Metal , Polímeros , Técnicas Biosensibles/métodos , Indoles/química , Polímeros/química , Técnicas Electroquímicas/métodos , Grafito/química , Oro/química , Animales , Nanopartículas del Metal/química , Mycobacterium tuberculosis , Bivalvos/química , Nanocompuestos/química , Electrodos , Norepinefrina/análisis
14.
Mikrochim Acta ; 191(8): 471, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028342

RESUMEN

Electrochemical alkalization of (Cu-S)n metal-organic framework (MOF) and graphene oxide ((Cu-S)n MOF/GO) composite yields a new CuO/(Cu-S)n MOF/RGO (reduced GO) composite with porous morphology on screen printed carbon electrode (SPCE) which facilitated the electron transfer properties in electrochemical quercetin (QUE) detection. A selective QUE detection ability has been demonstrated by the constructed electrochemical sensor (CuO/(Cu-S)n MOF/RGO/SPCE), which also has a broad dynamic range of 0.5 to 115 µM in pH 3 by differential pulse voltammetry. The detection limit is 0.083 µM (S/N = 3). In this study, it was  observed that the real samples contained 0.34 mg mL-1 and 27.7 µg g-1 QUE in wine and onion, respectively.

15.
Mikrochim Acta ; 191(7): 408, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898321

RESUMEN

The introduced work represents an implementation of the automatic benchtop electrochemical station (BES) as an effective tool for the possibilities of high-throughput preparation of modified sensor/biosensors, speeding up the development of the analytical method, and automation of the analytical procedure for the determination of paracetamol (PAR) and dopamine (DOP) as target analytes. Within the preparation of gold nanoparticles modified screen-printed carbon electrode (AuNPs-SPCE) by electrodeposition, the deposition potential EDEP, the deposition time tDEP, and the concentration of HAuCl4 were optimized and their influence was monitored on 1 mM [Ru(NH3)6]3+/2+ redox probe and 50 µM DOP. The morphology of the AuNPs-SPCE prepared at various modification conditions was observed by SEM. The analytical performance of the AuNPs-SPCE prepared at different modification conditions was evaluated by a construction of the calibration curves of DOP and PAR. SPCE and AuNPs-SPCE at modification condition providing the best sensitivity to PAR and DOP, were successfully used to determine PAR and DOP in tap water by "spike-recovery" approach. The BES yields better reproducibility of the preparation of AuNPs-SPCE (RSD = 3.0%) in comparison with the case when AuNPs-SPCE was prepared manually by highly skilled laboratory operator (RSD = 7.0%).


Asunto(s)
Acetaminofén , Dopamina , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Acetaminofén/análisis , Dopamina/análisis , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Electrodos , Técnicas Biosensibles/métodos , Límite de Detección , Carbono/química
16.
Mikrochim Acta ; 191(4): 174, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436801

RESUMEN

Early diagnosis of dengue infection by detecting the dengue virus non-structural protein 1 (DENV-NS1) is important to the patients to initiate speedy treatment. Enzyme-linked immunosorbent assay (ELISA)-based NS1 detection and RT-PCR are time-consuming and too complex to be employed in remote areas of dengue-endemic countries. Meanwhile, those of NS1 rapid test by lateral flow assay suffer from low detection limit. Electrochemical-based biosensors using screen-printed gold electrodes (SPGEs) have become a reliable detection method to convey both ELISA's high sensitivity and rapid test portability. In this research, we developed an electrochemical biosensor for DENV-NS1 detection by employing polydopamine (PDA)-modified SPGE. The electrodeposition of PDA on the surface of SPGE serves as a bioconjugation avenue for anti-NS1 antibody through a simple and low-cost immobilization procedure. The biosensor performance was evaluated to detect DENV-NS1 protein in PBS and human serum through a differential pulse voltammetric (DPV) technique. The developed sensing platform displayed a low limit of detection (LOD) of 1.63 pg mL-1 and a wide linear range of 10 pg mL-1 to 1 ng mL-1 (R2 ∼ 0.969). The sensing platform also detected DEV-NS1 from four different serotypes in the clinical samples collected from dengue patients in India and Indonesia, with acceptable sensitivity, specificity, and accuracy values of 90.00%, 80.95%, and 87.65%, respectively. This result showcased the facile and versatile method of PDA coating onto the surface of screen-printed gold electrodes for a miniaturized point-of-care (PoC) detection device.


Asunto(s)
Virus del Dengue , Dengue , Indoles , Sistemas de Atención de Punto , Polímeros , Humanos , Dengue/diagnóstico , Electrodos , Oro , Proteínas no Estructurales Virales/química
17.
Mikrochim Acta ; 191(4): 210, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499672

RESUMEN

A ratiometric assay was designed to improve the sensitivity and reliability of electrochemical immunosensors for deoxynivalenol (DON) detection. The indicator signal caused by the Fe-based metal-organic framework nanocomposites loaded with gold nanoparticles and the internal reference signal from the [Fe(CN)6]3-/4- in the electrolyte came together at the immunosensor. When immunoreactivity occurred, the indicator signals decreased as the concentration of DON increased, while the internal reference signals increased slightly. The ratio of the indicator signal to the internal reference signal was available for reproducible and sensitive monitoring of DON. The prepared immunosensor showed excellent performance in the range from 0.5 to 5000 pg mL-1, and the detection limit was 0.0166 pg mL-1. The immunosensor achieved satisfactory detection toward DON in spiked and actual samples and has a promising application in the control of DON in grain products.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Tricotecenos , Técnicas Electroquímicas , Inmunoensayo , Oro , Reproducibilidad de los Resultados
18.
Mikrochim Acta ; 191(5): 262, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613581

RESUMEN

Rapid and sensitive detection of carcinoembryonic antigen (CEA) is of great significance for cancer patients. Here, molybdenum (Mo) was doped into bismuth oxide (Bi2O3) by one-pot hydrothermal method forming porous tremella Bi2MoO6 nanocomposites with a larger specific surface area than the spherical structure. Then, a new kind of hydrangea-like TiO2/Bi2MoO6 porous nanoflowers (NFs) was prepared by doping titanium into Bi2MoO6, where titanium dioxide (TiO2) grew in situ on the surface of Bi2MoO6 nanoparticles (NPs). The hydrangea-like structure provides larger specific surface area, higher electron transfer ability and biocompatibility as well as more active sites conducive to the attachment of anti-carcinoembryonic antigen (anti-CEA) to TiO2/Bi2MoO6 NFs. A novel label-free electrochemical immunosensor was then constructed for the quantitative detection of CEA using TiO2/Bi2MoO6 NFs as sensing platform, showing a good linear relationship with CEA in the concentration range 1.0 pg/mL ~ 1.0 mg/mL and a detection limit of 0.125 pg/mL (S/N = 3). The results achieved with the designed immunosensor are comparable with many existing immunosensors used for the detection of CEA in real samples.


Asunto(s)
Técnicas Biosensibles , Bismuto , Hydrangea , Molibdeno , Humanos , Biomarcadores de Tumor , Antígeno Carcinoembrionario , Porosidad , Inmunoensayo
19.
Mikrochim Acta ; 191(5): 274, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635036

RESUMEN

Pharmaceuticals and personal care products (PPCPs) have a significant impact on the environment and human health, due to their sometimes toxic and carcinogenic characteristics. Therefore, an innovative chemosensor was constructed for ultrasensitive determination of two typical PCCPs (hydroquinone (HQ) and catechol (CC)) in several minutes. The homemade chemosensor (UiO-67@GO/MWCNTs) consisted of MOF(UiO-67), graphene oxide (GO), and multi-walled carbon nanotubes (MWCNTs) composites; it was a networked, structurally sparse, porosity-rich, homogeneous octahedral composite, and had ultra-high electrical conductivity, which provided lots of active adsorption sites, promote charge transfer, and enrich lots of molecules to be measured in a few minutes. The prepared electrochemical sensor showed good long-term stability, applicability, reproducibility, and immunity to interference for the determination of HQ and CC, with a wide linear range of response of 5.0 ~ 940 µM for both HQ and CC, and a low limit of detection with satisfactory recoveries. In addition, a new strategy of using MOF composites as the basis for electrochemical determination of organic small molecules was established, and a new platform was constructed for the quantitative determination of organic small molecules in various environmental samples.

20.
Mikrochim Acta ; 191(3): 121, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308135

RESUMEN

Hydroxyl radical (•OH) detection is pivotal in medicine, biochemistry and environmental chemistry. Yet, electrochemical method-specific detection is challenging because of hydroxyl radicals' high reactivity and short half-life. In this study, we aimed to modify the electrode surface with a specific recognition probe for •OH. To achieve this, we conducted a one-step hydrothermal process to fabricate a CoZnMOF bimetallic organic framework directly onto conductive graphite paper (Gp). Subsequently, we introduced salicylic acid (SA) and methylene blue (MB), which easily penetrated the pores of CoZnMOF. By selectively capturing •OH by SA and leveraging the electrochemical signal generated by the reaction product, we successfully developed an electrochemical sensor Gp/CoZnMOF/SA + MB. The prepared sensor exhibited a good linear relationship with •OH concentrations ranging from 1.25 to 1200 nM, with a detection limit of 0.2 nM. Additionally, the sensor demonstrated excellent reproducibility and accuracy due to the incorporation of an internal reference. It exhibited remarkable selectivity for •OH detection, unaffected by other electrochemically active substances. The establishment of this sensor provides a way to construct MOF-modified sensors for the selective detection of other reactive oxygen species (ROS), offering a valuable experimental basis for ROS-related disease research and environmental safety investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA