Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Immunity ; 57(3): 600-611.e6, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38447570

RESUMEN

Plasma cells that emerge after infection or vaccination exhibit heterogeneous lifespans; most survive for days to months, whereas others persist for decades, providing antigen-specific long-term protection. We developed a mathematical framework to explore the dynamics of plasma cell removal and its regulation by survival factors. Analyses of antibody persistence following hepatitis A and B and HPV vaccination revealed specific patterns of longevity and heterogeneity within and between responses, implying that this process is fine-tuned near a critical "flat" state between two dynamic regimes. This critical state reflects the tuning of rates of the underlying regulatory network and is highly sensitive to variation in parameters, which amplifies lifespan differences between cells. We propose that fine-tuning is the generic outcome of competition over shared survival signals, with a competition-based mechanism providing a unifying explanation for a wide range of experimental observations, including the dynamics of plasma cell accumulation and the effects of survival factor deletion. Our theory is testable, and we provide specific predictions.


Asunto(s)
Longevidad , Células Plasmáticas , Anticuerpos , Vacunación , Antígenos
2.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38475087

RESUMEN

In smart cities, bicycle-sharing systems have become an essential component of the transportation services available in major urban centers around the globe. Due to environmental sustainability, research on the power-assisted control of electric bikes has attracted much attention. Recently, fuzzy logic controllers (FLCs) have been successfully applied to such systems. However, most existing FLC approaches have a fixed fuzzy rule base and cannot adapt to environmental changes, such as different riders and roads. In this paper, a modified FLC, named self-tuning FLC (STFLC), is proposed for power-assisted bicycles. In addition to a typical FLC, the presented scheme adds a rule-tuning module to dynamically adjust the rule base during fuzzy inference processes. Simulation and experimental results indicate that the presented self-tuning module leads to comfortable and safe riding as compared with other approaches. The technique established in this paper is thought to have the potential for broader application in public bicycle-sharing systems utilized by a diverse range of riders.

3.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688046

RESUMEN

Flexible and stretchable radiofrequency coils for magnetic resonance imaging represent an emerging and rapidly growing field. The main advantage of such coil designs is their conformal nature, enabling a closer anatomical fit, patient comfort, and freedom of movement. Previously, we demonstrated a proof-of-concept single element stretchable coil design with a self-tuning smart geometry. In this work, we evaluate the feasibility of scaling this coil concept to a multi-element coil array and the associated engineering and manufacturing challenges. To this goal, we study a dual-channel coil array using full-wave simulations, bench testing, in vitro, and in vivo imaging in a 3 T scanner. We use three fabrication techniques to manufacture dual-channel receive coil arrays: (1) single-layer casting, (2) double-layer casting, and (3) direct-ink-writing. All fabricated arrays perform equally well on the bench and produce similar sensitivity maps. The direct-ink-writing method is found to be the most advantageous fabrication technique for fabrication speed, accuracy, repeatability, and total coil array thickness (0.6 mm). Bench tests show excellent frequency stability of 128 ± 0.6 MHz (0% to 30% stretch). Compared to a commercial knee coil array, the stretchable coil array is more conformal to anatomy and provides 50% improved signal-to-noise ratio in the region of interest.


Asunto(s)
Comercio , Ingeniería , Humanos , Articulación de la Rodilla , Metales , Movimiento
4.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616933

RESUMEN

In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms.

5.
BMC Bioinformatics ; 22(Suppl 2): 57, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902458

RESUMEN

BACKGROUND: Tremor severity assessment is an important step for the diagnosis and treatment decision-making of essential tremor (ET) patients. Traditionally, tremor severity is assessed by using questionnaires (e.g., ETRS and QUEST surveys). In this work we assume the possibility of assessing tremor severity using sensor data and computerized analyses. The goal of this work is to assess severity of tremor objectively, to be better able to asses improvement in ET patients due to deep brain stimulation or other treatments. METHODS: We collect tremor data by strapping smartphones to the wrists of ET patients. The resulting raw sensor data is then pre-processed to remove any artifact due to patient's intentional movement. Finally, this data is exploited to automatically build a transparent, interpretable, and succinct fuzzy model for the severity assessment of ET. For this purpose, we exploit pyFUME, a tool for the data-driven estimation of fuzzy models. It leverages the FST-PSO swarm intelligence meta-heuristic to identify optimal clusters in data, reducing the possibility of a premature convergence in local minima which would result in a sub-optimal model. pyFUME was also combined with GRABS, a novel methodology for the automatic simplification of fuzzy rules. RESULTS: Our model is able to assess tremor severity of patients suffering from Essential Tremor, notably without the need for subjective questionnaires nor interviews. The fuzzy model improves the mean absolute error (MAE) metric by 78-81% compared to linear models and by 71-74% compared to a model based on decision trees. CONCLUSION: This study confirms that tremor data gathered using the smartphones is useful for the constructing of machine learning models that can be used to support the diagnosis and monitoring of patients who suffer from Essential Tremor. The model produced by our methodology is easy to inspect and, notably, characterized by a lower error with respect to approaches based on linear models or decision trees.


Asunto(s)
Temblor Esencial , Temblor , Temblor Esencial/diagnóstico , Lógica Difusa , Humanos , Aprendizaje Automático , Teléfono Inteligente , Temblor/diagnóstico
6.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451051

RESUMEN

This paper presents a vibration-based electromagnetic energy harvester whose resonance frequency can be adjusted to match that of the excitation. Frequency adjustment is attained by controlling a rotatable arm, with tuning masses, at the tip of a cantilever-type energy harvester, thereby changing the effective mass moment of inertia of the system. The rotatable arm is mounted on a servomotor that is autonomously controlled through a microcontroller and a photo sensor to keep the device at resonance for maximum power generation. A mathematical model is developed to predict the system response for different design parameters and to estimate the generated power. The system is investigated analytically by a distributed-parameter model to study the natural frequency variation and dynamic response. The analytical model is verified experimentally where the frequency is tuned from 8 to 10.25 Hz. A parametric study is performed to study the effect of each parameter on the system behavior.

7.
Sensors (Basel) ; 20(12)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545569

RESUMEN

Piezoelectric actuators (PEA) have been widely used in the ultra-precision manufacturing fields. However, the hysteresis nonlinearity between the input voltage and the output displacement, which possesses the properties of rate dependency and multivalued mapping, seriously impedes the positioning accuracy of the PEA. This paper investigates a control methodology without the hysteresis model for PEA actuated nanopositioning systems, in which the inherent drawback generated by the hysteresis nonlinearity aggregates the control accuracy of the PEA. To address this problem, a neural network self-tuning control approach is proposed to realize the high accuracy tracking with respect to the system uncertainties and hysteresis nonlinearity of the PEA. First, the PEA is described as a nonlinear equation with two variables, which are unknown. Then, using the capabilities of super approximation and adaptive parameter adjustment, the neural network identifiers are used to approximate the two unknown variables automatically updated without any off-line identification, respectively. To verify the validity and effectiveness of the proposed control methodology, a series of experiments is executed on a commercial PEA product. The experimental results illustrate that the established neural network self-tuning control method is efficient in damping the hysteresis nonlinearity and enhancing the trajectory tracking property.

8.
Sensors (Basel) ; 20(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050730

RESUMEN

Sensor differential signals are widely used in many systems. The tracking differentiator (TD) is an effective method to obtain signal differentials. Differential calculation is noise-sensitive. There is the characteristics of low-pass filter (LPF) in the TD to suppress the noise, but phase lag is introduced. For LPF, fixed filtering parameters cannot achieve both noise suppression and phase compensation lag compensation. We propose a fuzzy self-tuning tracking differentiator (FSTD) capable of adaptively adjusting parameters, which uses the frequency information of the signal to achieve a trade-off between the phase lag and noise suppression capabilities. Based on the frequency information, the parameters of TD are self-tuning by a fuzzy method, which makes self-tuning designs more flexible. Simulations and experiments using motion measurement sensors show that the proposed method has good filtering performance for low-frequency signals and improves tracking ability for high-frequency signals compared to fixed-parameter differentiator.

9.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138049

RESUMEN

Servo systems are feedback control systems characterized by position, speed, and/or acceleration outputs. Nowadays, industrial advances make the electronic stages in these systems obsolete compared to the mechanical elements, which generates a recurring problem in technological, commercial and industrial applications. This article presents a methodology for the development of an open-architecture controller that is based on reconfigurable hardware under the open source concept for servo applications. The most outstanding contribution of this paper is the implementation of a Genetic Algorithm for online self tuning with a focus on both high-quality servo control and reduction of vibrations during the positioning of a linear motion system. The proposed techniques have been validated on a real platform and form a novel, effective approach as compared to the conventional tuning methods that employ empirical or analytical solutions and cannot improve their parameter set. The controller was elaborated from the Graphical User Interface to the logical implementation while using free tools. This approach also allows for modification and updates to be made easily, thereby reducing the susceptibility to obsolescence. A comparison of the logical implementation with the manufacturer software was also conducted in order to test the performance of free tools in FPGAs. The Graphical User Interface developed in Python presents features, such as speed profiling, controller auto-tuning, measurement of main parameters, and monitoring of servo system vibrations.

10.
Entropy (Basel) ; 22(3)2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-33286059

RESUMEN

Surfing in rough waters is not always as fun as wave riding the "big one". Similarly, in optimization problems, fitness landscapes with a huge number of local optima make the search for the global optimum a hard and generally annoying game. Computational Intelligence optimization metaheuristics use a set of individuals that "surf" across the fitness landscape, sharing and exploiting pieces of information about local fitness values in a joint effort to find out the global optimum. In this context, we designed surF, a novel surrogate modeling technique that leverages the discrete Fourier transform to generate a smoother, and possibly easier to explore, fitness landscape. The rationale behind this idea is that filtering out the high frequencies of the fitness function and keeping only its partial information (i.e., the low frequencies) can actually be beneficial in the optimization process. We prove our theory by combining surF with a settings free variant of Particle Swarm Optimization (PSO) based on Fuzzy Logic, called Fuzzy Self-Tuning PSO. Specifically, we introduce a new algorithm, named F3ST-PSO, which performs a preliminary exploration on the surrogate model followed by a second optimization using the actual fitness function. We show that F3ST-PSO can lead to improved performances, notably using the same budget of fitness evaluations.

11.
Sensors (Basel) ; 20(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877763

RESUMEN

Most work from the last decade on the piezoelectric vibration energy harvester (PVEHs) focuses on how to increase its frequency bandwidth but ignores the effect of vibration direction on the output performance of the harvester. However, both the frequency and the direction of the vibration in a real environment are time-variant. Therefore, improving the capability of PVEH to harvest multi-directional vibration energy is also important. This work presents a direction self-tuning two-dimensional (2D) PVEH, which consists of a spring-mass system and a direction self-tuning structure. The spring-mass system is sensitive to external vibration, and the direction self-tuning structure can automatically adjust its plane perpendicular to the direction of the external excitation driven by an external torque. The direction self-tuning mechanism is first theoretically analyzed. The experimental results show that this direction self-tuning PVEH can efficiently scavenge vibration energy in the 2D plane, and its output performance is unaffected by vibration direction and is very stable. Meanwhile, the effect of the initial deflection angle and the vibration acceleration on the direction self-tuning time of the PVEH is investigated. The direction self-tuning mechanism can also be used in other PVEHs with different energy conversion methods for harvesting multi-direction vibration energy.

12.
Sensors (Basel) ; 19(20)2019 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-31614955

RESUMEN

In this study, we researched the problem of self-tuning (ST) distributed fusion state estimation for multi-sensor networked stochastic linear discrete-time systems with unknown packet receiving rates, noise variances (NVs), and model parameters (MPs). Packet dropouts may occur when sensor data are sent to a local processor. A Bernoulli distributed stochastic variable is adopted to depict phenomena of packet dropouts. By model transformation, the identification problem of packet receiving rates is transformed into that of unknown MPs for a new augmented system. The recursive extended least squares (RELS) algorithm is used to simultaneously identify packet receiving rates and MPs in the original system. Then, a correlation function method is used to identify unknown NVs. Further, a ST distributed fusion state filter is achieved by applying identified packet receiving rates, NVs, and MPs to the corresponding optimal estimation algorithms. It is strictly proven that ST algorithms converge to optimal algorithms under the condition that the identifiers for parameters are consistent. Two examples verify the effectiveness of the proposed algorithms.

13.
Sensors (Basel) ; 18(2)2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29415474

RESUMEN

This paper presents a novel methodology for detecting the gait phase of human walking on level ground. The previous threshold method (TM) sets a threshold to divide the ground contact forces (GCFs) into on-ground and off-ground states. However, the previous methods for gait phase detection demonstrate no adaptability to different people and different walking speeds. Therefore, this paper presents a self-tuning triple threshold algorithm (STTTA) that calculates adjustable thresholds to adapt to human walking. Two force sensitive resistors (FSRs) were placed on the ball and heel to measure GCFs. Three thresholds (i.e., high-threshold, middle-threshold andlow-threshold) were used to search out the maximum and minimum GCFs for the self-adjustments of thresholds. The high-threshold was the main threshold used to divide the GCFs into on-ground and off-ground statuses. Then, the gait phases were obtained through the gait phase detection algorithm (GPDA), which provides the rules that determine calculations for STTTA. Finally, the STTTA reliability is determined by comparing the results between STTTA and Mariani method referenced as the timing analysis module (TAM) and Lopez-Meyer methods. Experimental results show that the proposed method can be used to detect gait phases in real time and obtain high reliability when compared with the previous methods in the literature. In addition, the proposed method exhibits strong adaptability to different wearers walking at different walking speeds.


Asunto(s)
Marcha , Algoritmos , Fenómenos Biomecánicos , Humanos , Reproducibilidad de los Resultados
14.
Sensors (Basel) ; 16(10)2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27754436

RESUMEN

High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

15.
Sensors (Basel) ; 16(9)2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27589748

RESUMEN

Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

16.
Sensors (Basel) ; 15(5): 11685-700, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-26007725

RESUMEN

Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.

17.
Z Med Phys ; 33(2): 203-219, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35216887

RESUMEN

PURPOSE: Image quality in accelerated MRI rests on careful selection of various reconstruction parameters. A common yet tedious and error-prone practice is to hand-tune each parameter to attain visually appealing reconstructions. Here, we propose a parameter tuning strategy to automate hybrid parallel imaging (PI) - compressed sensing (CS) reconstructions via low-rank modeling of local k-space neighborhoods (LORAKS) supplemented with sparsity regularization in wavelet and total variation (TV) domains. METHODS: For low-rank regularization, we leverage a soft-thresholding operation based on singular values for matrix rank selection in LORAKS. For sparsity regularization, we employ Stein's unbiased risk estimate criterion to select the wavelet regularization parameter and local standard deviation of reconstructions to select the TV regularization parameter. Comprehensive demonstrations are presented on a numerical brain phantom and in vivo brain and knee acquisitions. Quantitative assessments are performed via PSNR, SSIM and NMSE metrics. RESULTS: The proposed hybrid PI-CS method improves reconstruction quality compared to PI-only techniques, and it achieves on par image quality to reconstructions with brute-force optimization of reconstruction parameters. These results are prominent across several different datasets and the range of examined acceleration rates. CONCLUSION: A data-driven parameter tuning strategy to automate hybrid PI-CS reconstructions is presented. The proposed method achieves reliable reconstructions of accelerated multi-coil MRI datasets without the need for exhaustive hand-tuning of reconstruction parameters.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Imagen Multimodal , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
18.
Environ Sci Pollut Res Int ; 30(28): 71677-71688, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34241794

RESUMEN

Due to the increased complexity and nonlinear nature of microgrid systems such as photovoltaic, wind-turbine fuel cell, and energy storage systems (PV/WT/FC/ESSs), load-frequency control has been a challenge. This paper employs a self-tuning controller based on the fuzzy logic to overcome parameter uncertainties of classic controllers, such as operation conditions, the change in the operating point of the microgrid, and the uncertainty of microgrid modeling. Furthermore, a combined fuzzy logic and fractional-order controller is used for load-frequency control of the off-grid microgrid with the influence of renewable resources because the latter controller benefits robust performance and enjoys a flexible structure. To reach a better operation for the proposed controller, a novel meta-heuristic whale algorithm has been used to optimally determine the input and output scale coefficients of the fuzzy controller and fractional orders of the fractional-order controller. The suggested approach is applied to a microgrid with a diesel generator, wind turbine, photovoltaic systems, and energy storage devices. The comparison made between the results of the proposed controller and those of the classic PID controller proves the superiority of the optimized fractional-order self-tuning fuzzy controller in terms of operation characteristics, response speed, and the reduction in frequency deviations against load variations.


Asunto(s)
Algoritmos , Lógica Difusa , Simulación por Computador
19.
Cell Syst ; 14(1): 24-40.e11, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36657390

RESUMEN

Biological systems can maintain memories over long timescales, with examples including memories in the brain and immune system. It is unknown how functional properties of memory systems, such as memory persistence, can be established by biological circuits. To address this question, we focus on transgenerational epigenetic inheritance in Caenorhabditis elegans. In response to a trigger, worms silence a target gene for multiple generations, resisting strong dilution due to growth and reproduction. Silencing may also be maintained indefinitely upon selection according to silencing levels. We show that these properties imply the fine-tuning of biochemical rates in which the silencing system is positioned near the transition to bistability. We demonstrate that this behavior is consistent with a generic mechanism based on competition for synthesis resources, which leads to self-organization around a critical state with broad silencing timescales. The theory makes distinct predictions and offers insights into the design principles of long-term memory systems.


Asunto(s)
Proteínas de Caenorhabditis elegans , Epigénesis Genética , Animales , Epigénesis Genética/genética , Silenciador del Gen , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Patrón de Herencia
20.
Micromachines (Basel) ; 13(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35630163

RESUMEN

Linear actuators are widely used in all kinds of industrial applications due to being devices that convert the rotation motion of motors into linear or straight traction/thrust motion. These actuators are ideal for all types of applications where inclination, lifting, traction, or thrust is required under heavy loads, such as wheelchairs, medical beds, and lifting tables. Due to the remarkable ability to exert forces and good precision, they are used classic control systems and controls of high-order. Still, they present difficulties in changing their dynamics and are designed for a range of disturbances. Therefore, in this paper, we present the study of an electric linear actuator. We analyze the positioning in real-time and attack the sudden changes of loads and limitation range by the control. It uses a general-purpose control with self-tuning gains, which can deal with the essential uncertainties of the actuator and suppress disturbances, as they can change their weights to interact with changing systems. The neural network combined with PID control compensates the simplicity of this type of control with artificial intelligence, making it robust to drastic changes in its parameters. Unlike other similar works, this research proposes an online training network with an advantage over typical neural self-adjustment systems. All of this can also be dispensed with the engine model for its operation. The results obtained show a decrease of 42% in the root mean square error (RMSE) during trajectory tracking and saving in energy consumption by 25%. The results were obtained both in simulation and in real tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA