Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.075
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(17): 3674-3685.e14, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37494934

RESUMEN

Epigenetic lesions that disrupt regulatory elements represent potential cancer drivers. However, we lack experimental models for validating their tumorigenic impact. Here, we model aberrations arising in isocitrate dehydrogenase-mutant gliomas, which exhibit DNA hypermethylation. We focus on a CTCF insulator near the PDGFRA oncogene that is recurrently disrupted by methylation in these tumors. We demonstrate that disruption of the syntenic insulator in mouse oligodendrocyte progenitor cells (OPCs) allows an OPC-specific enhancer to contact and induce Pdgfra, thereby increasing proliferation. We show that a second lesion, methylation-dependent silencing of the Cdkn2a tumor suppressor, cooperates with insulator loss in OPCs. Coordinate inactivation of the Pdgfra insulator and Cdkn2a drives gliomagenesis in vivo. Despite locus synteny, the insulator is CpG-rich only in humans, a feature that may confer human glioma risk but complicates mouse modeling. Our study demonstrates the capacity of recurrent epigenetic lesions to drive OPC proliferation in vitro and gliomagenesis in vivo.


Asunto(s)
Neoplasias Encefálicas , Epigénesis Genética , Glioma , Animales , Humanos , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilación de ADN , Glioma/genética , Glioma/patología , Isocitrato Deshidrogenasa/genética , Mutación , Oncogenes , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
2.
Cell ; 184(5): 1281-1298.e26, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33592174

RESUMEN

T cells are critical effectors of cancer immunotherapies, but little is known about their gene expression programs in diffuse gliomas. Here, we leverage single-cell RNA sequencing (RNA-seq) to chart the gene expression and clonal landscape of tumor-infiltrating T cells across 31 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and IDH mutant glioma. We identify potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes. Analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 (encoding CD161) as a candidate inhibitory receptor. Accordingly, genetic inactivation of KLRB1 or antibody-mediated CD161 blockade enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other human cancers. Our work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immunotherapy targets.


Asunto(s)
Glioma/inmunología , Subfamilia B de Receptores Similares a Lectina de Células NK/genética , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glioma/genética , Células Asesinas Naturales/inmunología , Lectinas Tipo C/genética , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Receptores de Superficie Celular/genética , Análisis de la Célula Individual , Subgrupos de Linfocitos T/inmunología , Linfocitos T/citología , Escape del Tumor
3.
Cell ; 178(4): 835-849.e21, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31327527

RESUMEN

Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.


Asunto(s)
Neoplasias Encefálicas/genética , Plasticidad de la Célula/genética , Glioblastoma/genética , Adolescente , Anciano , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Linaje de la Célula/genética , Niño , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Heterogeneidad Genética , Glioblastoma/patología , Xenoinjertos , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Persona de Mediana Edad , Mutación , RNA-Seq , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética
4.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220459

RESUMEN

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Asunto(s)
Glioma/metabolismo , Ácido Glutámico/biosíntesis , Transaminasas/fisiología , Línea Celular Tumoral , Glioma/fisiopatología , Ácido Glutámico/efectos de los fármacos , Glutaratos/metabolismo , Glutaratos/farmacología , Homeostasis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/fisiología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/fisiología , Mutación , Oxidación-Reducción/efectos de los fármacos , Proteínas Gestacionales/genética , Proteínas Gestacionales/fisiología , Transaminasas/antagonistas & inhibidores , Transaminasas/genética
5.
Cell ; 172(1-2): 90-105.e23, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249359

RESUMEN

R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glutaratos/farmacología , Leucemia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Antineoplásicos/uso terapéutico , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Glutaratos/uso terapéutico , Células HEK293 , Humanos , Células Jurkat , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARN
6.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37909039

RESUMEN

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Asunto(s)
Carcinoma , Inmunoglobulina A , Humanos , Inmunoglobulina A/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Citoplasma/metabolismo
7.
Cell ; 169(7): 1327-1341.e23, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622513

RESUMEN

Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole-exome sequencing and DNA copy number analyses, and we analyzed 196 HCC cases by DNA methylation, RNA, miRNA, and proteomic expression also. DNA sequencing and mutation analysis identified significantly mutated genes, including LZTR1, EEF1A1, SF3B1, and SMARCA4. Significant alterations by mutation or downregulation by hypermethylation in genes likely to result in HCC metabolic reprogramming (ALB, APOB, and CPS1) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1.


Asunto(s)
Carcinoma Hepatocelular/genética , Genómica , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/virología , Metilación de ADN , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Hepáticas/virología , MicroARNs/genética , Mutación
8.
Genes Dev ; 37(15-16): 681-702, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37648371

RESUMEN

The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.


Asunto(s)
Glioblastoma , Humanos , Encéfalo , Neuroglía , Astrocitos , Neuronas , Microambiente Tumoral
9.
Genes Dev ; 36(5-6): 259-277, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318270

RESUMEN

Despite FDA approval of nine new drugs for patients with acute myeloid leukemia (AML) in the United States over the last 4 years, AML remains a major area of unmet medical need among hematologic malignancies. In this review, we discuss the development of promising new molecular targeted approaches for AML, including menin inhibition, novel IDH1/2 inhibitors, and preclinical means to target TET2, ASXL1, and RNA splicing factor mutations. In addition, we review progress in immune targeting of AML through anti-CD47, anti-SIRPα, and anti-TIM-3 antibodies; bispecific and trispecific antibodies; and new cellular therapies in development for AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/terapia , Mutación
10.
Mol Cell ; 81(18): 3833-3847.e11, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34289383

RESUMEN

Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/metabolismo , Acetil-CoA C-Acetiltransferasa/metabolismo , Acetilación , Animales , Antineoplásicos/farmacología , Femenino , Humanos , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/genética , Lisina/genética , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Mutación/genética , NADP/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Polimorfismo de Nucleótido Simple/genética , Cultivo Primario de Células , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/metabolismo
11.
Annu Rev Genet ; 53: 483-503, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31794268

RESUMEN

The human brain contains a vast number of cells and shows extraordinary cellular diversity to facilitate the many cognitive and automatic commands governing our bodily functions. This complexity arises partly from large-scale structural variations in the genome, evolutionary processes to increase brain size, function, and cognition. Not surprisingly given recent technical advances, low-grade gliomas (LGGs), which arise from the glia (the most abundant cell type in the brain), have undergone a recent revolution in their classification and therapy, especially in the pediatric setting. Next-generation sequencing has uncovered previously unappreciated diverse LGG entities, unraveling genetic subgroups and multiple molecular alterations and altered pathways, including many amenable to therapeutic targeting. In this article we review these novel entities, in which oncogenic processes show striking age-related neuroanatomical specificity (highlighting their close interplay with development); the opportunities they provide for targeted therapies, some of which are already practiced at the bedside; and the challenges of implementing molecular pathology in the clinic.


Asunto(s)
Neoplasias Encefálicas/genética , Encéfalo/crecimiento & desarrollo , Glioma/genética , Adulto , Factores de Edad , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Niño , Glioma/diagnóstico , Glioma/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Isocitrato Deshidrogenasa/genética , Técnicas de Diagnóstico Molecular , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Quinasas raf/genética
12.
Proc Natl Acad Sci U S A ; 120(4): e2208176120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652477

RESUMEN

Mutations in IDH1, IDH2, and TET2 are recurrently observed in myeloid neoplasms. IDH1 and IDH2 encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic IDH1/2 mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases. Given their mutual exclusivity in myeloid neoplasms, IDH1, IDH2, and TET2 mutations may converge on a common oncogenic mechanism. Contrary to this expectation, we observed that they have distinct, and even opposite, effects on hematopoietic stem and progenitor cells in genetically engineered mice. Epigenetic and single-cell transcriptomic analyses revealed that Idh2R172K and Tet2 loss-of-function have divergent consequences on the expression and activity of key hematopoietic and leukemogenic regulators. Notably, chromatin accessibility and transcriptional deregulation in Idh2R172K cells were partially disconnected from DNA methylation alterations. These results highlight unanticipated divergent effects of IDH1/2 and TET2 mutations, providing support for the optimization of genotype-specific therapies.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Isocitrato Deshidrogenasa , Células Madre , Animales , Ratones , Dioxigenasas/genética , Proteínas de Unión al ADN/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutación , Neoplasias , Células Madre/metabolismo
13.
EMBO Rep ; 24(10): e56009, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37642636

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Animales , Ratones , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células de la Médula Ósea/metabolismo , Homeostasis
14.
Genes Dev ; 31(8): 774-786, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28465358

RESUMEN

Gliomas harboring mutations in isocitrate dehydrogenase 1/2 (IDH1/2) have the CpG island methylator phenotype (CIMP) and significantly longer patient survival time than wild-type IDH1/2 (wtIDH1/2) tumors. Although there are many factors underlying the differences in survival between these two tumor types, immune-related differences in cell content are potentially important contributors. In order to investigate the role of IDH mutations in immune response, we created a syngeneic pair mouse model for mutant IDH1 (muIDH1) and wtIDH1 gliomas and demonstrated that muIDH1 mice showed many molecular and clinical similarities to muIDH1 human gliomas, including a 100-fold higher concentration of 2-hydroxygluratate (2-HG), longer survival time, and higher CpG methylation compared with wtIDH1. Also, we showed that IDH1 mutations caused down-regulation of leukocyte chemotaxis, resulting in repression of the tumor-associated immune system. Given that significant infiltration of immune cells such as macrophages, microglia, monocytes, and neutrophils is linked to poor prognosis in many cancer types, these reduced immune infiltrates in muIDH1 glioma tumors may contribute in part to the differences in aggressiveness of the two glioma types.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Glioma/genética , Glioma/inmunología , Sistema Inmunológico/fisiopatología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Animales , Neoplasias Encefálicas/enzimología , Quimiotaxis/genética , Metilación de ADN , Modelos Animales de Enfermedad , Glioma/enzimología , Humanos , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/patología , Ratones , Mutación , Infiltración Neutrófila/genética , Neutrófilos/patología
15.
J Biol Chem ; 299(2): 102873, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621625

RESUMEN

Variants of isocitrate dehydrogenase (IDH) 1 and 2 (IDH1/2) alter metabolism in cancer cells by catalyzing the NADPH-dependent reduction of 2-oxoglutarate (2OG) to (2R)-hydroxyglutarate. However, it is unclear how derivatives of 2OG can affect cancer cell metabolism. Here, we used synthetic C3- and C4-alkylated 2OG derivatives to investigate the substrate selectivities of the most common cancer-associated IDH1 variant (R132H IDH1), of two cancer-associated IDH2 variants (R172K IDH2, R140Q IDH2), and of WT IDH1/2. Absorbance-based, NMR, and electrochemical assays were employed to monitor WT IDH1/2 and IDH1/2 variant-catalyzed 2OG derivative turnover in the presence and absence of 2OG. Our results reveal that 2OG derivatives can serve as substrates of the investigated IDH1/2 variants, but not of WT IDH1/2, and have the potential to act as 2OG-competitive inhibitors. Kinetic parameters reveal that some 2OG derivatives, including the natural product 3-methyl-2OG, are equally or even more efficient IDH1/2 variant substrates than 2OG. Furthermore, NMR and mass spectrometry studies confirmed IDH1/2 variant-catalyzed production of alcohols in the cases of the 3-methyl-, 3-butyl-, and 3-benzyl-substituted 2OG derivatives; a crystal structure of 3-butyl-2OG with an IDH1 variant (R132C/S280F IDH1) reveals active site binding. The combined results highlight the potential for (i) IDH1/2 variant-catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhibition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv) possible use of IDH1/2 variants as biocatalysts.


Asunto(s)
Isocitrato Deshidrogenasa , Ácidos Cetoglutáricos , Humanos , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Neoplasias/metabolismo , Especificidad por Sustrato , Unión Proteica/efectos de los fármacos , Cristalografía
16.
Cancer Sci ; 115(5): 1706-1717, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433527

RESUMEN

The majority of low-grade isocitrate dehydrogenase-mutant (IDHmt) gliomas undergo malignant progression (MP), but their underlying mechanism remains unclear. IDHmt gliomas exhibit global DNA methylation, and our previous report suggested that MP could be partly attributed to passive demethylation caused by accelerated cell cycles. However, during MP, there is also active demethylation mediated by ten-eleven translocation, such as DNA hydroxymethylation. Hydroxymethylation is reported to potentially contribute to gene expression regulation, but its role in MP remains under investigation. Therefore, we conducted a comprehensive analysis of hydroxymethylation during MP of IDHmt astrocytoma. Five primary/malignantly progressed IDHmt astrocytoma pairs were analyzed with oxidative bisulfite and the Infinium EPIC methylation array, detecting 5-hydroxymethyl cytosine at over 850,000 locations for region-specific hydroxymethylation assessment. Notably, we observed significant sharing of hydroxymethylated genomic regions during MP across the samples. Hydroxymethylated CpGs were enriched in open sea and intergenic regions (p < 0.001), and genes undergoing hydroxymethylation were significantly associated with cancer-related signaling pathways. RNA sequencing data integration identified 91 genes with significant positive/negative hydroxymethylation-expression correlations. Functional analysis suggested that positively correlated genes are involved in cell-cycle promotion, while negatively correlated ones are associated with antineoplastic functions. Analyses of The Cancer Genome Atlas clinical data on glioma were in line with these findings. Motif-enrichment analysis suggested the potential involvement of the transcription factor KLF4 in hydroxymethylation-based gene regulation. Our findings shed light on the significance of region-specific DNA hydroxymethylation in glioma MP and suggest its potential role in cancer-related gene expression and IDHmt glioma malignancy.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioma , Isocitrato Deshidrogenasa , Factor 4 Similar a Kruppel , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/genética , Glioma/patología , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Islas de CpG/genética , Femenino , Masculino , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/metabolismo , Persona de Mediana Edad , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto
17.
Br J Haematol ; 204(4): 1238-1242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38073116

RESUMEN

Data regarding the use of FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1/2 (IDH1/2) inhibitors in acute lymphoblastic leukaemia (ALL) are lacking. We identified 14 patients with FLT3- or IDH1/2-mutated ALL. Three early T-cell precursor-ALL patients received FLT3 or IDH2 inhibitors. Patient 1 maintains a complete remission (CR) with enasidenib after intolerance to chemotherapy. Patient 2 maintained a CR for 27 months after treatment with enasidenib for relapsed disease. Patient 3 was treated with venetoclax and gilteritinib at the time of relapse and maintained a CR with gilteritinib for 8 months. These cases suggest that FLT3 and IDH inhibitors could represent a viable therapeutic option for ALL patients with these mutations.


Asunto(s)
Aminopiridinas , Compuestos de Anilina , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Pirazinas , Triazinas , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Recurrencia Local de Neoplasia , Inhibidores Enzimáticos/uso terapéutico , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia Mieloide Aguda/genética
18.
Oncologist ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39036962

RESUMEN

BACKGROUND: Isocitrate dehydrogenase 1 (IDH1) missense mutations occur at a frequency of 10%-15% in intrahepatic cholangiocarcinoma (iCCA). IDH1 mutations result in accumulation of (R)-2-hydroxyglutarate, an oncometabolite that leads to DNA hypermethylation and impairment of homologous recombination (HR). Impairment of HR results in a "BRCAness" phenotype which may confer sensitivity to poly(ADP ribose) polymerase (PARP) inhibition. METHODS: We conducted a retrospective cohort review to identify patients with advanced, IDH1 mutated iCCA treated with a PARP inhibitor (PARPi) at the University of Michigan between 2018 and 2023. Patients are described with respect to prior lines of therapy, response to platinum-based chemotherapy, and progression-free survival (PFS) and overall survival (OS) from the time of PARPi initiation. RESULTS: Between 2018 and 2023 we identified 40 patients with IDH1 mutated iCCA of which 6 patients were treated with a PARPi as monotherapy or in combination with an ATR inhibitor or anti-PD-1 immune checkpoint inhibitor. Majority of patients (n = 5) carried an IDH1 R132C mutation per tissue-based next generation sequencing. All patients had previously received at least one line of cisplatin-based systemic therapy for advanced disease prior to treatment with PARPi. PFS and OS from time of PARPi initiation ranged from 1.4 to 18.5 months and 2.8 to 42.4 months, respectively. Best response on PARPi therapy included 2 partial responses. CONCLUSION: This is the first case series to describe PARPi treatment in IDH1 mutated iCCA. Results underscore the limitation of PARPi monotherapy, potentially support combined PARPi therapies, and highlight a need for effective treatment options for patients with IDH1 mutated iCCA.

19.
Expert Rev Mol Med ; 26: e5, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563164

RESUMEN

Glioblastoma IDH wild type (GBM) is a very aggressive brain tumour, characterised by an infiltrative growth pattern and by a prominent neoangiogenesis. Its prognosis is unfortunately dismal, and the median overall survival of GBM patients is short (15 months). Clinical management is based on bulk tumour removal and standard chemoradiation with the alkylating drug temozolomide, but the tumour invariably recurs leading to patient's death. Clinical options for GBM patients remained unaltered for almost two decades until the encouraging results obtained by the phase II REGOMA trial allowed the introduction of the multikinase inhibitor regorafenib as a preferred regimen in relapsed GBM treatment by the National Comprehensive Cancer Network (NCCN) 2020 Guideline. Regorafenib, a sorafenib derivative, targets kinases associated with angiogenesis (VEGFR 1-3), as well as oncogenesis (c-KIT, RET, FGFR) and stromal kinases (FGFR, PDGFR-b). It was already approved for metastatic colorectal cancers and hepatocellular carcinomas. The aim of the present review is to focus on both the molecular and clinical knowledge collected in these first three years of regorafenib use in GBM.


Asunto(s)
Antineoplásicos , Glioblastoma , Neoplasias Hepáticas , Compuestos de Fenilurea , Piridinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Resultado del Tratamiento , Neoplasias Hepáticas/tratamiento farmacológico
20.
Yeast ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078098

RESUMEN

The toxicity of non-proteinogenic amino acids has been known for decades. Numerous reports describe their antimicrobial/anticancer potential. However, these molecules are often toxic to the host as well; thus, a synthetic lethality approach that reduces the dose of these toxins while maintaining toxicity can be beneficial. Here we investigate synthetic lethality between toxic amino acids, the retrograde pathway, and molecular chaperones. In Saccharomyces cerevisiae, mitochondrial retrograde (RTG) pathway activation induces transcription of RTG-target genes to replenish alpha-ketoglutarate and its downstream product glutamate; both metabolites are required for arginine and lysine biosynthesis. We previously reported that tolerance of canavanine, a toxic arginine derivative, requires an intact RTG pathway, and low-dose canavanine exposure reduces the expression of RTG-target genes. Here we show that only a few of the examined chaperone mutants are sensitive to sublethal doses of canavanine. To predict synthetic lethality potential between RTG-target genes and chaperones, we measured the expression of RTG-target genes in canavanine-sensitive and canavanine-tolerant chaperone mutants. Most RTG-target genes were induced in all chaperone mutants starved for arginine; the same trend was not observed under lysine starvation. Canavanine exposure under arginine starvation attenuated and even reversed RTG-target-gene expression in the tested chaperone mutants. Importantly, under nearly all tested genetic and pharmacological conditions, the expression of IDH1 and/or IDH2 was induced. In agreement, idh1 and idh2 mutants are sensitive to canavanine and thialysine and show synthetic growth inhibition with chaperone mutants. Overall, we show that inhibiting molecular chaperones, RTG-target genes, or both can sensitize cells to low doses of toxic amino acids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA