Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small ; 20(38): e2311736, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38552227

RESUMEN

Nanomaterial-based yarns have been actively developed owing to their advantageous features, namely, high surface-area-to-volume ratios, flexibility, and unusual material characteristics such as anisotropy in electrical/thermal conductivity. The superior properties of the nanomaterials can be directly imparted and scaled-up to macro-sized structures. However, most nanomaterial-based yarns have thus far, been fabricated with only organic materials such as polymers, graphene, and carbon nanotubes. This paper presents a novel fabrication method for fully inorganic nanoribbon yarn, expanding its applicability by bundling highly aligned and suspended nanoribbons made from various inorganic materials (e.g., Au, Pd, Ni, Al, Pt, WO3, SnO2, NiO, In2O3, and CuO). The process involves depositing the target inorganic material on a nanoline mold, followed by suspension through plasma etching of the nanoline mold, and twisting using a custom-built yarning machine. Nanoribbon yarn structures of various functional inorganic materials are utilized for chemical sensors (Pd-based H2 and metal oxides (MOx)-based green gas sensors) and green energy transducers (water splitting electrodes/triboelectric nanogenerators). This method is expected to provide a comprehensive fabrication strategy for versatile inorganic nanomaterials-based yarns.

2.
Environ Monit Assess ; 196(5): 425, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573498

RESUMEN

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.


Asunto(s)
Carbón Orgánico , Contaminantes Ambientales , Humedales , Monitoreo del Ambiente , Biodegradación Ambiental , Suelo , Agua
3.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677607

RESUMEN

Heterogenization of the photocatalyst appears to be a valuable solution to reach sustainable processes. Rapid and efficient synthesis of supported photocatalyst is still a remaining challenge and the choice of the support material is crucial. The present study aims at preparing a new generation of hybrid inorganic/organic photocatalysts based on silica mesoporous material and Eosin Y. These results highlight the influence of non-covalent interactions between the material support and the reagent impacting the selectivity of the reaction.

4.
Molecules ; 28(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838921

RESUMEN

In this paper, a novel hybrid material, entitled histaminium bis(trioxonitrate), with the general chemical formula (C5H11N3)(NO3)2, denoted by HTN was presented. Single-crystal X-ray diffraction was used to determine the structural characteristics of this compound after it was made using a slow evaporation method at room temperature. This compound was elaborated and crystallized to the monoclinic system with space group P21/c, and the lattice parameters obtained were: a = 10.4807 (16)Å, b = 11.8747 (15)Å, c = 16.194 (2)Å, ß = 95.095 (6)°, V = 2007.4 (5)Å3 and Z = 8. The title compound's atomic structure couldbe modeled as a three-dimensional network. Organic cations and nitrate anions were connected via N-H...O and C-H...O hydrogen bonds in the HTN structure. The intermolecular interactions responsible for the formation of crystal packing were evaluated using Hirshfeld surfaces and two-dimensional fingerprint plots. The compound's infrared spectrum, which ranged from 4000 to 400 cm-1, confirmed the presence of the principal bands attributed to the internal modes of the organic cation and nitrate anions. Additionally, spectrofluorimetry and the ultraviolet-visible spectrum was used to investigate this compound. DFT calculations were used to evaluate the composition and properties of HTN. The energy gap, chemical reactivity and crystal stability of HTN were quantified by performing HOMO-LUMO frontier orbitals analysis. Topological analysis (AIM), Reduced Density Gradient (RDG), molecular electrostatic potential surface (MEPS) and Mulliken population were processed to determine the types of non-covalent interactions, atomic charges and molecular polarity in detail.


Asunto(s)
Nitratos , Teoría Cuántica , Modelos Moleculares , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
5.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458719

RESUMEN

The hydrolysis of 3-ammoniumpropylbis(catecholato)silicate 1, giving two different silica-based materials containing different amounts of tris(catecholato)silicate, is reported. The latter species can be formed through an attack of catechol to the silicon atom in the pentacoordinate complex, in which the silicon-carbon bond is further activated toward electrophilic proton cleavage. The Knoevenagel reaction was used as a probe in order to test the availability of functional groups on the surface of such materials.


Asunto(s)
Silicatos , Silicio , Hidrólisis , Silicatos/química , Dióxido de Silicio/química
6.
Appl Microbiol Biotechnol ; 105(20): 7607-7618, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34542684

RESUMEN

Anaerobic digestion of sewage sludge (SS) is one of the effective ways to reduce the waste generated from human life activities. To date, there are many reports to improve or repress methane production during the anaerobic digestion of SS. In the anaerobic digestion process, many microorganisms work positively or negatively, and as a result of their microbe-to-microbe interaction and regulation, methane production increases or decreases. In other words, understanding the complex control mechanism among the microorganisms and identifying the strains that are key to increase or decrease methane production are important for promoting the advanced production of bioenergy and beneficial compounds. In this mini-review, the literature on methane production in anaerobic digestion has been summarized based on the results of antibiotic addition, quorum sensing control, and inorganic substance addition. By optimizing the activity of microbial groups in SS, methane or acetate can be highly produced. KEY POINTS: • Bactericidal agents such as an antibiotic alter microbial community for enhanced CH4 production. • Bacterial interaction via quorum sensing is one of the key points for biofilm and methane production. • Anaerobic digestion can be altered in the presence of several inorganic materials.


Asunto(s)
Reactores Biológicos , Microbiota , Anaerobiosis , Antibacterianos/farmacología , Humanos , Metano , Percepción de Quorum , Aguas del Alcantarillado
7.
Nano Lett ; 20(5): 3513-3520, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32338926

RESUMEN

Additive manufacturing at small scales enables advances in micro- and nanoelectromechanical systems, micro-optics, and medical devices. Materials that lend themselves to AM at the nanoscale, especially for optical applications, are limited. State-of-the-art AM processes for high-refractive-index materials typically suffer from high porosity and poor repeatability and require complex experimental procedures. We developed an AM process to fabricate complex 3D architectures out of fully dense titanium dioxide (TiO2) with a refractive index of 2.3 and nanosized critical dimensions. Transmission electron microscopy (TEM) analysis proves this material to be rutile phase of nanocrystalline TiO2, with an average grain size of 110 nm and <1% porosity. Proof-of-concept woodpile architectures with 300-600 nm beam dimensions exhibit a full photonic band gap centered at 1.8-2.9 µm, as revealed by Fourier-transform infrared spectroscopy (FTIR) and supported by plane wave expansion simulations. The developed AM process enables advances in 3D MEMS, micro-optics, and prototyping of 3D dielectric PhCs.

8.
Mikrochim Acta ; 187(12): 654, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33179119

RESUMEN

A nanorod-like structured CoMoO4 embedded on boron doped-graphitic carbon nitride composite (CoMoO4/BCN) has been developed by a simple sonochemical method for electrochemical detection of furazolidone (FUZ). Interestingly, the impedance of CoMoO4/BCN fabricated screen-printed carbon electrode (SPCE) possesses a lower resistance charge transfer (Rct), which favors superior electrochemical detection of FUZ. Such CoMoO4/BCN/SPCE exhibits an ultralow detection limit of 1.6 nM with a concentration range of 0.04-408.9 µM, and high sensitivity of 11.6 µA µM-1 cm-2 by DPV method. In addition, biological and water samples were used for demonstration of practical application of CoMoO4/BCN/SPCE towards electrochemical detection of FUZ, and the result exhibits a satisfactory recovery.Graphical abstract.

9.
Molecules ; 22(10)2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065552

RESUMEN

In this review, we discuss currently available studies on the synthesis and properties of MQ copolymers. The data on methods of producing hydrolytic and heterofunctional polycondensation of functional organosilanes as well as the obtaining MQ copolymers based on silicic acids and nature silicates are considered. The ratio of M and Q monomers and the production method determine the structure of MQ copolymers and, accordingly, their physicochemical characteristics. It is shown that the most successful synthetic approach is a polycondensation of organoalkoxysilanes in the medium of anhydrous acetic acid, which reduces the differences in reactivity of M and Q monomers and leads to obtaining a product with uniform composition in all fractions, with full absence of residual alkoxy-groups. The current concept of MQ copolymers is that of organo-inorganic hybrid systems with nanosized crosslinked inorganic regions limited by triorganosilyl groups and containing residual hydroxyl groups. The systems can be considered as a peculiar molecular composites consisting of separate parts that play the role of a polymer matrix, a plasticizer, and a nanosized filler.


Asunto(s)
Polímeros/química , Silicatos/química , Hidrólisis
10.
Luminescence ; 30(5): 703-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25345846

RESUMEN

A new Na3Ca2(SO4)3F: Ce(3+) phosphor synthesized by a solid state diffusion method is reported. The photoluminescence study showed a single high intensity emission peak at 307 nm wavelength when excited by UV light of wavelength 278 nm. An unresolved peak of comparatively less intensity was also observed at 357 nm along with the main peak. The characteristic emission of dopant Ce in Na3Ca2(SO4)3F phosphor clearly indicated that it resides in the host lattice in trivalent form. The emission peak can be attributed to 5d → 4f transition of rare earth Ce(3+) . The prepared sample is also characterized for its thermoluminescence properties. The TL glow curve of prepared sample showed a single broad peak at 147°C. The trapping parameters are also evaluated by Chen's method. The values of trap depth (E) and frequency factor (s) were found to be 0.64 ± 0.002 eV and 1.43 × 10(7) s(-1) respectively. The study of PL and TL along with evaluation of trapping parameters has been undertaken and discussed for the first time.


Asunto(s)
Cerio/química , Fluoruros/química , Sustancias Luminiscentes/química , Mediciones Luminiscentes , Rayos Ultravioleta , Difracción de Rayos X
11.
Luminescence ; 30(4): 425-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25204539

RESUMEN

KMgSO4 F:Ce and KMgSO4 F:Mn phosphors were prepared by a wet chemical method and studied for their photoluminescence (PL) and thermoluminescence (TL) characteristics. PL emission of KMgSO4 F:Ce peaked at around 440 nm for the excitation at 377 nm due to 5d → 4f transition, while KMgSO4 F:Mn had a peak at 540 nm for an excitation at 363 nm and 247 nm due to (4) T1g → (6) A1g transition. The phosphors also showed good thermoluminescence characteristics when they were exposed to γ-rays at a 5 Gy dose at the rate of 0.36 kGyh(-1) . KMgSO4 F:Ce exhibited a single thermoluminescence (TL) peak at around 167 °C and KMgSO4 F:Mn also exhibited a single TL peak at around 177 °C. Possible trapping parameters such as order of kinetics (b), the geometrical factor (µg ), the frequency factor (s) and the activation energy were also evaluated by Chen's half width method. This article discusses fundamental PL and TL characteristics in inorganic fluoride material activated by Ce(3+) and Mn(2+) ions and prepared by a wet chemical method.


Asunto(s)
Cerio/química , Sustancias Luminiscentes/química , Cinética , Luminiscencia , Sulfato de Magnesio/química , Manganeso/química , Difracción de Rayos X
12.
Int J Biol Macromol ; 258(Pt 2): 128845, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141693

RESUMEN

Gelatin, widely employed in hydrogel dressings, faces limitations when used in high fluid environments, hindering effective material adhesion to wound sites and subsequently reducing treatment efficacy. The rapid degradation of conventional hydrogels often results in breakdown before complete wound healing. Thus, there is a pressing need for the development of durable adhesive wound dressings. In this study, 3-glycidoxypropyltrimethoxysilane (GPTMS) was utilized as a coupling agent to create gelatin-silica hybrid (G-H) dressings through the sol-gel method. The coupling reaction established covalent bonds between gelatin and silica networks, enhancing structural stability. Dopamine (DP) was introduced to this hybrid (G-H-D) dressing to further boost adhesiveness. The efficacy of the dressings for wound management was assessed through in-vitro and in-vivo tests, along with ex-vivo bioadhesion testing on pig skin. Tensile bioadhesion tests demonstrated that the G-H-D material exhibited approximately 2.5 times greater adhesion to soft tissue in wet conditions compared to pure gelatin. Moreover, in-vitro and in-vivo wound healing experiments revealed a significant increase in wound healing rates. Consequently, this material shows promise as a viable option for use as a moist wound dressing.


Asunto(s)
Dopamina , Gelatina , Animales , Porcinos , Gelatina/química , Dióxido de Silicio , Cicatrización de Heridas , Vendajes , Adherencias Tisulares , Hidrogeles/química , Antibacterianos
13.
Front Oncol ; 12: 879828, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720013

RESUMEN

Bladder cancer is one of the most common malignant tumors in urinary system. Intravesical chemotherapy is a common adjuvant therapy after transurethral resection of bladder tumors. However, it has several disadvantages such as low drug penetration rate, short residence time, unsustainable action and inability to release slowly, thus new drug delivery and new modalities in delivery carriers need to be continuously explored. Nano-drug delivery system is a novel way in treatment for bladder cancer that can increase the absorption rate and prolong the duration of drug, as well as sustain the action by controlling drug release. Currently, nano-drug delivery carriers mainly included liposomes, polymers, and inorganic materials. In this paper, we reveal current researches in nano-drug delivery system in bladder cancer intravesical chemotherapy by describing the applications and defects of liposomes, polymers and inorganic material nanocarriers, and provide a basis for the improvement of intravesical chemotherapy drugs in bladder cancer.

14.
Polymers (Basel) ; 14(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35890564

RESUMEN

In the field of stimuli-responsive materials, introducing a pH-sensitive dyestuff onto textile fabrics is a promising approach for the development of wearable sensors. In this paper, the alizarin red S dyestuff bonded with a sol-gel precursor, namely trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, was used to functionalize polyethylene terephthalate fabrics, a semi-crystalline thermoplastic polyester largely used in the healthcare sector mainly due to its advantages, including mechanical strength, biocompatibility and resistance against abrasion and chemicals. The obtained hybrid halochromic silane-based coating on polyester fabrics was investigated with several chemical characterization techniques. Fourier transform infrared spectroscopy and X-ray Photoelectron Spectroscopy confirmed the immobilization of the dyestuff-based silane matrix onto polyethylene terephthalate samples through self-condensation of hydrolyzed silanols under the curing process. The reversibility and repeatability of pH-sensing properties of treated polyester fabrics in the pH range 2.0-8.0 were confirmed with diffuse reflectance and CIELAB color space characterizations. Polyester fabric functionalized with halochromic silane-based coating shows the durability of halochromic properties conversely to fabric treated with plain alizarin red S, thus highlighting the potentiality of the sol-gel approach in developing durable halochromic coating on synthetic substrates. The developed wearable pH-meter device could find applications as a non-invasive pH sensor for wellness and healthcare fields.

15.
J Colloid Interface Sci ; 617: 463-477, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35290804

RESUMEN

HYPOTHESIS: The broad detection properties of alizarin, not only concerning pH variations but also temperature, glucose and health-like relevant cations alterations, make it a molecule of great scientific interest, particularly for developing multifunctional wearable sensors. EXPERIMENT: Herein, the alizarin red S dyestuff is bonded with trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, as a sol-gel precursor, to functionalize cotton fabrics. The chemical and structural properties of both plain and silane-functionalized dyestuffs are investigated in solution and solid-state by several chemical-physical characterization techniques. FINDINGS: The hybrid dyestuff characterization reveals the epoxy ring-opening of the silica precursor, leading to covalent linkages to the sulfonic group of alizarin, which retains its structure during the sol-gel reaction. The silane-functionalized halochromic dyestuff shows similar halochromic behaviour as its pristine solution in the investigated pH range, thus demonstrating a color shift from yellow to red due to the protonation/deprotonation reversible mechanism of the chromophore. The reversibility and repeatability of pH-sensing properties of treated cotton fabrics are confirmed by diffuse reflectance and CIELAB color space characterizations. Cotton fabric functionalized with alizarin-containing sol-gel coating shows excellent durability of halochromic properties, thus emerging as a versatile platform for stimuli-responsive materials.


Asunto(s)
Silanos , Dispositivos Electrónicos Vestibles , Antraquinonas , Silanos/química , Textiles
16.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477573

RESUMEN

Bulk inorganic materials play important roles in human society, and their construction is commonly achieved by the coalescence of inorganic nano- or micro-sized particles. Understanding the coalescence process promotes the elimination of particle interfaces, leading to continuous bulk phases with improved functions. In this review, we mainly focus on the coalescence of ceramic and metal materials for bulk construction. The basic knowledge of coalescent mechanism on inorganic materials is briefly introduced. Then, the properties of the inorganic precursors, which determine the coalescent behaviors of inorganic phases, are discussed from the views of particle interface, size, crystallinity, and orientation. The relationships between fundamental discoveries and industrial applications are emphasized. Based upon the understandings, the applications of inorganic bulk materials produced by the coalescence of their particle precursors are further presented. In conclusion, the challenges of particle coalescence for bulk material construction are presented, and the connection between recent fundamental findings and industrial applications is highlighted, aiming to provide an insightful outlook for the future development of functional inorganic materials.

17.
Food Chem ; 359: 129890, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33934029

RESUMEN

A new support for the immobilization of ß-d-galactosidase from Kluyveromyces lactis was developed, consisting of mesoporous silica/titania with a chitosan coating. This support presents a high available surface area and adequate pore size for optimizing the immobilization efficiency of the enzyme and, furthermore, maintaining its activity. The obtained supported biocatalyst was applied in enzyme hydrolytic activity tests with o-NPG, showing high activity 1223 Ug-1, excellent efficiency (74%), and activity recovery (54%). Tests of lactose hydrolysis in a continuous flow reactor showed that during 14 days operation, the biocatalyst maintained full enzymatic activity. In a batch system, after 15 cycles, it retained approximately 90% of its initial catalytic activity and attained full conversion of the lactose 100% (±12%). Additionally, with the use of the mesoporous silica/titania support, the biocatalyst presented no deformation and fragmentation, in both systems, demonstrating high operational stability and appropriate properties for applications in food manufacturing.


Asunto(s)
Quitosano , Enzimas Inmovilizadas/metabolismo , Kluyveromyces/enzimología , Dióxido de Silicio , Titanio , beta-Galactosidasa/metabolismo , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Hidrólisis , Lactosa/metabolismo
18.
J Hazard Mater ; 408: 124940, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387714

RESUMEN

Antibiotic pollution causes worldwide concern due to its more apparent consequences, namely antibiotic resistance and destruction of the environment. Extensive use of antibiotics in human and veterinary drugs releases a significant amount of toxins into the sphere of living matter, causing adverse ecological impacts. This requires the design of new analytical protocols for the effective mitigation and monitoring of hazardous pharmaceutical products to reduce the environmental burden. Therefore, we present here the hydrothermal synthesis of samarium vanadate/carbon nanofiber (SmV/CNF) composite for the determination of sulfadiazine (SFZ). The synergistic effect arising from the combination of SmV and CNF accelerates charge transfer kinetics along with the creation of more surface-active sites that benefit effective detection. The structural and compositional disclosure indicates the high purity and superior attributes of the composite material that possesses the ability to improve catalytic performance. The proposed SmV/CNF sensor exhibits important static characteristics such as wide linear response ranges, low detection limit, high sensitivity and selectivity, and increased stability. To the best of our knowledge, this is the first report on the electrochemical performance of SmV/CNF, establishing its potential application in real-time analysis of environmentally hazardous contaminants.

19.
Int J Biol Macromol ; 175: 341-350, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33556395

RESUMEN

Enzyme immobilization using inorganic materials has been shown to preserve enzyme activity improving and improve their practical applications in biocatalytic process designs. Proper immobilization methods have been used to obtain high recycling and storage stability. In this study, we compared the activity and stability of in situ or crosslink-immobilized enzymes in a CaCO3 biomineral carrier. More than 30% of the initial enzyme activity was preserved for both the systems after 180 days upon 15 activity measurements at room temperature, confirming the improved stability of these enzyme systems (100 mM phosphate buffer, pH 8.0); however, differences in enzyme loading, activity, and characteristics were observed for each of these methods. Each system exhibited efficacy of 80% and 20%, respectively. Based on the same amount of immobilized enzyme (0.2 mg), the specific activities of hydrolysis of p-nitrophenyl butyrate substrate at room temperature of in situ immobilized carboxyl esterase (CE) and crosslinked CE were 11.37 and 7.63 mM min-1 mg-1, respectively (100 mM phosphate buffer, pH 8.0). Moreover, based on the kinetic behavior, in situ immobilized CE exhibited improved catalytic efficiency (Vmax Km-1) of the enzyme, exhibiting 4-fold higher activity and efficiency values than those of the CE immobilized in CaCO3. This is the first study to describe the stabilization of enzymes in CaCO3 and compare the enzyme kinetics and efficiencies between in situ immobilization and crosslinking in CaCO3 carriers.


Asunto(s)
Carbonato de Calcio/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Biocatálisis , Reactivos de Enlaces Cruzados/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Temperatura
20.
Front Chem ; 9: 798838, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993176

RESUMEN

Accelerating materials discovery is the cornerstone of modern technological competitiveness. Yet, the inorganic synthesis of new compounds is often an important bottleneck in this quest. Well-established quantum chemistry and experimental synthesis methods combined with consolidated network science approaches might provide revolutionary knowledge to tackle this challenge. Recent pioneering studies in this direction have shown that the topological analysis of material networks hold great potential to effectively explore the synthesizability of inorganic compounds. In this Perspective we discuss the most exciting work in this area, in particular emerging new physicochemical insights and general concepts on how network science can significantly help reduce the timescales required to discover new materials and find synthetic routes for their fabrication. We also provide a perspective on outstanding problems, challenges and open questions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA