Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.913
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(24): 4621-4633.e17, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36368323

RESUMEN

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.


Asunto(s)
Dolor Crónico , Transcriptoma , Ratones , Animales , ADN , ARN , Geles
2.
Cell ; 177(3): 697-710.e17, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30982600

RESUMEN

Yeast ataxin-2, also known as Pbp1 (polyA binding protein-binding protein 1), is an intrinsically disordered protein implicated in stress granule formation, RNA biology, and neurodegenerative disease. To understand the endogenous function of this protein, we identify Pbp1 as a dedicated regulator of TORC1 signaling and autophagy under conditions that require mitochondrial respiration. Pbp1 binds to TORC1 specifically during respiratory growth, but utilizes an additional methionine-rich, low complexity (LC) region to inhibit TORC1. This LC region causes phase separation, forms reversible fibrils, and enables self-association into assemblies required for TORC1 inhibition. Mutants that weaken phase separation in vitro exhibit reduced capacity to inhibit TORC1 and induce autophagy. Loss of Pbp1 leads to mitochondrial dysfunction and reduced fitness during nutritional stress. Thus, Pbp1 forms a condensate in response to respiratory status to regulate TORC1 signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Autofagia/efectos de los fármacos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Metionina/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
3.
Annu Rev Cell Dev Biol ; 35: 683-701, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31424964

RESUMEN

Expansion microscopy (ExM) is a physical form of magnification that increases the effective resolving power of any microscope. Here, we describe the fundamental principles of ExM, as well as how recently developed ExM variants build upon and apply those principles. We examine applications of ExM in cell and developmental biology for the study of nanoscale structures as well as ExM's potential for scalable mapping of nanoscale structures across large sample volumes. Finally, we explore how the unique anchoring and hydrogel embedding properties enable postexpansion molecular interrogation in a purified chemical environment. ExM promises to play an important role complementary to emerging live-cell imaging techniques, because of its relative ease of adoption and modification and its compatibility with tissue specimens up to at least 200 µm thick.


Asunto(s)
Biología Evolutiva/métodos , Microscopía/métodos , Animales , Anticuerpos , Humanos , Hidrogeles/química , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes , Microscopía/instrumentación , Microscopía/tendencias , Conformación Molecular
4.
Mol Cell ; 82(9): 1768-1777.e3, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35358469

RESUMEN

Circular RNAs are garnering increasing interest as potential regulatory RNAs and a format for gene expression. The characterization of circular RNA using analytical techniques commonly employed in the literature, such as gel electrophoresis, can, under differing conditions, yield different results when attempting to distinguish circular RNA from linear RNA of similar molecular weights. Here, we describe circular RNA migration in different conditions, analyzed by gel electrophoresis and high-performance liquid chromatography (HPLC). We characterize key parameters that affect the migration pattern of circular RNA in gel electrophoresis systems, which include gel type, electrophoresis time, sample buffer composition, and voltage. Finally, we demonstrate the utility of orthogonal analytical tests for circular RNA that take advantage of its covalently closed structure to further distinguish circular RNA from linear RNA following in vitro synthesis.


Asunto(s)
ARN Circular , ARN , Electroforesis en Gel de Agar/métodos , Peso Molecular , ARN/genética , ARN Circular/genética
5.
Physiol Rev ; 102(4): 1757-1836, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35001665

RESUMEN

The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.


Asunto(s)
Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Fibrosis Quística/metabolismo , Humanos , Pulmón/metabolismo , Depuración Mucociliar , Moco/metabolismo
6.
Mol Cell ; 75(5): 957-966.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31178354

RESUMEN

Present in all realms of life, dinucleoside tetraphosphates (Np4Ns) are generally considered signaling molecules. However, only a single pathway for Np4N signaling has been delineated in eukaryotes, and no receptor that mediates the influence of Np4Ns has ever been identified in bacteria. Here we show that, under disulfide stress conditions that elevate cellular Np4N concentrations, diverse Escherichia coli mRNAs and sRNAs acquire a cognate Np4 cap. Purified E. coli RNA polymerase and lysyl-tRNA synthetase are both capable of adding such 5' caps. Cap removal by either of two pyrophosphatases, ApaH or RppH, triggers rapid RNA degradation in E. coli. ApaH, the predominant decapping enzyme, functions as both a sensor and an effector of disulfide stress, which inactivates it. These findings suggest that the physiological changes attributed to elevated Np4N concentrations in bacteria may result from widespread Np4 capping, leading to altered RNA stability and consequent changes in gene expression.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , Ácido Anhídrido Hidrolasas/genética , Fosfatos de Dinucleósidos/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , ARN Bacteriano/genética
7.
Proc Natl Acad Sci U S A ; 120(32): e2304655120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523528

RESUMEN

The process of phase separation in elastic solids and viscous fluids is of fundamental importance to the stability and function of soft materials. We explore the dynamics of phase separation and domain growth in a viscoelastic material such as a polymer gel. Using analytical theory and Monte Carlo simulations, we report a domain growth regime in which the domain size increases algebraically with a ripening exponent [Formula: see text] that depends on the viscoelastic properties of the material. For a prototypical Maxwell material, we obtain [Formula: see text], which is markedly different from the well-known Ostwald ripening process with [Formula: see text]. We generalize our theory to systems with arbitrary power-law relaxation behavior and discuss our findings in the context of the long-term stability of materials as well as recent experimental results on phase separation in cross-linked networks and cytoskeleton.

8.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35029679

RESUMEN

To investigate the role of mechanical constraints in morphogenesis and development, we have developed a pipeline of techniques based on incompressible elastic sensors. These techniques combine the advantages of incompressible liquid droplets, which have been used as precise in situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to use. Droplets of a polydimethylsiloxane mix, made fluorescent through specific covalent binding to a rhodamin dye, are produced by a microfluidics device. The elastomer rigidity after polymerization is adjusted to the tissue rigidity. Its mechanical properties are carefully calibrated in situ, for a sensor embedded in a cell aggregate submitted to uniaxial compression. The local shear stress tensor is retrieved from the sensor shape, accurately reconstructed through an active contour method. In vitro, within cell aggregates, and in vivo, in the prechordal plate of the zebrafish embryo during gastrulation, our pipeline of techniques demonstrates its efficiency to directly measure the three dimensional shear stress repartition within a tissue.


Asunto(s)
Embrión no Mamífero/citología , Imagenología Tridimensional/métodos , Resistencia al Corte , Animales , Agregación Celular , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Embrión no Mamífero/metabolismo , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Pez Cebra
9.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145027

RESUMEN

Advances in polymer chemistry over the last decade have enabled the synthesis of molecularly precise polymer networks that exhibit homogeneous structure. These precise polymer gels create the opportunity to establish true multiscale, molecular to macroscopic, relationships that define their elastic and failure properties. In this work, a theory of network fracture that accounts for loop defects is developed by drawing on recent advances in network elasticity. This loop-modified Lake-Thomas theory is tested against both molecular dynamics (MD) simulations and experimental fracture measurements on model gels, and good agreement between theory, which does not use an enhancement factor, and measurement is observed. Insight into the local and global contributions to energy dissipated during network failure and their relation to the bond dissociation energy is also provided. These findings enable a priori estimates of fracture energy in swollen gels where chain scission becomes an important failure mechanism.

10.
Proc Natl Acad Sci U S A ; 119(44): e2207728119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279471

RESUMEN

DNA recombination is a ubiquitous process that ensures genetic diversity. Contrary to textbook pictures, DNA recombination, as well as generic DNA translocations, occurs in a confined and highly entangled environment. Inspired by this observation, here, we investigate a solution of semiflexible polymer rings undergoing generic cutting and reconnection operations under spherical confinement. Our setup may be realized using engineered DNA in the presence of recombinase proteins or by considering micelle-like components able to form living (or reversibly breakable) polymer rings. We find that in such systems, there is a topological gelation transition, which can be triggered by increasing either the stiffness or the concentration of the rings. Flexible or dilute polymers break into an ensemble of short, unlinked, and segregated rings, whereas sufficiently stiff or dense polymers self-assemble into a network of long, linked, and mixed loops, many of which are knotted. We predict that the two phases should behave qualitatively differently in elution experiments monitoring the escape dynamics from a permeabilized container. Besides shedding some light on the biophysics and topology of genomes undergoing DNA reconnection in vivo, our findings could be leveraged in vitro to design polymeric complex fluids-e.g., DNA-based complex fluids or living polymer networks-with desired topologies.


Asunto(s)
Micelas , Polímeros , Polímeros/metabolismo , ADN/metabolismo , Biofisica , Recombinasas
11.
Proc Natl Acad Sci U S A ; 119(28): e2202222119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787038

RESUMEN

Macromolecular phase separation is thought to be one of the processes that drives the formation of membraneless biomolecular condensates in cells. The dynamics of phase separation are thought to follow the tenets of classical nucleation theory, and, therefore, subsaturated solutions should be devoid of clusters with more than a few molecules. We tested this prediction using in vitro biophysical studies to characterize subsaturated solutions of phase-separating RNA-binding proteins with intrinsically disordered prion-like domains and RNA-binding domains. Surprisingly, and in direct contradiction to expectations from classical nucleation theory, we find that subsaturated solutions are characterized by the presence of heterogeneous distributions of clusters. The distributions of cluster sizes, which are dominated by small species, shift continuously toward larger sizes as protein concentrations increase and approach the saturation concentration. As a result, many of the clusters encompass tens to hundreds of molecules, while less than 1% of the solutions are mesoscale species that are several hundred nanometers in diameter. We find that cluster formation in subsaturated solutions and phase separation in supersaturated solutions are strongly coupled via sequence-encoded interactions. We also find that cluster formation and phase separation can be decoupled using solutes as well as specific sets of mutations. Our findings, which are concordant with predictions for associative polymers, implicate an interplay between networks of sequence-specific and solubility-determining interactions that, respectively, govern cluster formation in subsaturated solutions and the saturation concentrations above which phase separation occurs.


Asunto(s)
Condensados Biomoleculares , Proteínas de Unión al ARN , Biofisica , Mutación , Motivos de Unión al ARN , Proteínas de Unión al ARN/genética
12.
Nano Lett ; 24(33): 10244-10250, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39116288

RESUMEN

The effectiveness of the room-temperature strengthening strategy for aluminum (Al) is compromised at increased temperatures due to grain and precipitate phase coarsening. Overcoming the heightened activity of grain boundaries and dislocations poses a significant challenge in enhancing the high-temperature strength through traditional precipitation strengthening. This study presents novel strengthening strategies that integrate intergranular reinforcements, intragranular reinforcements, refined grain, and stacking faults within an (Al2O3+Al3Ti)/Al composite prepared using sol-gel and powder metallurgy technology. Excellent high-temperature tensile properties are achieved; also, a remarkable fatigue performance at increased temperatures that surpasses those of other existing Al alloys and composites is revealed. These superior characteristics can be attributed to its exceptionally stable microstructure and the synergistic strengthening mechanisms mentioned above. This work offers new insights into designing and fabricating thermally stable Al matrix composites for high-temperature applications.

13.
Nano Lett ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225498

RESUMEN

Low-concentration ether electrolytes cannot efficiently achieve oxidation resistance and excellent interface behavior, resulting in severe electrolyte decomposition at a high voltage and ineffective electrode-electrolyte interphase. Herein, we utilize sandwich structure-like gel polymer electrolyte (GPE) to enhance the high voltage stability of potassium-ion batteries (PIBs). The GPE contact layer facilitates stable electrode-electrolyte interphase formation, and the GPE transport layer maintains good ionic transport, which enabled GPE to exhibit a wide electrochemical window and excellent electrochemical performance. In addition, Al corrosion under a high voltage is suppressed through the restriction of solvent molecules. Consequently, when using the designed GPE (based on 1 m), the K||graphite cell exhibits excellent cycling stability of 450 cycles with a capacity retention of 91%, and the K||FeFe-Prussian blue cell (2-4.2 V) delivers a high average Coulombic efficiency of 99.9% over 2200 cycles at 100 mA g-1. This study provides a promising path in the application of ether-based electrolytes in high-voltage and long-lasting PIBs.

14.
J Biol Chem ; 299(12): 105373, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865318

RESUMEN

The bacteriophage capsid protein, Psu (polarity suppression), inhibits the bacterial transcription terminator, Rho. In an effort to find nontraditional antibacterial agents, we previously designed peptides from the Psu C terminus that function as inhibitors of Rho. Here, we demonstrated that these peptides have positive surface-charge densities, and they downregulate many genes in Escherichia coli. We hypothesized that these peptides could bind to nucleic acids and repress gene expression. One of these peptides, peptide 33, represses in vitro transcription from the T7A1 and Plac promoters efficiently by blocking the access of RNA polymerase to the promoter, a mode of transcription repression akin to many bacterial repressors. In vivo, expressions of the peptides reduce the total RNA level as well as transcription from Plac and Posm promoters significantly. However, they are less efficient in repressing transcription from the rRNA promoters with a very high turnover of RNA polymerase. The peptide 33 binds to both single and dsDNA as well as to RNA with dissociation constants ranging from 1 to 5 µM exhibiting preferences for the single-stranded DNA and RNAs. These interactions are salt-resistant and not sequence-specific. Interactions with dsDNA are entropy-driven, while it is enthalpy-driven for the ssDNA. This mode of interaction with nucleic acids is similar to many nonspecific ssDNA-binding proteins. Expression of peptide 33 induces cell elongation and impaired cell division, possibly due to the dislodging of the DNA-binding proteins. Overall, we surmised that these synthetic transcription repressors would function like bacterial nucleoid-associated proteins.


Asunto(s)
Bacteriófagos , Ácidos Nucleicos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Bacteriófagos/metabolismo , Transcripción Genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Péptidos/metabolismo , ARN/metabolismo
15.
J Biol Chem ; 299(6): 104838, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209821

RESUMEN

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that results from mutations in NOTCH3. How mutations in NOTCH3 ultimately result in disease is not clear, although there is a predilection for mutations to alter the number of cysteines of the gene product, supporting a model in which alterations of conserved disulfide bonds of NOTCH3 drives the disease process. We have found that recombinant proteins with CADASIL NOTCH3 EGF domains 1 to 3 fused to the C terminus of Fc are distinguished from wildtype proteins by slowed mobility in nonreducing gels. We use this gel mobility shift assay to define the effects of mutations in the first three EGF-like domains of NOTCH3 in 167 unique recombinant protein constructs. This assay permits a readout on NOTCH3 protein mobility that indicates that (1) any loss of cysteine mutation in the first three EGF motifs results in structural abnormalities; (2) for loss of cysteine mutants, the mutant amino acid residue plays a minimal role; (3) the majority of changes that result in a new cysteine are poorly tolerated; (4) at residue 75, only cysteine, proline, and glycine induce structural shifts; (5) specific second mutations in conserved cysteines suppress the impact of loss of cysteine CADASIL mutations. These studies support the importance of NOTCH3 cysteines and disulfide bonds in maintaining normal protein structure. Double mutant analysis suggests that suppression of protein abnormalities can be achieved through modification of cysteine reactivity, a potential therapeutic strategy.


Asunto(s)
CADASIL , Receptor Notch3 , Humanos , CADASIL/genética , Cisteína/genética , Cisteína/metabolismo , Disulfuros , Factor de Crecimiento Epidérmico/genética , Mutación , Receptor Notch3/genética
16.
Glycobiology ; 34(8)2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38982733

RESUMEN

Understanding the relation between enzyme domain structure and catalytic activity is crucial for optimal engineering of novel enzymes for lignocellulose bioconversion. Xylanases with varying specificities are commonly used to valorise the hemicellulose arabinoxylan (AX), yet characterization of specific arabinoxylanases remain limited. Two homologous GH5_34 arabinoxylanases, HhXyn5A and CtXyn5A, in which the two domains are connected by a 40-residue linker, exhibit distinct activity on AX, yielding different reaction product patterns, despite high sequence identity, conserved active sites and similar domain composition. In this study, the carbohydrate binding module 6 (CBM6), or the inter domain linker together with CBM6, were swapped to investigate their influence on hydrolytic activity and oligosaccharide product pattern on cereal AXs. The variants, with only CBM6 swapped, displayed reduced activity on commercial wheat and rye AX, as well as on extracted oat fibre, compared to the original enzymes. Additionally, exchange of both linker and CBM6 resulted in a reduced ratio of enzyme produced in soluble form in Escherichia coli cultivations, causing loss of activity of both HhXyn5A and CtXyn5A variants. Analysis of oligosaccharide product patterns applying HPAEC-PAD revealed a decreased number of reaction products for CtXyn5A with swapped CBM6, which resembled the product pattern of HhXyn5A. These findings emphasize the importance of the CBM6 interactions with the linker and the catalytic domain for enzyme activity and specificity, and underlines the role of the linker in enzyme structure organisation and product formation, where alterations in linker interactions with the catalytic and/or CBM6 domains, influence enzyme-substrate association and specificity.


Asunto(s)
Oligosacáridos , Xilanos , Oligosacáridos/química , Oligosacáridos/metabolismo , Xilanos/metabolismo , Xilanos/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Dominio Catalítico , Dominios Proteicos , Especificidad por Sustrato , Hidrólisis , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/genética
17.
J Cell Biochem ; 125(2): e30499, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38009594

RESUMEN

The Goldview dyeing of the natural multiplasmid system of Lactobacillus plantarum PC518 was affected by temperature. The article want to identify the specific molecules that cause temperature sensitivity, then experiment on the universality of temperature sensitivity, and finally preliminarily analyze the influencing factors. At 5°C and 25°C, single pDNA, multiplasmid system, and linear DNA samples were electrophoretic on agarose gel prestained by Goldview 1, 2, 3, and acridine orange (AO), respectively. Eighteen vectors of Escherichia coli and two vectors shortened by cloning were mixed into multiplasmid systems with different member numbers, and then electrophoresis with AO staining was performed within the range of 5°C-45°C, with a linearized multiplasmid system as the control. The lane profiles (peaks) were captured with Image Lab 5.1 software. After electrophoresis, the nine-plasmid-2 system was dyed with AO solutions of different ionic strengths to detect the effect of ionic strength on temperature sensitivity. It was measured that the UV-visible absorption spectra of the nine-plasmid-2 system dissolved in AO solutions with different ionic strengths and pH. Further, a response surface model was constructed using Design-Expert.V8.0.6 software. The electrophoresis result showed that the multiplasmid system from L. plantarum PC518 stained by AO staining showed a weak band at 5°C and five bands at 25°C, which was similar to the result of staining with Goldview 1, 2, and 3. The synthetic nine-plasmid-1 system and nine-plasmid-2 system displayed different band numbers on the electrophoresis gel in the electrophoresis temperature range of 5°C-45°C, namely 3, 4, 6, 4, and 2 bands, as well as 2, 6, 7, 8, and 5 bands. Using the 1× Tris-acetate-EDTA (TAE)-AO solution, the poststaining results of the nine-plasmid-2 system in the temperature range of 5°C-45°C were 4, 6, 9, 9, and 7 bands, respectively. Further, using 5×, 10×, or 25× TAE buffer, the AO poststaining results at 5°C were 4, 2, and 1 bands, respectively. The ultraviolet spectral results from 5°C to 25°C showed that there was a significant difference (3.5 times) in the fluctuation amplitude at the absorption peak of 261.2 nm between 0× and 1-10× TAE-AO solution containing the nine-plasmid-2 system. Specifically, the fluctuation amplitudes of 0×, 1×, 5×, and 10× samples were 0.032, 0.109, 0.112, and 0.110, respectively. At the same time, using 1× and 10× TAE buffer, the AO-stained linear nine-plasmid-2 system remained stable and did not display temperature sensitivity. The response surface models of the AO-stained nine-plasmid-2 system intuitively displayed that the absorbance of the 1× TAE samples increased significantly with increasing temperature compared to the 0× TAE samples, regardless of the pH value. The findings confirmed a temperature-dependent effect in AO staining of natural or synthetic multiplasmid systems, with the optimum staining result occurring at 25°C. Ion strength was a necessary condition for the temperature sensitivity mechanism. This study layed the groundwork for further investigation into the reasons or underlying mechanisms of temperature sensitivity in AO staining of multiplasmid systems.


Asunto(s)
Acetatos , Naranja de Acridina , Colorantes , Etilenodiaminas , Naranja de Acridina/química , Temperatura , Plásmidos/genética , Ácido Edético
18.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656455

RESUMEN

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Asunto(s)
Alginatos , Anticuerpos Antivirales , Quitosano , Inmunidad Mucosa , Inmunoglobulina A , Inmunoglobulina G , Virus de la Diarrea Epidémica Porcina , Vacunas Virales , Animales , Administración Oral , Virus de la Diarrea Epidémica Porcina/inmunología , Alginatos/administración & dosificación , Quitosano/administración & dosificación , Ratones , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Anticuerpos Antivirales/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Porcinos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Femenino , Geles/administración & dosificación , Ratones Endogámicos BALB C , Interferón gamma/inmunología , Ácido Glucurónico/administración & dosificación , Ácidos Hexurónicos/administración & dosificación
19.
Am J Physiol Heart Circ Physiol ; 327(3): H715-H721, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092999

RESUMEN

GelBox is open-source software that was developed with the goal of enhancing rigor, reproducibility, and transparency when analyzing gels and immunoblots. It combines image adjustments (cropping, rotation, brightness, and contrast), background correction, and band-fitting in a single application. Users can also associate each lane in an image with metadata (for example, sample type). GelBox data files integrate the raw data, supplied metadata, image adjustments, and band-level analyses in a single file to improve traceability. GelBox has a user-friendly interface and was developed using MATLAB. The software, installation instructions, and tutorials, are available at https://campbell-muscle-lab.github.io/GelBox/.NEW & NOTEWORTHY GelBox is open-source software that was developed to enhance rigor, reproducibility, and transparency when analyzing gels and immunoblots. It combines image adjustments (cropping, rotation, brightness, and contrast), background correction, and band-fitting in a single application. Users can also associate each lane in an image with metadata (for example, sample type).


Asunto(s)
Programas Informáticos , Reproducibilidad de los Resultados , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Animales
20.
Biochem Biophys Res Commun ; 708: 149791, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38518719

RESUMEN

Pulmonary alveoli are functional units in gas exchange in the lung, and their dysfunctions in lung diseases such as interstitial pneumonia are accompanied by fibrotic changes in structure, elevating the stiffness of extracellular matrix components. The present study aimed to test the hypothesis that such changes in alveoli stiffness induce functional alteration of epithelial cell functions, exacerbating lung diseases. For this, we have developed a novel method of culturing alveolar epithelial cells on polyacrylamide gel with different elastic modulus at an air-liquid interface. It was demonstrated that A549 cells on soft gels, mimicking the modulus of a healthy lung, upregulated mRNA expression and protein synthesis of surfactant protein C (SFTPC). By contrast, the cells on stiff gels, mimicking the modulus of the fibrotic lung, exhibited upregulation of SFTPC gene expression but not at the protein level. Cell morphology, as well as cell nucleus volume, were also different between the two types of gels.


Asunto(s)
Células Epiteliales Alveolares , Fibrosis Pulmonar , Humanos , Células Epiteliales Alveolares/metabolismo , Pulmón/metabolismo , Alveolos Pulmonares , Fibrosis Pulmonar/metabolismo , Células Epiteliales/metabolismo , Geles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA