Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 22: 100754, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32258442

RESUMEN

The oxysterol 25-hydroxycholesterol (25-HC) has diverse physiological activities, including the ability to inhibit anchorage-independent growth of colorectal cancer cells. Here, we found that a polyamine synthesis inhibitor, DFMO, prevented 25-HC-induced apoptosis in non-anchored colorectal cancer DLD-1 cells. Additionally, we found that the spermine synthesis inhibitor APCHA also inhibited 25-HC-induced apoptosis in DLD-1 spheroids. Inhibiting the maturation of SREBP2, a critical regulator of cholesterol synthesis, reversed the effects of APCHA. SREBP2 knockdown also abolished the ability of APCHA to counteract 25-HC activity. Furthermore, APCHA induced SREBP2 maturation and upregulated its transcriptional activity, indicating that altered polyamine metabolism can increase SREBP2 activity and block 25-HC-induced apoptosis in spheroids. These results suggest that crosstalk between polyamine metabolism and cholesterol synthetic pathways via SREBP2 governs the proliferative and malignant properties of colorectal cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA