Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cytokine ; 177: 156560, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447385

RESUMEN

Some evidence has indicated that monkeypox can induce a cytokine storm. Purinergic signaling is a cell pathway related to the cytokine storm. However, the precise mechanisms that lead to cytokine storms in monkeypox infections and the possible involvement of purinergic signaling in the immune response to this virus remain unknown. In this review article, we aimed to highlight a body of scientific evidence that consolidates the role of the cytokine storm in monkeypox infection and proposes a new hypothesis regarding the roles of purinergic signaling in this immune-mediated mechanism. We further suggested some purinergic signaling modulators to mitigate the deleterious and aggravating effects of immune dysregulation in human monkeypox virus infection by inhibiting P2X3, P2X7, P2Y2, and P2Y12, reducing inflammation, and activating A1 and A2A receptors to promote an anti-inflammatory response.


Asunto(s)
Síndrome de Liberación de Citoquinas , Mpox , Humanos , Inflamación , Transducción de Señal , Receptores Purinérgicos P2X7
2.
Purinergic Signal ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958820

RESUMEN

Snake bites are a severe problem in the countryside of Brazil and are usually attributed to snakes of the genera Bothrops, Crotalus, and Lachesis. Snake venom can release ectoenzymes and nucleotidases that modulate the purinergic system. In addition to serum therapy against snake poisoning, medicinal plants with anti-inflammatory activities, such as Tabebuia aurea, is empirically applied in accidents that occur in difficult-to-access areas. This study aimed was to verify the presence and activity of nucleotidases in the crude venom of Bothrops mattogrossensis (BmtV) in vitro and characterize the modulation of purinergic components, myeloid differentiation, and inflammatory/oxidative stress markers by BmtV in vivo and in vitro. Moreover, our study assessed the inhibitory activities of specioside, an iridoid isolated from Tabebuia aurea, against the effects of BmtV. Proteomic analysis of venom content and nucleotidase activity confirm the presence of ectonucleotidase-like enzymes in BmtV. In in vivo experiments, BmtV altered purinergic component expression (P2X7 receptor, CD39 and CD73), increased neutrophil numbers in peripheral blood, and elevated oxidative stress/inflammatory parameters such as lipid peroxidation and myeloperoxidase activity. BmtV also decreased viability and increased spreading index and phagocytic activity on macrophages. Specioside inhibited nucleotidase activity, restored neutrophil numbers, and mediate the oxidative/inflammatory effects produced by BmtV. We highlight the effects produced by BmtV in purinergic system components, myeloid differentiation, and inflammatory/oxidative stress parameters, while specioside reduced the main BmtV-dependent effects.

3.
Purinergic Signal ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460075

RESUMEN

The pathophysiology of Parkinson's disease (PD) is marked by degeneration of dopaminergic neurons in the substantia nigra. With advent of COVID-19, which is closely associated with generalized inflammation and multiple organ dysfunctions, the PD patients may develop severe conditions of disease leading to exacerbated degeneration. This condition is caused by the excessive release of pro-inflammatory markers, called cytokine storm, that is capable of triggering neurodegenerative conditions by affecting the blood-brain barrier (BBB). A possible SARS-CoV-2 infection, in serious cases, may compromise the immune system by triggering a hyperstimulation of the neuroimmune response, similar to the pathological processes found in PD. From this perspective, the inflammatory scenario triggers oxidative stress and, consequently, cellular dysfunction in the nervous tissue. The P2X7R seems to be the key mediator of the neuroinflammatory process, as it acts by increasing the concentration of ATP, allowing the influx of Ca2+ and the occurrence of mutations in the α-synuclein protein, causing activation of this receptor. Thus, modulation of the purinergic system may have therapeutic potential on the effects of PD, as well as on the damage caused by inflammation of the BBB, which may be able to mitigate the neurodegeneration caused by diseases. Considering all the processes of neuroinflammation, oxidative stress, and mitochondrial dysfunction that PD propose, we can conclude that the P2X7 antagonist acts in the prevention of viral diseases, and it also controls purinergic receptors formed by multi-target compounds directed to self-amplification circuits and, therefore, may be a viable strategy to obtain the desired disease-modifying effect. Thus, purinergic system receptor modulations have a high therapeutic potential for neurodegenerative diseases such as PD.

4.
Purinergic Signal ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753131

RESUMEN

Cervical cancer ranks as the fourth most common and fatal cancer among women worldwide. Studies have demonstrated a strong association between purinergic platelet signaling and tumor progression in this type of cancer. The literature shows that neoplastic cells, when in the bloodstream, secrete adenosine triphosphate (ATP) and adenosine nucleotide diphosphate (ADP) that act on their corresponding platelet P2Y and P2X receptors. The interaction of these nucleotides with their receptors results in platelet activation and degranulation, ensuing several consequences, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor, matrix metalloproteinases, ADP, and ATP. These molecules play essential roles in angiogenesis and tumor metastasis in cervical cancer. Several purinergic receptors are found in endothelial cells. Their activation, especially P2Y2, by the nucleotides released by platelets can induce relaxation of the endothelial barrier and consequent extravasation of tumor cells, promoting the development of metastases. Cancer cells that enter the bloodstream during the metastatic process are also subject to high shear stress and immune surveillance. In this context, activated platelets bind to circulating tumor cells and protect them against shear stress and the host's immune system, especially against natural killer cells, facilitating their spread throughout the body. Furthermore, activation of the P2Y12 receptor present on the platelet surface promotes the release of VEGF, the main inducer of angiogenesis in cervical cancer, in addition to increasing the concentration of several other pro-angiogenic molecules. Therefore, this review will address the role of platelet purinergic signaling in tumor progression of cervical cancer and propose possible therapeutic targets.

5.
Biomarkers ; 29(3): 143-153, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483941

RESUMEN

INTRODUCTION: The present study aimed at investigating the effect of dietary supplementation of Phoenix dactylifera, an important component of aphrodisiac supplements, on sexual performance, oxido-inflammatory mediators and purinergic signaling system in hypertensive rats. MATERIAL AND METHODS: Hypertension was induced via oral administration of 40 mg/kg L-NAME. Thereafter, the sexual performance of the experimental animals was determined and the hypertensive rats with impaired sexual activities were placed on P. dactylifera-supplemented diet for 21 days, and the effects of the treatment on the overall sexual behavior, antioxidant status, oxido-inflammatory biomarkers, and enzyme activity of the purinergic system were assessed. RESULTS: Hypertensive rats showed a significant (p < 0.05) decrease in sexual performance, elevated level of oxido-inflammatory mediators, and altered purinergic enzymes activity when compared with the control. However, sub-chronic feeding with P. dactylifera-supplemented diet improved sexual performance, significantly lowered oxido-inflammatory biomarkers, and enhanced the activity of purinergic enzymes in hypertensive rats. CONCLUSION: Findings presented in this study suggest that dietary inclusion of P. dactylifera could be useful in managing erectile dysfunction (ED) commonly observed in subjects with hypertension. Findings highlighted in this study thus provide the scientific basis supporting the folkloric use of P. dactylifera as a key ingredient in aphrodisiac supplements.


Asunto(s)
Afrodisíacos , Hipertensión , Phoeniceae , Humanos , Ratas , Masculino , Animales , Frutas , Afrodisíacos/efectos adversos , Hipertensión/inducido químicamente , Biomarcadores
6.
J Neurochem ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491912

RESUMEN

The nucleoside guanosine is an endogenous neuromodulator associated with neuroprotection. The roles of guanosine during aging are still not fully elucidated. Guanosine modulates SUMOylation in neurons and astrocytes in vitro, but it is not known whether guanosine can modulate SUMOylation in vivo and improve cognitive functions during aging. SUMOylation is a post-translational protein modification with potential neuroprotective roles. In this follow-up study, we investigated whether guanosine could modulate SUMOylation in vivo and behavior in young and aged mice. Young (3-month-old) and aged (24-month-old) C57BL/6 mice were treated with guanosine (8 mg/kg intraperitoneal) daily for 14 days. Starting on day 8 of treatment, the following behavioral tests were performed: open field, novel object location, Y-maze, sucrose splash test, and tail suspension test. Treatment with guanosine did not change the locomotor activity of young or aged mice in the open-field test. Treatment with guanosine improved short-term memory only for young mice but did not change the working memory of either young or aged mice, as evaluated using object recognition and the Y-maze tests, respectively. Depressive-like behaviors, such as impaired grooming evaluated through the splash test, did not change in either young or aged mice. However, young mice treated with guanosine increased their immobility time in the tail suspension test, suggesting an effect on behavioral coping strategies. Global SUMO1-ylation was significantly increased in the hippocampus of young and aged mice after 14 days of treatment with guanosine, whereas no changes were detected in the cerebral cortex of either young or aged mice. Our findings demonstrate that guanosine also targets hippocampal SUMOylation in vivo, thereby contributing to a deeper understanding of its mechanisms of action. This highlights the involvement of SUMOylation in guanosine's modulatory and neuroprotective effects.

7.
Neurochem Res ; 48(1): 117-130, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36018438

RESUMEN

Adenosine, a purine nucleoside with neuromodulatory actions, is part of the purinergic signaling system (PSS). Caenorhabditis elegans is a free-living nematode found in soil, used in biological research for its advantages as an alternative experimental model. Since there is a lack of evidence of adenosine's direct actions and the PSS's participation in this animal, such an investigation is necessary. In this research, we aimed to test the effects of acute and chronic adenosine at 1, 5, and 10 mM on nematode's behaviors, morphology, survival after stress conditions, and on pathways related to the response to oxidative stress (DAF-16/FOXO and SKN-1) and genes products downstream these pathways (SOD-3, HSP-16.2, and GCS-1). Acute or chronic adenosine did not alter the worms' morphology analyzed by the worms' length, width, and area, nor interfered with reproductive behavior. On the other hand, acute and chronic adenosine modulated the defecation rate, pharyngeal pumping rate, and locomotion, in addition, to interacting with stress response pathways in C. elegans. Adenosine interfered in the speed and mobility of the worms analyzed. In addition, both acute and chronic adenosine presented modulatory effects on oxidative stress response signaling. Acute adenosine prevented the heat-induced-increase of DAF-16 activation and SOD-3 levels, while chronic adenosine per se induced DAF-16 activation and prevented heat-induced-increase of HSP-16.2 and SKN-1 levels. Together, these results indicate that exogenous adenosine has physiological and biochemical effects on C. elegans and describes possible purinergic signaling in worms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Adenosina/farmacología , Adenosina/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Longevidad , Factores de Transcripción Forkhead/metabolismo
8.
Neurochem Res ; 48(10): 3007-3015, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37256498

RESUMEN

Alcohol (ethanol) dependence and related disorders are life-threatening conditions and source of suffering for the user, family members and society. Alcohol withdrawal syndrome (AWS) is a little-known dynamic process associated with a high frequency of relapses. A state of hyperglutamatergic neurotransmission and imbalanced GABAergic function is related to an increased susceptibility to seizures during alcohol withdrawal. Adenosine signaling display an important role in endogenous response to decrease seizure and related damages. Here, an intermittent alcohol exposure regimen (1 h daily of 0.5% ethanol solution) for 16 days or 8 days of the same ethanol exposure regimen followed by 1 or 8 days of ethanol withdrawal was used to assess adenosine signaling in the context of seizure susceptibility using adult zebrafish. In both abstainer groups, a sub-convulsant dose of pentylenetetrazol (2.5 mM) was able to increase the frequency of animals reaching a clonic seizure-like state, while continuous-treated animals had no seizure, as did control animals. The total brain mRNA expression of A1 adenosine receptor was decreased in animals with 1 day of ethanol withdrawal. The agonism of A1 adenosine receptor induced an anticonvulsant effect in animals with 1 day of ethanol withdrawal after the injection of the specific agonist (N6-cyclopentyladenosine, 10 mg.Kg- 1; i.p.). These findings reinforce A1 adenosine receptor as a key target in acute alcohol withdrawal syndrome and zebrafish as an excellent platform to study biological mechanism of AWS.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Animales , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Alcoholismo/tratamiento farmacológico , Adenosina/farmacología , Pez Cebra/metabolismo , Anticonvulsivantes/uso terapéutico , Etanol/toxicidad , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Receptores Purinérgicos P1
9.
Pharmacol Res ; 190: 106709, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842542

RESUMEN

PURPOSE OF REVIEW: The purine nucleotide adenosine triphosphate (ATP) is released into extracellular spaces as extracellular ATP (eATP) as a consequence of cell injury or death and activates the purinergic receptors. Once released, eATP may facilitate T-lymphocyte activation and differentiation. The purpose of this review is to elucidate the role of ATP-mediated signaling in the immunological events related to type 1 diabetes (T1D). RECENT FINDINGS: T lymphocytes mediate immune response during the onset of T1D and promote pancreatic islet or whole pancreas rejection in transplantation. Recent data suggest a potential role for eATP in early steps of T1D onset and of allograft rejection. In different preclinical experimental models and clinical trials, several drugs targeting purinergic signaling have been employed to abrogate lymphocyte activation and differentiation, thus representing an achievable treatment to prevent/revert T1D or to induce long-term islet allograft function. SUMMARY: In preclinical and clinical settings, eATP-signaling inhibition induces immune tolerance in autoimmune disease and in allotransplantation. In this view, the purinergic system may represent a novel therapeutic target for auto- and allo-immunity.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Trasplante Homólogo , Linfocitos T/metabolismo , Adenosina Trifosfato/metabolismo
10.
Purinergic Signal ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906424

RESUMEN

Bladder cancer (BC) is the most common cancer of the urinary tract. Bozepinib (BZP), a purine-derived molecule, is a potential compound for the treatment of cancer. Purinergic signaling consists of the activity of nucleosides and nucleotides present in the extracellular environment, modulating a variety of biological actions. In cancer, this signaling is mainly controlled by the enzymatic cascade involving the NTPDase/E-NPP family and ecto-5'-nucleotidase/CD73, which hydrolyze extracellular adenosine triphosphate (ATP) to adenosine (ADO). The aim of this work is to evaluate the activity of BZP in the purinergic system in BC cell lines and to compare its in vitro antitumor activity with cisplatin, a chemotherapeutic drug widely used in the treatment of BC. In this study, two different BC cell lines, grade 1 RT4 and the more aggressive grade 3 T24, were used along with a human fibroblast cell line MRC-5, a cell used to predict the selectivity index (SI). BZP shows strong antitumor activity, with notable IC50 values (8.7 ± 0.9 µM for RT4; 6.7 ± 0.7 µM for T24), far from the SI for cisplatin (SI for BZP: 19.7 and 25.7 for RT4 and T24, respectively; SI for cisplatin: 1.7 for T24). BZP arrests T24 cells in the G2/M phase of the cell cycle, inducing early apoptosis. Moreover, BZP increases ATP and ADP hydrolysis and gene/protein expression of the NPP1 enzyme in the T24 cell line. In conclusion, BZP shows superior activity compared to cisplatin against BC cell lines in vitro.

11.
Purinergic Signal ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768408

RESUMEN

We aimed to evaluate the effect of caffeine on viability, apoptosis, migration, redox profile and modulatory effect of the purinergic system of cutaneous melanoma cells. The melanoma cells SK-MEL-28 and non-tumoural CCD-1059sk cells were treated for 24 h with different concentrations of caffeine. Cell viability was evaluated by a biochemical assay and fluorescence microscopy, and flow cytometry assessed apoptosis induction. A wound-healing assay assessed cell migration. The redox profile was evaluated by the levels of markers of reactive oxygen species (ROS), nitric oxide (NOx), total thiols (PSH) and non-protein thiols (NPSH). RT-qPCR and flow cytometry assessed the expression of CD39 and CD73. ATPase/ADPase and AMPase enzyme activities were evaluated by hydrolysis of ATP, ADP and AMP nucleotides. A bioluminescent assay assessed extracellular ATP levels. Caffeine significantly reduced melanoma cell viability and migration and did not affect non-tumoural cells. Caffeine increased ROS levels and improved PSH levels in melanoma cells. Furthermore, caffeine reduced CD39 and CD73 expression, decreased ATP, ADP and AMP nucleotide hydrolysis and increased extracellular ATP levels. We have shown that caffeine reduces metastatic cutaneous melanoma cell viability and migration, induces ROS generation and improves PSH levels. In an unprecedented manner, we also showed that caffeine reduces the expression of CD39 and CD73 and, consequently, ATPase/ADPase/AMPase hydrolytic activity of ectonucleotidases, thus displacing the CD39/CD73 axis and increasing extracellular ATP levels. Therefore, caffeine may be an interesting compound for clinical trials with the CD39/CD73 axis as a therapeutic target.

12.
Purinergic Signal ; 18(3): 307-315, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35687211

RESUMEN

Gallic acid (GA) is a secondary metabolite found in plants. It has the ability to cross the blood-brain barrier and, through scavenging properties, has a protective effect in a brain insult model. Alcohol metabolism generates reactive oxygen species (ROS); thus, alcohol abuse has a deleterious effect on the brain. The zebrafish is a vertebrate often used for screening toxic substances and in acute ethanol exposure models. The aim of this study was to evaluate whether GA pretreatment (24 h) prevents the changes induced by acute ethanol exposure (1 h) in the purinergic signaling pathway in the zebrafish brain via degradation of extracellular nucleotides and oxidative stress. The nucleotide cascade promoted by the nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase was assessed by quantifying nucleotide metabolism. The effect of GA alone at 5 and 10 mg L-1 did not change the nucleotide levels. Pretreatment with 10 mg L-1 GA prevented an ethanol-induced increase in ATP and ADP levels. No significant difference was found between the AMP levels of the two pretreatment groups. Pretreatment with 10 mg L-1 GA prevented ethanol-enhanced lipid peroxidation and dichlorodihydrofluorescein (DCFH) levels. The higher GA concentration was also shown to positively modulate against ethanol-induced effects on superoxide dismutase (SOD), but not on catalase (CAT). This study demonstrated that GA prevents the inhibitory effect of ethanol on NTPDase activity and oxidative stress parameters, thus consequently modulating nucleotide levels that may contribute to the possible protective effects induced by alcohol and purinergic signaling.


Asunto(s)
Etanol , Pez Cebra , Animales , Encéfalo/metabolismo , Etanol/metabolismo , Etanol/toxicidad , Ácido Gálico/metabolismo , Ácido Gálico/farmacología , Nucleótidos/metabolismo , Estrés Oxidativo , Purinas/metabolismo , Pez Cebra/metabolismo
13.
Purinergic Signal ; 18(1): 93-113, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34997903

RESUMEN

Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. After infection, disease progression relies on the complex interplay between the host immune response and the microorganism evasion strategies. The host's survival depends on its ability to mount an efficient protective anti-microbial response to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effector antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.


Asunto(s)
Inmunidad Innata , Parásitos , Animales
14.
Purinergic Signal ; 18(1): 61-81, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34741236

RESUMEN

Cancer cases have increased significantly in Brazil and worldwide, with cutaneous melanoma (CM) being responsible for nearly 57,000 deaths in the world. Thus, this review article aims at exploring and proposed hypotheses with respect to the possibility that RA can be a promising and alternative compound to be used as an adjuvant in melanoma treatment, acting on purinergic signaling. The scarcity of articles evidencing the action of this compound in this signaling pathway requires further studies. Considering diverse evidence found in the literature, we hypothesize that RA can be an effective candidate for the treatment of CM acting as a modulating molecule of purinergic cellular pathway through P2X7 blocking, mitigating the Warburg effect, and as antagonic molecule of the P2Y12 receptor, reducing the formation of adhesive molecules that prevent adherence in tumor cells. In this way, our proposals for CM treatment based on targeting purinergic signaling permeate the integral practice, going from intracell to extracell. Undoubtedly, much is still to be discovered and elucidated about this promising compound, this paper being an interesting work baseline to support more research studies.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Cinamatos , Depsidos , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Ácido Rosmarínico
15.
Purinergic Signal ; 18(4): 481-494, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35939198

RESUMEN

Glioblastoma (GBM) is the most aggressive and lethal among the primary brain tumors, with a low survival rate and resistance to radio and chemotherapy. The P2Y12 is an adenosine diphosphate (ADP) purinergic chemoreceptor, found mainly in platelets. In cancer cells, its activation has been described to induce proliferation and metastasis. Bearing in mind the need to find new treatments for GBM, this study aimed to investigate the role of the P2Y12R in the proliferation and migration of GBM cells, as well as to evaluate the expression of this receptor in patients' data obtained from the TCGA data bank. Here, we used the P2Y12R antagonist, ticagrelor, which belongs to the antiplatelet agent's class. The different GBM cells (cell line and patient-derived cells) were treated with ticagrelor, with the agonist, ADP, or both, and the effects on cell proliferation, colony formation, ADP hydrolysis, cell cycle and death, migration, and cell adhesion were analyzed. The results showed that ticagrelor decreased the viability and the proliferation of GBM cells. P2Y12R antagonism also reduced colony formation and migration potentials, with alterations on the expression of metalloproteinases, and induced autophagy in GBM cells. Changes were observed at the cell cycle level, and only the U251 cell line showed a significant reduction in the ADP hydrolysis profile. TCGA data analysis showed a higher expression of P2Y12R in gliomas samples when compared to the other tumors. These data demonstrate the importance of the P2Y12 receptor in gliomas development and reinforce its potential as a pharmacological target for glioma treatment.


Asunto(s)
Glioblastoma , Humanos , Ticagrelor/metabolismo , Ticagrelor/farmacología , Adenosina Difosfato/metabolismo , Glioblastoma/tratamiento farmacológico , Plaquetas , Autofagia , Proliferación Celular , Receptores Purinérgicos P2Y12/metabolismo , Antagonistas del Receptor Purinérgico P2Y/metabolismo
16.
Neuropsychobiology ; 81(4): 265-270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35279658

RESUMEN

OBJECTIVE: To verify the purinergic hypothesis of bipolar disorder (BD), we assessed the concentration of various components of the purinergic system in manic and depressed bipolar patients. METHODS: Sixty-two patients (19 male and 43 female), aged 22-69 (49 ± 14) years, with BD were studied. Twenty-three patients (9 male and 14 female) were assessed during a manic episode and subsequent remission, and 39 patients (10 male and 29 female) were investigated in a depressive episode and the following remission. Twenty-two healthy subjects (8 male and 14 female), aged 19-70 (41 ± 14) years, served as the control group (CG). The severity of symptoms was evaluated using the Hamilton Depression Rating Scale (HDRS) and the Young Mania Rating Scale (YMRS). The concentrations of uric acid (UA) were estimated by the uricase-based method, whereas xanthine dehydrogenase (XDH), adenosine (Ado), and adenosine deaminase (ADA) by ELISA. RESULTS: The mean score in the acute episode was 32 ± 8 points in the YMRS for mania and 31 ± 8 in the HDRS for depression. UA levels were significantly higher in female bipolar patients compared to the females in the CG. The concentrations of XDH, Ado, and ADA were significantly lower in bipolar patients both during an acute episode and remission compared to CG. CONCLUSIONS: A significant dysfunction of the purinergic system in patients with BD was observed. In most instances, the disturbances were not different in the acute episode than in remission what qualifies them as trait dependent. The results may confirm the role of the purinergic system in the pathogenesis of BD.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico , Femenino , Humanos , Masculino , Manía , Ácido Úrico
17.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806300

RESUMEN

Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.


Asunto(s)
Comunicación Celular/fisiología , Neoplasias/terapia , Microambiente Tumoral/fisiología , Adenosina Trifosfato/metabolismo , Animales , Comunicación Celular/inmunología , Conexinas/fisiología , Citocinas/inmunología , Transición Epitelial-Mesenquimal/fisiología , Uniones Comunicantes/fisiología , Humanos , Inmunidad Innata , Inflamasomas/inmunología , Modelos Biológicos , Invasividad Neoplásica/patología , Invasividad Neoplásica/fisiopatología , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/fisiopatología , Neoplasias/patología , Neoplasias/fisiopatología , Escape del Tumor , Microambiente Tumoral/inmunología
18.
Cytometry A ; 97(11): 1109-1126, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32633884

RESUMEN

Tumor-associated macrophages are widely recognized for their importance in guiding pro-tumoral or antitumoral responses. Mediating inflammation or immunosuppression, these cells support many key events in cancer progression: cell growth, chemotaxis, invasiveness, angiogenesis and cell death. The communication between cells in the tumor microenvironment strongly relies on the secretion and recognition of several molecules, including damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP). Extracellular ATP (eATP) and its degradation products act as signaling molecules and have extensively described roles in immune response and inflammation, as well as in cancer biology. These multiple functions highlight the purinergic system as a promising target to investigate the interplay between macrophages and cancer cells. Here, we reviewed purinergic signaling pathways connecting cancer cells and macrophages, a yet poorly investigated field. Finally, we present a new tool for the characterization of macrophage phenotype within the tumor. Image cytometry emerges as a cutting-edge tool, capable of providing a broad set of information on cell morphology, expression of specific markers, and its cellular or subcellular localization, preserving cell-cell interactions within the tumor section and providing high statistical strength in small-sized experiments. Thus, image cytometry allows deeper investigation of tumor heterogeneity and interactions between these cells. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Microambiente Tumoral , Macrófagos Asociados a Tumores , Adenosina Trifosfato , Humanos , Macrófagos , Transducción de Señal
19.
Amino Acids ; 52(4): 629-638, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32246211

RESUMEN

Hypermethioninemia is a disorder characterized by high plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO). Studies have reported associated inflammatory complications, but the mechanisms involved in the pathophysiology of hypermethioninemia are still uncertain. The present study aims to evaluate the effect of chronic administration of Met and/or MetO on phenotypic characteristics of macrophages, in addition to oxidative stress, purinergic system, and inflammatory mediators in macrophages. In this study, Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. The results revealed that Met and/or MetO induce an M1/classical activation phenotype associated with increased levels of tumor necrosis factor alpha and nitrite, and reduced arginase activity. It was also found that Met and/or MetO alter the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, as well as the levels of thiol and reactive oxygen species in macrophages. The chronic administration of Met and/or MetO also promotes alteration in the hydrolysis of ATP and ADP, as indicated by the increased activity of ectonucleotidases. These results demonstrate that chronic administration of Met and/or MetO promotes activated pro-inflammatory profile by inducing M1/classical macrophage polarization. Thus, the changes in redox status and purinergic system upon chronic Met and/or MetO exposure may contribute towards better understanding of the alterations consistent with hypermethioninemic patients.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/inmunología , Glicina N-Metiltransferasa/deficiencia , Macrófagos/inmunología , Metionina/análogos & derivados , Animales , Catalasa/metabolismo , Polaridad Celular , Glutatión Peroxidasa/metabolismo , Glicina N-Metiltransferasa/inmunología , Macrófagos/efectos de los fármacos , Masculino , Metionina/administración & dosificación , Metionina/metabolismo , Metionina/farmacología , Ratones , Oxidación-Reducción , Estrés Oxidativo , Fenotipo , Superóxido Dismutasa/metabolismo
20.
Purinergic Signal ; 16(3): 439-450, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32892251

RESUMEN

SUMOylation is a post-translational modification (PTM) whereby members of the Small Ubiquitin-like MOdifier (SUMO) family of proteins are conjugated to lysine residues in target proteins. SUMOylation has been implicated in a wide range of physiological and pathological processes, and much attention has been given to its role in neurodegenerative conditions. Due to its reported role in neuroprotection, pharmacological modulation of SUMOylation represents an attractive potential therapeutic strategy in a number of different brain disorders. However, very few compounds that target the SUMOylation pathway have been identified. Guanosine is an endogenous nucleoside with important neuromodulatory and neuroprotective effects. Experimental evidence has shown that guanosine can modulate different intracellular pathways, including PTMs. In the present study we examined whether guanosine alters global protein SUMOylation. Primary cortical neurons and astrocytes were treated with guanosine at 1, 10, 100, 300, or 500 µM at four time points, 1, 6, 24, or 48 h. We show that guanosine increases global SUMO2/3-ylation in neurons and astrocytes at 1 h at concentrations above 10 µM. The molecular mechanisms involved in this effect were evaluated in neurons. The guanosine-induced increase in global SUMO2/3-ylation was still observed in the presence of dipyridamole, which prevents guanosine internalization, demonstrating an extracellular guanosine-induced effect. Furthermore, the A1 adenosine receptor antagonist DPCPX abolished the guanosine-induced increase in SUMO2/3-ylation. The A2A adenosine receptor antagonist ZM241385 increased SUMOylation per se, but did not alter guanosine-induced SUMOylation, suggesting that guanosine may modulate SUMO2/3-ylation through an A1-A2A receptor interaction. Taken together, this is the first report to show guanosine as a SUMO2/3-ylation enhancer in astrocytes and neurons.


Asunto(s)
Astrocitos/efectos de los fármacos , Guanosina/farmacología , Neuronas/efectos de los fármacos , Receptores Purinérgicos P1/metabolismo , Sumoilación/efectos de los fármacos , Animales , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Ratas , Ratas Wistar , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA