Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366661

RESUMEN

This study aims to isolate microbial strains for producing mono-rhamnolipids with high proportion. Oily sludge is rich in petroleum and contains diverse biosurfactant-producing strains. A biosurfactant-producing strain LP20 was isolated from oily sludge, identified as Pseudomonas aeruginosa based on phylogenetic analysis of 16S rRNA. High-performance liquid chromatography-mass spectrometry results indicated that biosurfactants produced from LP20 were rhamnolipids, mainly containing Rha-C8-C10, Rha-C10-C10, Rha-Rha-C8-C10, Rha-Rha-C10-C10, Rha-C10-C12:1, and Rha-C10-C12. Interestingly, more mono-rhamnolipids were produced by strain LP20 with a relative abundance of 64.5%. Pseudomonas aeruginosa LP20 optimally produced rhamnolipids at a pH of 7.0 and a salinity of 0.1% using glycerol and nitrate. The culture medium for rhamnolipids by strain LP20 was optimized by response surface methodology. LP20 produced rhamnolipids up to 6.9 g L-1, increased by 116%. Rhamnolipids produced from LP20 decreased the water surface tension to 28.1 mN m-1 with a critical micelle concentration of 60 mg L-1. The produced rhamnolipids emulsified many hydrocarbons with EI24 values higher than 56% and showed antimicrobial activity against Staphylococcus aureus and Cladosporium sp. with inhibition rates 48.5% and 17.9%, respectively. Pseudomonas aeruginosa LP20 produced more proportion of mono-rhamnolipids, and the LP20 rhamnolipids exhibited favorable activities and promising potential in microbial-enhanced oil recovery, bioremediation, and agricultural biocontrol.


Asunto(s)
Decanoatos , Pseudomonas aeruginosa , Ramnosa/análogos & derivados , Aguas del Alcantarillado , Pseudomonas aeruginosa/genética , Filogenia , ARN Ribosómico 16S/genética , Glucolípidos , Tensoactivos/farmacología
2.
Extremophiles ; 27(1): 4, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715826

RESUMEN

A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L-1) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9 × 106 Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear ß-D-(2 → 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 µg mL-1. The EPS had high emulsifying activity (E24, %) against kerosene (31.2 ± 0.4%), sunflower oil (76.9 ± 1.3%), and crude oil (98.9 ± 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of C. salexigens 3EQS1 may be useful in various biotechnological processes.


Asunto(s)
Chromohalobacter , Filogenia , Fructanos , Egipto
3.
Arch Microbiol ; 204(4): 227, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35353236

RESUMEN

This study aimed to evaluate the differences in the characteristics of extracellular polymeric substances (EPSs) secreted by Mycobacterium gilvum SN12 (M.g. SN12) cultured on pyrene (Pyr) and benzo[a]pyrene (BaP). A heating method was used to extract EPSs from M.g. SN12, and the composition, emulsifying activity, and morphology of EPS extracts were investigated. Results showed that EPS extracts varied significantly with Pyr or BaP addition to the bacterial cultures. The concentration of proteins and carbohydrates, the main components of the EPS extracts, first increased and then decreased, with an increase in the concentration of Pyr (0-120 mg L-1) and BaP (0-120 mg L-1). A similar trend was observed for the emulsifying activity of the EPS extracts. EPSs extracted from all cultures exhibited a compact structure with a smooth surface, except for EPSs extracted from BaP-grown M.g. SN12, which revealed a more fragile and softer surface. These findings suggest that Pyr and BaP had different influences on the properties of isolated EPSs, providing insights into the mechanism underlying polycyclic aromatic hydrocarbons (PAHs) biodegradation by some EPS-secreting bacteria. To the best of our knowledge, this is the first report on the texture profile of EPS samples extracted from M.g. SN12 grown on PAHs.


Asunto(s)
Benzo(a)pireno , Hidrocarburos Policíclicos Aromáticos , Benzo(a)pireno/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Micobacterias no Tuberculosas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo
4.
Int J Phytoremediation ; 24(3): 255-262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34297649

RESUMEN

Oil spills are a global environmental problem. One of the management tools used to solve this problem is phytoremediation, a process that uses the capacity of plants and microorganisms to metabolize the components of the oil. The aims of the present study were to isolate, identify and characterize the fungi obtained from plants growing in an oil-contaminated area and evaluate their growth response and emulsifying and degrading capacity in two petroleum derivatives (kerosene and lube oil). Four dark septate endophytes (DSE) strains were isolated and identified: Exserohilum pedicellatum, Ophiosphaerella sp., and two Alternaria alternata strains. E. pedicellatum was found in an oil-contaminated environment for the first time. All strains were grown in kerosene, although some showed inhibition, whereas in lube oil, all showed growth induction. Ophiosphaerella sp. showed "drops" in kerosene, but the four strains showed surfactant capacity in lube oil. Ophiosphaerella sp. showed the highest emulsifying activity index but both A. alternata strains presented the highest lube oil degradation, which was directly related to the weight of the fungal biomass. There was not relationship between emulsifying capacity and oil degradation. However, these fungi show technological potential for application in phytoremediation processes.


Asunto(s)
Endófitos , Raíces de Plantas , Biodegradación Ambiental , Biomasa , Plantas
5.
Microb Cell Fact ; 18(1): 173, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601224

RESUMEN

BACKGROUND: Bioemulsifiers are surface-active compounds, which exhibit advantages including low toxicity, higher biodegradability and biocompatibility over synthetic chemical surfactants. Despite their potential benefits, some obstacles impede the practical applications of bioemulsifiers, including low yields and high purification costs. Here, we aimed to exploit a novel protein bioemulsifier with efficient emulsifying activity and low-production cost, as well as proposed a design-bioemulsifier system that meets different requirements of industrial emulsification in the most economical way. RESULTS: The esterase AXE was first reported for its efficient emulsifying activity and had been studied for possible application as a protein bioemulsifier. AXE showed an excellent emulsification effect with different hydrophobic substrates, especially short-chain aliphatic and benzene derivatives, as well as excellent stability under extreme conditions such as high temperature (85 °C) and acidic conditions. AXE also exhibited good stability over a range of NaCl, MgSO4, and CaCl2 concentrations from 0 to 1000 mM, and the emulsifying activity even showed a slight increase at salt concentrations over 500 mM. A design-bioemulsifier system was proposed that uses AXE in combination with a variety of polysaccharides to form efficient bioemulsifier, which enhanced the emulsifying activity and further lowered the concentration of AXE needed in the complex. CONCLUSIONS: AXE showed a great application potential as a novel bioemulsifier with excellent emulsifying ability. The AXE-based-designer bioemulsifier could be obtained in the most economical way and open broad new fields for low-cost, environmentally friendly bioemulsifiers.


Asunto(s)
Acetilesterasa/química , Bacillus subtilis/metabolismo , Emulsionantes/química , Polisacáridos/química , Acetilesterasa/biosíntesis , Biodegradación Ambiental
6.
Molecules ; 24(3)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678271

RESUMEN

In this work, the efficient extraction of pectin from sugar beet by-products (pressed, ensiled and dried pulp), by using an acid method or a commercial cellulose, is accomplished. The extraction method had an impact on the pectin monomeric composition, mainly in xylose, arabinose, and galacturonic acid content, as determined by GC-FID. FTIR and SEC analyses allowed the determination of similar degrees of methoxylation and molecular weights, respectively, in the extracted pectins. The acid extraction of pectin in the ensiled by-product led to the highest yield (19%) with a galacturonic acid content of 46%, whereas the application of the enzymatic extraction method resulted in a lower yield (13%) but higher galacturonic acid content (72%). Moreover, the stability in aqueous solution as well as the emulsifying activity index was higher for pectin extracted by the acid method, whereas the viscosity was higher in pectin extracted by the enzymatic method. To the best of our knowledge, this is the first study analyzing the physicochemical properties and exploring the potential reuse of ensiled and dried by-products from sugar beet industry for the extraction of pectin to be further used in the food and pharmaceutical areas.


Asunto(s)
Beta vulgaris/química , Estructura Molecular , Pectinas/química , Extractos Vegetales/química , Viscosidad , Peso Molecular , Pectinas/aislamiento & purificación , Fitoquímicos/química , Extractos Vegetales/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier
7.
Crit Rev Food Sci Nutr ; 58(9): 1538-1556, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28071938

RESUMEN

The demand for proteins is rising and alternatives to meat proteins are necessary since animal husbandry is expensive and intensive to the environment. Plant proteins appear as an alternative; however, their techno-functional properties need improvement. High-pressure processing (HPP) is a non-thermal technology that has several applications including the modification of proteins. The application of pressure allows modifying proteins' structure hence allowing to change several of their properties, such as hydration, hydrophobicity, and hydrophilicity. These properties may influence the solubility of proteins and their ability to stabilize emulsions or foams, create aggregates or gels, and their general role in stability and texture of food commodities. Commonly HPP decreases the proteins' solubility yet increasing their surface hydrophobicity exposing sulfhydryl groups, which promotes aggregation or gelation or enhance their ability to stabilize emulsions/foams. However, these effects are not verifiable for all the proteins and are immensely dependent on the type and concentration of the protein, environmental conditions (pH, ionic strength, and co-solutes), and HPP conditions. This review collects and critically discusses the available information on how HPP affects the structure of plant proteins and how their techno-functional properties can be tailored using this approach.


Asunto(s)
Proteínas en la Dieta/química , Tecnología de Alimentos , Proteínas de Plantas/química , Animales , Emulsiones/química , Manipulación de Alimentos , Geles/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Presión Hidrostática , Carne , Estructura Molecular , Concentración Osmolar , Solubilidad , Temperatura
8.
Microb Cell Fact ; 17(1): 39, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523151

RESUMEN

BACKGROUND: Rhamnolipids are the most extensively studied biosurfactants and has been successfully used in various areas from bioremediation to industrial fields. Rhamnolipids structural composition decide their physicochemical properties. Different physicochemical properties influence their application potential. Rhamnolipids can be produced at both aerobic conditions and anaerobic conditions by Pseudomonas aeruginosa. This study aims to evaluate the oxygen effects on the rhamnolipids yield, structural composition, physicochemical properties and the rhl-genes expression in P. aeruginosa SG. Results will guide researchers to regulate microbial cells to synthesize rhamnolipids with different activity according to diverse application requirements. RESULTS: Quantitative real-time PCR analysis revealed that rhlAB genes were down-regulated under anaerobic conditions. Therefore, strain P. aeruginosa SG anaerobically produced less rhamnolipids (0.68 g/L) than that (11.65 g/L) under aerobic conditions when grown in media containing glycerol and nitrate. HPLC-MS analysis showed that aerobically produced rhamnolipids mainly contained Rha-C8-C10, Rha-Rha-C10-C12:1 and Rha-Rha-C8-C10; anaerobically produced rhamnolipids mainly contained Rha-C10-C12 and Rha-C10-C10. Anaerobically produced rhamnolipids contained more mono-rhamnolipids (94.7%) than that (54.8%) in aerobically produced rhamnolipids. rhlC gene was also down-regulated under anaerobic conditions, catalyzing less mono-rhamnolipids to form di-rhamnolipids. Aerobically produced rhamnolipids decreased air-water surface tension (ST) from 72.2 to 27.9 mN/m with critical micelle concentration (CMC) of 60 mg/L; anaerobically produced rhamnolipids reduced ST to 33.1 mN/m with CMC of 80 mg/L. Anaerobically produced rhamnolipids emulsified crude oil with EI24 = 80.3%, and aerobically produced rhamnolipids emulsified crude oil with EI24 = 62.3%. Both two rhamnolipids products retained surface activity (ST < 35.0 mN/m) and emulsifying activity (EI24 > 60.0%) under temperatures (4-121 °C), pH values (4-10) and NaCl concentrations less than 90 g/L. CONCLUSIONS: Oxygen affected the rhl-genes expression in P. aeruginosa, thus altering the rhamnolipids yield, structural composition and physicochemical properties. Rhamnolipids produced at aerobic or anaerobic conditions was structurally distinct. Two rhamnolipids products had different application potential in diverse biotechnologies. Although both rhamnolipids products were thermo-stable and halo-tolerant, aerobically produced rhamnolipids possessed better surface activity, implying its well wetting activity and desorption property; anaerobically produced rhamnolipids exhibited better emulsifying activity, indicating its applicability for enhanced oil recovery and bioremediation of petroleum pollution.


Asunto(s)
Glucolípidos/biosíntesis , Oxígeno/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Anaerobiosis , Biodegradación Ambiental , Cromatografía Líquida de Alta Presión , Regulación Bacteriana de la Expresión Génica , Glicerol/metabolismo , Microbiología Industrial , Nitratos/metabolismo , Petróleo/metabolismo , Pseudomonas aeruginosa/genética , Tensión Superficial , Tensoactivos/metabolismo
9.
J Food Sci Technol ; 55(9): 3616-3624, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30150820

RESUMEN

Alaska walleye pollock (Gadus chalcogrammus) roe is a commercial product of the Alaska pollock fishery. Accordingly, the objective of this study was to determine functional properties of pollock roe through rheological and physicochemical analyses. Pollock roe rheological properties were determined by flow sweep and frequency sweep measurements. Zeta potential of the roe was measured at different pHs (2-12) and roe protein concentration of 0.05% (w/v). Protein solubility was determined by adjusting pH of the freeze-dried pollock roe powder between 2 and 12. Emulsion stability of the roe was determined by measuring creaming index at different oil:water ratios ranging from 5:95 to 65:35 (w/w). The obtained results showed that emulsifying activities of the pollock roe were high (2.93 ± 0.03 ml oil/g roe). Higher oil phase volume resulted in more stable emulsions. The highest charge densities were at pH 2 and 12, where the maximum protein solubility occurred. The DSC thermogram for the pollock roe exhibited a single endothermic peak at 82.89 °C in average, indicated thermal denaturation of the fish roe proteins. Rheological behaviors of the roe were determined as a function of temperature (5 and 25 °C). Viscosity profile showed shear thinning behavior in both samples. However, the pseudoplasticity degree (N) and viscosity values increased by decreasing temperature. The mechanical spectra derived from strain sweep and frequency sweep measurements indicated viscoelastic behavior in all of the samples. However, higher dynamic moduli values at lower temperatures suggested more molecular connectivity and network formation, which was likely caused by protein-protein interactions.

10.
World J Microbiol Biotechnol ; 33(8): 161, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28755169

RESUMEN

This study describes a novel and efficient alasan-like bioemulsifier produced by Pseudomonas stutzeri NJtech 11-1, which was isolated from the Shengli Oilfield. The strain was found to produce a new and interesting emulsion stabilizer. The crude bioemulsifier showed super stability with 50% salinity and broad pH 3-10. The emulsion index (EI24) was increased to 100% after heating from 45 to 95 °C and the emulsion could be stable for at least 30 days. The yield of Ps-bioemulsifier (pure bioemulsifier) was 0.68 ± 0.05 mg mL-1. The Ps-bioemulsifier was composed of carbohydrates (80 ± 2.6%) and proteins (9.5 ± 0.5%). A low concentration (0.2 mg mL-1) of the Ps-bioemulsifier was obtained maximum emulsifying activity at pH 7.1 and its emulsifying activity strengthened by suitable salinity. Furthermore, Ps-bioemulsifier could also emulsify cyclohexane, hexadecane, kerosene, xylene hydrocarbons efficiently. Therefore, the Ps-bioemulsifier showed emulsifying characteristics which make it a good candidate for potential applications in bioremediation and microbial enhanced oil recovery.


Asunto(s)
Emulsionantes/aislamiento & purificación , Emulsionantes/metabolismo , Pseudomonas stutzeri/metabolismo , Alcanos/metabolismo , Biodegradación Ambiental , Metabolismo de los Hidratos de Carbono , Ciclohexanos/metabolismo , Endopeptidasa K , Hidrocarburos/metabolismo , Concentración de Iones de Hidrógeno/efectos de los fármacos , Queroseno , Petróleo/metabolismo , Filogenia , Proteínas/metabolismo , Pseudomonas stutzeri/clasificación , Pseudomonas stutzeri/crecimiento & desarrollo , Pseudomonas stutzeri/aislamiento & purificación , Salinidad , Temperatura , Viscosidad
11.
Appl Microbiol Biotechnol ; 100(2): 613-23, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26403921

RESUMEN

We have isolated a novel exopolysaccharide (EPS) produced by the extreme halophilic archaeon Haloterrigena turkmenica. Some features, remarkable from an industrial point of view, such as emulsifying and antioxidant properties, were investigated. H. turkmenica excreted 20.68 mg of EPS per 100 ml of culture medium when grown in usual medium supplemented with glucose. The microorganism excreted the biopolymer mainly in the middle exponential growth phase and reached the maximal production in the stationary phase. Analyses by anion exchange chromatography and SEC-TDA Viscotek indicated that the EPS was composed of two main fractions of 801.7 and 206.0 kDa. It was a sulfated heteropolysaccharide containing glucose, galactose, glucosamine, galactosamine, and glucuronic acid. Studies performed utilizing the mixture of EPS anionic fractions showed that the biopolymer had emulsifying activity towards vegetable oils comparable or superior to that exhibited by the controls, moderate antioxidant power when tested with 2,2'-diphenyl-1-picrylhydrazyl (DPPH(·)), and moisture-retention ability higher than hyaluronic acid (HA). The EPS from H. turkmenica is the first exopolysaccharide produced by an archaea to be characterized in terms of properties that can have potential biotechnological applications.


Asunto(s)
Halobacteriales/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/química , Antioxidantes/química , Antioxidantes/metabolismo , Biotecnología , Compuestos de Bifenilo/farmacología , Medios de Cultivo/química , Emulsiones , Galactosa/metabolismo , Glucosa/metabolismo , Halobacteriales/química , Ácido Hialurónico/metabolismo , Picratos/farmacología
12.
Int J Biol Macromol ; 271(Pt 1): 132549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782331

RESUMEN

Bovine serum albumin nanofibrils (BSNs) were fabricated under thermal treatment (85 °C) at acidic condition (pH 2.0) and the incubation time on the structural, and physicochemical characteristics were probed. The formation and development of BSNs have been detected and confirmed by Thioflavin T (ThT) fluorescence and circular dichroism (CD) measurements. The structural alterations of bovine serum albumin (BSA) have also been investigated using intrinsic fluorescence and Congo red (CGR) UV-vis spectroscopy. Atomic force microscopy (AFM) outcomes displayed the morphologies of BSNs at varied time, with a diameter of about 3 nm and a contour length of about 200 nm at 24 h. The apparent viscosities of BSNs at three different pH were in the following order: pH 3.0 > pH 5.0 > pH 7.0. Emulsifying and foaming properties of BSA were pronouncedly enhanced through fibrillation, which was highly correlated with the interfacial properties and structural characteristics. Highest EAI 54.2 m2/g was attained at 48 h and no pronounced alterations were observed for EAI at 24 h and 48 h. Maximum value of FC was obtained at 48 h for BSA. This study will provide some useful information in understanding the formation of BSNs and broaden their application in food systems as functional food ingredients.


Asunto(s)
Nanofibras , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Animales , Nanofibras/química , Concentración de Iones de Hidrógeno , Bovinos , Emulsiones/química , Fenómenos Químicos , Viscosidad
13.
Food Chem X ; 21: 101122, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261844

RESUMEN

Protein-polysaccharide composite is of great significance for the development of soluble protein recovery process. This study investigated the effects of cavitation jet (CJ) pretreatment at different time (0, 60, 120, 180, 240, 300 s) intervals on the recovery of soy whey protein (SWP) from soy whey wastewater using chitosan (CH). In addition, the structure and properties of the SWP/CH complexes were examined. The results showed that the recovery yield of SWP reached 84.44 % when the CJ pretreatment time was 180 s, and the EAI and ESI values of the SWP/CH complex increased from 32.39 m2/g and 21 min to 48.47 m2/g and 32 min, respectively. In the CJ pretreatment process, SWP promotes the recombination with chitosan through electrostatic interaction and hydrogen bond, while hydrophobic interaction is also involved. This study has guiding significance for CJ technology in the recovery and utilization of protein in industrial wastewater.

14.
Nat Prod Res ; : 1-7, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217479

RESUMEN

Microbial exopolysaccharides (EPSs) are currently under intensive research in various applications. However, studies on EPS from Bacillus velezensis are rare and the emulsifying properties of this EPS have not been studied previously. An EPS produced by a novel B. velezensis BABA50 strain isolated from an Algerian hot spring was characterised. The results of structural, morphological and thermal analyses showed a heteropolymeric structure containing galactose, glucose, glucuronic acid and N-acetyl glucosamine. Analyses revealed the presence of carbonyl and hydroxyl groups, branched and highly porous structure and relevant thermal stability compared to other EPSs with a high degradation temperature of 260 °C and 38% of residual mass at 800 °C. EPS from B. velezensis BABA50 presents distinct polymer in terms of structure and composition compared to previously described EPS with excellent emulsifying and antioxidant activities; this EPS holds great potential in the food and cosmetic industries as a thermostable emulsifier and antioxidant agent.

15.
Microbiol Spectr ; 12(2): e0346523, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38206002

RESUMEN

The emulsifying ability of SA01-OmpA (outer membrane protein A from Acinetobacter sp. SA01) was found to be constrained by challenges like low production efficiency and high costs associated with protein recovery from E. coli inclusion bodies, as described in our previous study. The present study sought to benefit from the advantages of the targeted truncating of SA01-OmpA protein, taking into account the reduced propensity of protein expression as inclusion bodies and cytotoxicity. Here, the structure and activity relationship of two truncated recombinant forms of SA01-OmpA protein was unraveled through a hybrid approach based on experimental data and computational methodologies, representing an innovative bioemulsifier with advantageous emulsifying activity. The recombinant truncated SA01-OmpA variants were cloned and heterologously expressed in E. coli host cells and subsequently purified. The results showed increased emulsifying activity of N-terminally truncated SA01-OmpA (NT-OmpA) compared to full-length SA01-OmpA. Molecular dynamics (MD) simulations analysis demonstrated a direct correlation between the C-terminally truncated SA01-OmpA (CT-OmpA) and its expression as inclusion bodies. Analysis of the structure-activity relationship of truncated variants of SA01-OmpA revealed that, compared to the full-length protein, deletion of the ß-barrel portion from the N-terminal of SA01-OmpA increased the emulsifying activity of NT-OmpA while lowering its expression as inclusion bodies. Contrary to the full-length protein, the N-terminally truncated SA01-OmpA was not as cytotoxic, according to the MTT assay, FCM analysis, and AO/EB staining. The findings of this extensive study advance our knowledge of SA01-OmpA at the molecular level as well as the design and development of efficient bioemulsifiers.IMPORTANCEPrevious research (Shahryari et al. 2021, mSystems 6: e01175-20) introduced and characterized the SA01-OmpA protein as a multifaceted protein with a variety of functions, including maintaining cellular homeostasis under oxidative stress conditions, biofilm formation, outer membrane vesicles (OMV) biogenesis, and beneficial emulsifying capacity. By truncating the SA01-OmpA protein, the current study presents a unique method for developing protein-type bioemulsifiers. The findings indicate that the N-terminally truncated SA01-OmpA (NT-OmpA) has the potential to fully replace full-length SA01-OmpA as a novel bioemulsifier with significant emulsifying activity. This study opens up a new frontier in bioemulsifiers, shedding light on a possible relationship between the structure and activity of SA01-OmpA truncated forms.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Escherichia coli , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo
16.
J Food Sci Technol ; 50(5): 972-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24426005

RESUMEN

Functional properties and antioxidant activity of pink perch (Nemipterus japonicus) muscle hydrolysed by three different enzymes papain, pepsin and trypsin were studied. The protein hydrolysates produced by trypsin had an excellent solubility (98%) compared to pepsin (77%) and papain hydrolysate (74%). Conversely, the emulsifying activity index (ESI) and foaming abilities were affected by pH. DPPH radical scavenging ability, reducing power and metal chelating activity of protein hydrolysates increased with increase in concentration. Lipid peroxidation was strongly inhibited by 64% by protein hydrolysates produced by trypsin. The results revealed that the functional properties and antioxidant activities of pink perch were greatly affected by the enzymes used.

17.
Polymers (Basel) ; 15(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37688167

RESUMEN

Designing anisotropic lignin-based particles and promoting the high-value utilization of lignin have nowadays drawn much attention from scientists. However, systematic studies addressing the self-assembly mechanisms of anisotropic lignin-based particles are scarce. In this work, an interaction including the electrostatic forces and chelating forces between lignin and Ag+ was regulated via carboxymethylation modification. Subsequently, the aggregation morphology of carboxymethylated lignin in a Ag+ solution was observed via SEM. The result showed that a large number of Ag+ intercalated into the lignin molecules when the grafting degree of the carboxyl groups increased from 0.17 mmol/g to 0.53 mmol/g, which caused the lignin molecules to gradually transform from disordered blocks to ordered layers. Dynamics research indicated that the adsorption process of Ag+ in carboxymethylated lignin conforms to the Pseudo-first-order kinetic model. The saturated adsorption amount of Ag+ in the carboxymethylated lignin reached 1981.7 mg/g when the grafting rate of carboxyl groups increased to 0.53 mmol/g, which then fully intercalated into lignin molecules and formed a layered structure. The thermodynamic parameters showed that the thermal adsorption process conforms to the Langmuir model, which indicates that Ag+ is monolayer-adsorbed and intercalated into lignin molecules. Meanwhile, the ΔH values are more than 0, which suggests that this adsorption process is a endothermic reaction and that a higher temperature is conducive to an adsorption reaction. Therefore, self-assembly of lignin in a Ag+ solution under 70 °C is more conducive to the formation of a nanoflower structure, which is consistent with our experimental result. Finally, pH-responsive Pickering emulsions were successfully prepared using a lignin-based nanoflowers, which demonstrated their potential as a catalytic platform in the interface catalysis field. This work offers a deeper understanding into the formation mechanism of anisotropic lignin-based nanoflowers and hopes to be helpful for designing and preparing anisotropic lignin-based particles.

18.
Food Chem ; 410: 135353, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608548

RESUMEN

This study investigated the influence of pile fermentation on the physicochemical, functional, and biological properties of tea polysaccharides (TPS). Results indicated that the extraction yield, uronic acid content, and polyphenol content of TPS greatly increased from 1.8, 13.1 and 6.3 % to 4.1, 27.9, and 7.8 %, respectively, but the molecular weight markedly decreased from 153.7 to 76.0 kDa after pile fermentation. Additionally, the interfacial, emulsion formation, and emulsion stabilization properties of TPS were significantly improved after pile fermentation. For instance, 1.0 wt% TPS isolated from dark tea (D-TPS) can fabricate 8.0 wt% MCT oil-in-water nanoemulsion (d32 ≈ 159 nm) with potent storage stability. Moreover, the antioxidant and α-glucosidase inhibitory activities of D-TPS was higher than that of TPS isolated from sun-dried raw tea (R-TPS). Overall, this study indicated that pile fermentation markedly affected the physicochemical and structural characteristics of TPS, thereby improving their functional and biological properties.


Asunto(s)
Antioxidantes , , Té/química , Fermentación , Emulsiones , Antioxidantes/química , Polisacáridos/química
19.
Food Chem ; 404(Pt B): 134697, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323037

RESUMEN

Erythorbyl ricinoleate (ERO) was synthesized as a novel multi-functional emulsifier with antibacterial and antioxidative activities via lipase-catalyzed esterification between erythorbic acid and ricinoleic acid. Esterification regioselectively produced ERO (6-O-ricinoleoyl-erythorbate) of 238.67 mM at 48 h. ERO effectively reduced interfacial tension to 2.66 mN/m at its critical micelle concentration (0.73 mM), compared with other erythorbyl fatty acid esters (EFEs). Oil-in-water (O/W) emulsion stabilized by ERO remained stable for 15 days with a droplet size of 256.3 nm and polydispersity index of 0.22, whereas the emulsion stabilized by the other EFEs became unstable within six days. ERO had antibacterial activity against Gram-positive bacteria with minimum inhibitory concentrations from 0.2 to 0.6 mM. In O/W emulsion, ERO exhibited higher antioxidative activity than erythorbic acid against lipid oxidation. These findings suggest that ERO has high potential as multi-functional food additive to control lipid oxidation and bacterial contamination for O/W emulsion foods.


Asunto(s)
Antioxidantes , Lipasa , Antioxidantes/farmacología , Emulsiones , Emulsionantes , Antibacterianos/farmacología , Catálisis , Agua
20.
Food Chem X ; 15: 100382, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36211760

RESUMEN

The emulsifying activity of soy protein would decrease after long-term storage, which caused huge economic losses to food processing plants. This study explored the temporal evolution mechanism of oxidation on the structure and function of soy protein aggregates, which would improve the application of soy protein in food industry. Decreased α-helix and increased random coil were observed at the initial oxidation stage (0-4 h), which induced increases in hydrophobicity and disulfide bond content. In addition, emulsibility increased significantly. However, when the oxidation time extended to 6-12 h, the soluble aggregates transformed into insoluble aggregates with large particle size, low solubility, and molecular flexibility. Surface hydrophobicity and emulsifying activity were reduced, resulting in bridging flocculation of emulsion droplets. Mutual transformation between components is affected by factors that include spatial conformation and intermolecular forces, which eventually lead to functional changes in the protein molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA