Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 183(5): 1420-1435.e21, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33159857

RESUMEN

Gastroenteropancreatic (GEP) neuroendocrine neoplasm (NEN) that consists of neuroendocrine tumor and neuroendocrine carcinoma (NEC) is a lethal but under-investigated disease owing to its rarity. To fill the scarcity of clinically relevant models of GEP-NEN, we here established 25 lines of NEN organoids and performed their comprehensive molecular characterization. GEP-NEN organoids recapitulated pathohistological and functional phenotypes of the original tumors. Whole-genome sequencing revealed frequent genetic alterations in TP53 and RB1 in GEP-NECs, and characteristic chromosome-wide loss of heterozygosity in GEP-NENs. Transcriptome analysis identified molecular subtypes that are distinguished by the expression of distinct transcription factors. GEP-NEN organoids gained independence from the stem cell niche irrespective of genetic mutations. Compound knockout of TP53 and RB1, together with overexpression of key transcription factors, conferred on the normal colonic epithelium phenotypes that are compatible with GEP-NEN biology. Altogether, our study not only provides genetic understanding of GEP-NEN, but also connects its genetics and biological phenotypes.


Asunto(s)
Bancos de Muestras Biológicas , Tumores Neuroendocrinos/patología , Organoides/patología , Animales , Cromosomas Humanos/genética , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Masculino , Ratones , Modelos Genéticos , Mutación/genética , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transcriptoma/genética , Secuenciación Completa del Genoma
2.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293792

RESUMEN

Ventricular and atrial cardiac chambers have unique structural and contractile characteristics that underlie their distinct functions. The maintenance of chamber-specific features requires active reinforcement, even in differentiated cardiomyocytes. Previous studies in zebrafish have shown that sustained FGF signaling acts upstream of Nkx factors to maintain ventricular identity, but the rest of this maintenance pathway remains unclear. Here, we show that MEK1/2-ERK1/2 signaling acts downstream of FGF and upstream of Nkx factors to promote ventricular maintenance. Inhibition of MEK signaling, like inhibition of FGF signaling, results in ectopic atrial gene expression and reduced ventricular gene expression in ventricular cardiomyocytes. FGF and MEK signaling both influence ventricular maintenance over a similar timeframe, when phosphorylated ERK (pERK) is present in the myocardium. However, the role of FGF-MEK activity appears to be context-dependent: some ventricular regions are more sensitive than others to inhibition of FGF-MEK signaling. Additionally, in the atrium, although endogenous pERK does not induce ventricular traits, heightened MEK signaling can provoke ectopic ventricular gene expression. Together, our data reveal chamber-specific roles of MEK-ERK signaling in the maintenance of ventricular and atrial identities.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Transducción de Señal/genética , Miocitos Cardíacos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
3.
Dev Biol ; 514: 78-86, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38880275

RESUMEN

The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.


Asunto(s)
Corazón , Integrasas , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Animales , Ratones , Corazón/embriología , Integrasas/metabolismo , Integrasas/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones Transgénicos , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas de Sustitución del Gen
4.
Adv Exp Med Biol ; 1441: 145-153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884709

RESUMEN

The development of the inflow tract is undoubtedly one of the most complex remodeling events in the formation of the four-chambered heart. It involves the creation of two separate atrial chambers, the formation of an atrial/atrioventricular (AV) septal complex, the incorporation of the caval veins and coronary sinus into the right atrium, and the remodeling events that result in pulmonary venous return draining into the left atrium. In these processes, the atrioventricular mesenchymal complex, consisting of the major atrioventricular (AV) cushions, the mesenchymal cap on the primary atrial septum (pAS), and the dorsal mesenchymal protrusion (DMP), plays a crucial role.


Asunto(s)
Atrios Cardíacos , Animales , Humanos , Seno Coronario/embriología , Seno Coronario/anomalías , Corazón/embriología , Mesodermo/embriología , Venas Pulmonares/anomalías
5.
Adv Exp Med Biol ; 1441: 875-884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884756

RESUMEN

Tricuspid atresia (TA) is a rare congenital heart condition that presents with a complete absence of the right atrioventricular valve. Because of the rarity of familial and/or isolated cases of TA, little is known about the potential genetic abnormalities contributing to this condition. Potential responsible chromosomal abnormalities were identified in exploratory studies and include deletions in 22q11, 4q31, 8p23, and 3p as well as trisomies 13 and 18. In parallel, potential culprit genes include the ZFPM2, HEY2, NFATC1, NKX2-5, MYH6, and KLF13 genes. The aim of this chapter is to expose the genetic components that are potentially involved in the pathogenesis of TA in humans. The large variability in phenotypes and genotypes among cases of TA suggests a genetic network that involves many components yet to be unraveled.


Asunto(s)
Atresia Tricúspide , Humanos , Aberraciones Cromosómicas , Fenotipo , Atresia Tricúspide/genética , Corazón Univentricular/genética
6.
Adv Exp Med Biol ; 1441: 937-945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884762

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a severe congenital cardiovascular malformation characterized by hypoplasia of the left ventricle, aorta, and other structures on the left side of the heart. The pathologic definition includes atresia or stenosis of both the aortic and mitral valves. Despite considerable progress in clinical and surgical management of HLHS, mortality and morbidity remain concerns. One barrier to progress in HLHS management is poor understanding of its cause. Several lines of evidence point to genetic origins of HLHS. First, some HLHS cases have been associated with cytogenetic abnormalities (e.g., Turner syndrome). Second, studies of family clustering of HLHS and related cardiovascular malformations have determined HLHS is heritable. Third, genomic regions that encode genes influencing the inheritance of HLHS have been identified. Taken together, these diverse studies provide strong evidence for genetic origins of HLHS and related cardiac phenotypes. However, using simple Mendelian inheritance models, identification of single genetic variants that "cause" HLHS has remained elusive, and in most cases, the genetic cause remains unknown. These results suggest that HLHS inheritance is complex rather than simple. The implication of this conclusion is that researchers must move beyond the expectation that a single disease-causing variant can be found. Utilization of complex models to analyze high-throughput genetic data requires careful consideration of study design.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Humanos , Predisposición Genética a la Enfermedad/genética , Síndrome del Corazón Izquierdo Hipoplásico/genética , Fenotipo
7.
Adv Exp Med Biol ; 1441: 841-852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884753

RESUMEN

Integrated human genetics and molecular/developmental biology studies have revealed that truncus arteriosus is highly associated with 22q11.2 deletion syndrome. Other congenital malformation syndromes and variants in genes encoding TBX, GATA, and NKX transcription factors and some signaling proteins have also been reported as its etiology.


Asunto(s)
Tronco Arterial Persistente , Humanos , Tronco Arterial Persistente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tronco Arterial/metabolismo , Síndrome de DiGeorge/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Predisposición Genética a la Enfermedad/genética
8.
Adv Exp Med Biol ; 1441: 915-928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884760

RESUMEN

Ebstein's anomaly is a congenital malformation of the tricuspid valve characterized by abnormal attachment of the valve leaflets, resulting in varying degrees of valve dysfunction. The anatomic hallmarks of this entity are the downward displacement of the attachment of the septal and posterior leaflets of the tricuspid valve. Additional intracardiac malformations are common. From an embryological point of view, the cavity of the future right atrium does not have a direct orifice connected to the developing right ventricle. This chapter provides an overview of current insight into how this connection is formed and how malformations of the tricuspid valve arise from dysregulation of molecular and morphological events involved in this process. Furthermore, mouse models that show features of Ebstein's anomaly and the naturally occurring model of canine tricuspid valve malformation are described and compared to the human model. Although Ebstein's anomaly remains one of the least understood cardiac malformations to date, the studies summarized here provide, in aggregate, evidence for monogenic and oligogenic factors driving pathogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Anomalía de Ebstein , Válvula Tricúspide , Anomalía de Ebstein/genética , Anomalía de Ebstein/patología , Anomalía de Ebstein/fisiopatología , Animales , Humanos , Perros , Ratones , Válvula Tricúspide/anomalías , Válvula Tricúspide/patología
9.
Adv Exp Med Biol ; 1441: 885-900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884757

RESUMEN

The process of valve formation is a complex process that involves intricate interplay between various pathways at precise times. Although we have not completely elucidated the molecular pathways that lead to normal valve formation, we have identified a few major players in this process. We are now able to implicate TGF-ß, BMP, and NOTCH as suspects in tricuspid atresia (TA), as well as their downstream targets: NKX2-5, TBX5, NFATC1, GATA4, and SOX9. We know that the TGF-ß and the BMP pathways converge on the SMAD4 molecule, and we believe that this molecule plays a very important role to tie both pathways to TA. Similarly, we look at the NOTCH pathway and identify the HEY2 as a potential link between this pathway and TA. Another transcription factor that has been implicated in TA is NFATC1. While several mouse models exist that include part of the TA abnormality as their phenotype, no true mouse model can be said to represent TA. Bridging this gap will surely shed light on this complex molecular pathway and allow for better understanding of the disease process.


Asunto(s)
Modelos Animales de Enfermedad , Transducción de Señal , Atresia Tricúspide , Animales , Atresia Tricúspide/genética , Atresia Tricúspide/metabolismo , Atresia Tricúspide/patología , Humanos , Ratones , Corazón Univentricular/genética , Corazón Univentricular/metabolismo , Corazón Univentricular/fisiopatología , Corazón Univentricular/patología , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Receptores Notch/metabolismo , Receptores Notch/genética
10.
Adv Exp Med Biol ; 1441: 77-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884705

RESUMEN

The major events of cardiac development, including early heart formation, chamber morphogenesis and septation, and conduction system and coronary artery development, are briefly reviewed together with a short introduction to the animal species commonly used to study heart development and model congenital heart defects (CHDs).


Asunto(s)
Modelos Animales de Enfermedad , Cardiopatías Congénitas , Corazón , Animales , Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/patología , Corazón/embriología , Corazón/fisiopatología , Corazón/crecimiento & desarrollo , Humanos , Ratones , Morfogénesis
11.
Adv Exp Med Biol ; 1441: 629-644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884738

RESUMEN

Tetralogy of Fallot (TOF) and double-outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.


Asunto(s)
Ventrículo Derecho con Doble Salida , Tetralogía de Fallot , Humanos , Tetralogía de Fallot/genética , Ventrículo Derecho con Doble Salida/genética , Mutación , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad/genética , Factores de Transcripción/genética
12.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884747

RESUMEN

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Asunto(s)
Aorta Torácica , Válvula Aórtica , Humanos , Aorta Torácica/anomalías , Aorta Torácica/patología , Válvula Aórtica/anomalías , Válvula Aórtica/patología , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Enfermedad de la Válvula Aórtica Bicúspide/genética , Estenosis de la Válvula Pulmonar/genética , Mutación , Receptor Notch1/genética , Enfermedad de la Válvula Aórtica/genética , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/patología , Calcinosis/genética , Calcinosis/patología , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología
13.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884726

RESUMEN

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Defectos del Tabique Interatrial , Humanos , Defectos del Tabique Interatrial/genética , Predisposición Genética a la Enfermedad/genética , Mutación
14.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884724

RESUMEN

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Asunto(s)
Cardiopatías Congénitas , Animales , Humanos , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Modelos Animales de Enfermedad , Ratones , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Cultivo de Célula/métodos
15.
Adv Exp Med Biol ; 1441: 705-717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884744

RESUMEN

Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.


Asunto(s)
Mutación , Humanos , Síndrome de Heterotaxia/genética , Cardiopatías Congénitas/genética , Situs Inversus/genética
16.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884718

RESUMEN

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Asunto(s)
Redes Reguladoras de Genes , Cardiopatías Congénitas , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Corazón/fisiología , Miocardio/metabolismo
17.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884729

RESUMEN

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genética
18.
Cardiol Young ; 34(3): 654-658, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37697673

RESUMEN

INTRODUCTION: The NKX2.5 gene is an important cardiac developmental transcription factor, and variants in this gene are most commonly associated with CHD. However, there is an increased need to recognise associations with conduction disease and potentially dangerous ventricular arrhythmias. There is an increased risk of arrhythmia and sudden cardiac death in patients with NKX2.5 variants, an association with relatively less attention in the literature. METHODS: We created a family pedigree and reconstructed familial relationships involving numerous relatives with CHD, conduction disease, and ventricular non-compaction following the sudden death of one family member. Two informative but distantly related family members had genetic testing to determine the cause of arrhythmias via arrhythmia/cardiomyopathy gene testing, and we identified obligate genetic-positive relatives based on family relationships and Mendelian inheritance pattern. RESULTS: We identified a novel pathogenic variant in the NKX2.5 gene (c.437C > A; p. Ser146*), and segregation analysis allowed us to link family cardiac phenotypes including CHD, conduction disease, left ventricular non-compaction, and ventricular arrhythmias/sudden cardiac death. CONCLUSIONS: We report a novel NKX2.5 gene variant linking a spectrum of familial heart disease, and we also encourage recognition of the association between NKX2.5 gene and potentially dangerous ventricular arrhythmias, which will inform clinical risk stratification, screening, and management.


Asunto(s)
Arritmias Cardíacas , Cardiopatías Congénitas , Humanos , Arritmias Cardíacas/genética , Muerte Súbita Cardíaca/etiología , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Corazón , Trastorno del Sistema de Conducción Cardíaco
19.
Biochem Biophys Res Commun ; 669: 143-149, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37271026

RESUMEN

Atrioventricular conduction cardiomyocytes (AVCCs) regulate the rate and rhythm of heart contractions. Dysfunction due to aging or disease can cause atrioventricular (AV) block, interrupting electrical impulses from the atria to the ventricles. Generation of functional atrioventricular conduction like cardiomyocytes (AVCLCs) from human pluripotent stem cells (hPSCs) provides a promising approach to repair damaged atrioventricular conduction tissue by cell transplantation. In this study, we put forward the generation of AVCLCs from hPSCs by stage-specific manipulation of the retinoic acid (RA), WNT, and bone morphogenetic protein (BMP) signaling pathways. These cells express AVCC-specific markers, including the transcription factors TBX3, MSX2 and NKX2.5, display functional electrophysiological characteristics and present low conduction velocity (0.07 ± 0.02 m/s). Our findings provide new insights into the understanding of the development of the atrioventricular conduction system and propose a strategy for the treatment of severe atrioventricular conduction block by cell transplantation in future.


Asunto(s)
Bloqueo Atrioventricular , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Factores de Transcripción/metabolismo , Células Madre Pluripotentes/metabolismo
20.
Differentiation ; 128: 1-12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36194927

RESUMEN

Myhre syndrome is a connective tissue disorder characterized by congenital cardiovascular, craniofacial, respiratory, skeletal, and cutaneous anomalies as well as intellectual disability and progressive fibrosis. It is caused by germline variants in the transcriptional co-regulator SMAD4 that localize at two positions within the SMAD4 protein, I500 and R496, with I500 V/T/M variants more commonly identified in individuals with Myhre syndrome. Here we assess the functional impact of SMAD4-I500V variant, identified in two previously unpublished individuals with Myhre syndrome, and provide novel insights into the molecular mechanism of SMAD4-I500V dysfunction. We show that SMAD4-I500V can dimerize, but its transcriptional activity is severely compromised. Our data show that SMAD4-I500V acts dominant-negatively on SMAD4 and on receptor-regulated SMADs, affecting transcription of target genes. Furthermore, SMAD4-I500V impacts the transcription and function of crucial developmental transcription regulator, NKX2-5. Overall, our data reveal a dominant-negative model of disease for SMAD4-I500V where the function of SMAD4 encoded on the remaining allele, and of co-factors, are perturbed by the continued heterodimerization of the variant, leading to dysregulation of TGF and BMP signaling. Our findings not only provide novel insights into the mechanism of Myhre syndrome pathogenesis but also extend the current knowledge of how pathogenic variants in SMAD proteins cause disease.


Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Proteína Smad4/genética , Mutación , Deformidades Congénitas de la Mano/genética , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA