Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 84: 291-323, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25784052

RESUMEN

Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , Precursores del ARN/genética , Animales , Enfermedad/genética , Humanos , Mutación , Empalme del ARN , ARN Catalítico/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/química , Empalmosomas/efectos de los fármacos
2.
Mol Cell ; 77(2): 324-337.e8, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31704182

RESUMEN

A major challenge in biology is to understand how complex gene expression patterns are encoded in the genome. While transcriptional enhancers have been studied extensively, few transcriptional silencers have been identified, and they remain poorly understood. Here, we used a novel strategy to screen hundreds of sequences for tissue-specific silencer activity in whole Drosophila embryos. Almost all of the transcriptional silencers that we identified were also active enhancers in other cellular contexts. These elements are bound by more transcription factors than non-silencers. A subset of these silencers forms long-range contacts with promoters. Deletion of a silencer caused derepression of its target gene. Our results challenge the common practice of treating enhancers and silencers as separate classes of regulatory elements and suggest the possibility that thousands or more bifunctional CRMs remain to be discovered in Drosophila and 104-105 in humans.


Asunto(s)
Drosophila/genética , Elementos de Facilitación Genéticos/genética , Elementos Silenciadores Transcripcionales/genética , Transcripción Genética/genética , Animales , Animales Modificados Genéticamente/genética , Masculino
3.
J Pathol ; 262(4): 395-409, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38332730

RESUMEN

Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Empalme del ARN/genética , Exones/genética , Reino Unido , Quinasa de Punto de Control 2/genética
4.
Cell Mol Life Sci ; 81(1): 274, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902506

RESUMEN

Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.


Asunto(s)
Mutación , Neoplasias , Humanos , Neoplasias/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Genoma Humano , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica
5.
Plant J ; 115(6): 1486-1499, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37309871

RESUMEN

Cis-regulatory elements (CREs) are important sequences for gene expression and for plant biological processes such as development, evolution, domestication, and stress response. However, studying CREs in plant genomes has been challenging. The totipotent nature of plant cells, coupled with the inability to maintain plant cell types in culture and the inherent technical challenges posed by the cell wall has limited our understanding of how plant cell types acquire and maintain their identities and respond to the environment via CRE usage. Advances in single-cell epigenomics have revolutionized the field of identifying cell-type-specific CREs. These new technologies have the potential to significantly advance our understanding of plant CRE biology, and shed light on how the regulatory genome gives rise to diverse plant phenomena. However, there are significant biological and computational challenges associated with analyzing single-cell epigenomic datasets. In this review, we discuss the historical and foundational underpinnings of plant single-cell research, challenges, and common pitfalls in the analysis of plant single-cell epigenomic data, and highlight biological challenges unique to plants. Additionally, we discuss how the application of single-cell epigenomic data in various contexts stands to transform our understanding of the importance of CREs in plant genomes.


Asunto(s)
Genoma de Planta , Secuencias Reguladoras de Ácidos Nucleicos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Genoma de Planta/genética , Epigenómica , Plantas/genética
6.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884718

RESUMEN

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Asunto(s)
Redes Reguladoras de Genes , Cardiopatías Congénitas , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Corazón/fisiología , Miocardio/metabolismo
7.
BMC Genomics ; 24(1): 253, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170195

RESUMEN

Cis-regulatory elements (CRE) are critical for coordinating gene expression programs that dictate cell-specific differentiation and homeostasis. Recently developed self-transcribing active regulatory region sequencing (STARR-Seq) has allowed for genome-wide annotation of functional CREs. Despite this, STARR-Seq assays are only employed in cell lines, in part, due to difficulties in delivering reporter constructs. Herein, we implemented and validated a STARR-Seq-based screen in human CD4+ T cells using a non-integrating lentiviral transduction system. Lenti-STARR-Seq is the first example of a genome-wide assay of CRE function in human primary cells, identifying thousands of functional enhancers and negative regulatory elements (NREs) in human CD4+ T cells. We find an unexpected difference in nucleosome organization between enhancers and NRE: enhancers are located between nucleosomes, whereas NRE are occupied by nucleosomes in their endogenous locations. We also describe chromatin modification, eRNA production, and transcription factor binding at both enhancers and NREs. Our findings support the idea of silencer repurposing as enhancers in alternate cell types. Collectively, these data suggest that Lenti-STARR-Seq is a successful approach for CRE screening in primary human cell types, and provides an atlas of functional CREs in human CD4+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos , Elementos de Facilitación Genéticos , Nucleosomas , Humanos , Diferenciación Celular , Línea Celular
8.
Genes Dev ; 29(21): 2298-311, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26545814

RESUMEN

Splicing of the Drosophila P-element third intron (IVS3) is repressed in somatic tissues due to the function of an exonic splicing silencer (ESS) complex present on the 5' exon RNA. To comprehensively characterize the mechanisms of this alternative splicing regulation, we used biochemical fractionation and affinity purification to isolate the silencer complex assembled in vitro and identify the constituent proteins by mass spectrometry. Functional assays using splicing reporter minigenes identified the proteins hrp36 and hrp38 and the cytoplasmic poly(A)-binding protein PABPC1 as novel functional components of the splicing silencer. hrp48, PSI, and PABPC1 have high-affinity RNA-binding sites on the P-element IVS3 5' exon, whereas hrp36 and hrp38 proteins bind with low affinity to the P-element silencer RNA. RNA pull-down and immobilized protein assays showed that hrp48 protein binding to the silencer RNA can recruit hrp36 and hrp38. These studies identified additional components that function at the P-element ESS and indicated that proteins with low-affinity RNA-binding sites can be recruited in a functional manner through interactions with a protein bound to RNA at a high-affinity binding site. These studies have implications for the role of heterogeneous nuclear ribonucleoproteins (hnRNPs) in the control of alternative splicing at cis-acting regulatory sites.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Empalme del ARN/fisiología , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/aislamiento & purificación , Exones/genética , Regulación de la Expresión Génica , Genes Reporteros/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Espectrometría de Masas , Proteínas Nucleares , Unión Proteica , Interferencia de ARN , Precursores del ARN/metabolismo , Empalme del ARN/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/metabolismo , Elementos Silenciadores Transcripcionales/genética
9.
Ann Pharmacother ; 55(12): 1502-1514, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33685242

RESUMEN

OBJECTIVE: To describe the clinical presentation of transthyretin amyloid cardiomyopathy (ATTR-CM) and discuss current treatments and investigational products and their effect on patient outcomes. DATA SOURCES: A literature search was performed in PubMed (September 2018 to December 2020) using the following keywords: transthyretin amyloidosis, cardiomyopathy, polyneuropathy and transthyretin amyloid cardiomyopathy, monoclonal light-chain, tafamidis, cardiac amyloidosis, ATTR cardiomyopathy, green tea and inhibition of cardiac amyloidosis, AG10, tolcapone, tolcapone and leptomeningeal ATTR, PRX004, NI006, patisiran, inotersen, vutrisiran, AKCEA-TTR-LRx, and NTLA-2001. STUDY SELECTION AND DATA EXTRACTION: Clinical trials were evaluated for evidence supporting pharmacology, safety, efficacy, and measured outcomes. DATA SYNTHESIS: Until 2019, there were no approved treatments for ATTR-CM. Treatment consisted of symptom management and organ transplant. Nonpharmacological and pharmacological treatments focused on the symptoms of heart failure (HF) associated with ATTR-CM. However, there are several emerging therapies recently approved or in development to address the underlying pathophysiology. Treatment classes for ATTR-CM include transthyretin stabilizers, human monoclonal antibodies, gene silencers, and CRISPR/Cas9 gene editing. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: ATTR-CM is a complex disease in which amyloidosis causes cardiomyopathy. Underdiagnosis is attributed to the clinical presentation being heterogeneous, indistinguishable from HF caused by other etiologies, and the need for invasive testing modalities, including endomyocardial biopsy. Improved diagnostic approaches along with targeted therapies can slow disease progression and enhance patient quality of life. CONCLUSION: Diagnostic modalities along with biomarker and genetic testing could detect disease earlier and target therapy more accurately. Novel therapies demonstrate potential treatment benefits and can help shape the standard of care for these patients.


Asunto(s)
Neuropatías Amiloides Familiares , Cardiomiopatías , Insuficiencia Cardíaca , Neuropatías Amiloides Familiares/diagnóstico , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/terapia , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Cardiomiopatías/terapia , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Prealbúmina/genética , Calidad de Vida
10.
Trends Biochem Sci ; 40(11): 624-627, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26433473

RESUMEN

Optogenetics is revolutionizing cell biology and neuroscience research by allowing precise biochemical control of neuronal activity through light-activated channels. Light-induced ion transporters have been used extensively for cellular activation, and now light-gated inhibitory channels have been discovered. These represent a key new tool to elucidate the molecular mechanisms underlying neurological and neuropsychiatric disorders.


Asunto(s)
Encéfalo/fisiología , Luz , Neuronas/fisiología , Optogenética , Animales
11.
BMC Bioinformatics ; 20(1): 488, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31590652

RESUMEN

BACKGROUND: The data deluge can leverage sophisticated ML techniques for functionally annotating the regulatory non-coding genome. The challenge lies in selecting the appropriate classifier for the specific functional annotation problem, within the bounds of the hardware constraints and the model's complexity. In our system AIKYATAN, we annotate distal epigenomic regulatory sites, e.g., enhancers. Specifically, we develop a binary classifier that classifies genome sequences as distal regulatory regions or not, given their histone modifications' combinatorial signatures. This problem is challenging because the regulatory regions are distal to the genes, with diverse signatures across classes (e.g., enhancers and insulators) and even within each class (e.g., different enhancer sub-classes). RESULTS: We develop a suite of ML models, under the banner AIKYATAN, including SVM models, random forest variants, and deep learning architectures, for distal regulatory element (DRE) detection. We demonstrate, with strong empirical evidence, deep learning approaches have a computational advantage. Plus, convolutional neural networks (CNN) provide the best-in-class accuracy, superior to the vanilla variant. With the human embryonic cell line H1, CNN achieves an accuracy of 97.9% and an order of magnitude lower runtime than the kernel SVM. Running on a GPU, the training time is sped up 21x and 30x (over CPU) for DNN and CNN, respectively. Finally, our CNN model enjoys superior prediction performance vis-'a-vis the competition. Specifically, AIKYATAN-CNN achieved 40% higher validation rate versus CSIANN and the same accuracy as RFECS. CONCLUSIONS: Our exhaustive experiments using an array of ML tools validate the need for a model that is not only expressive but can scale with increasing data volumes and diversity. In addition, a subset of these datasets have image-like properties and benefit from spatial pooling of features. Our AIKYATAN suite leverages diverse epigenomic datasets that can then be modeled using CNNs with optimized activation and pooling functions. The goal is to capture the salient features of the integrated epigenomic datasets for deciphering the distal (non-coding) regulatory elements, which have been found to be associated with functional variants. Our source code will be made publicly available at: https://bitbucket.org/cellsandmachines/aikyatan.


Asunto(s)
Mapeo Cromosómico/métodos , Aprendizaje Profundo , Epigenómica/métodos , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos , Línea Celular , Humanos
12.
Hum Mutat ; 40(12): 2365-2376, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31397521

RESUMEN

Pathogenic variants in the ATP-binding cassette transporter A4 (ABCA4) gene cause a continuum of retinal disease phenotypes, including Stargardt disease. Noncanonical splice site (NCSS) and deep-intronic variants constitute a large fraction of disease-causing alleles, defining the functional consequences of which remains a challenge. We aimed to determine the effect on splicing of nine previously reported or unpublished NCSS variants, one near exon splice variant and nine deep-intronic variants in ABCA4, using in vitro splice assays in human embryonic kidney 293T cells. Reverse transcription-polymerase chain reaction and Sanger sequence analysis revealed splicing defects for 12 out of 19 variants. Four deep-intronic variants create pseudoexons or elongate the upstream exon. Furthermore, eight NCSS variants cause a partial deletion or skipping of one or more exons in messenger RNAs. Among the 12 variants, nine lead to premature stop codons and predicted truncated ABCA4 proteins. At least two deep-intronic variants affect splice enhancer and silencer motifs and, therefore, these conserved sequences should be carefully evaluated when predicting the outcome of NCSS and deep-intronic variants.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mutación , Sitios de Empalme de ARN , Enfermedades de la Retina/genética , Empalme Alternativo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Intrones , Fenotipo , Análisis de Secuencia de ADN
13.
BMC Biotechnol ; 19(1): 18, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894153

RESUMEN

BACKGROUND: The CRISPR/Cas (clustered regularly interspaced short palindromic repeat and CRISPR-associated nucleases) based technologies have revolutionized genome engineering. While their use for prokaryotic genome editing is expanding, some limitations remain such as possible off-target effects and design constraints. These are compounded when performing systematic genome editing at distinct loci or when targeting repeated sequences (e.g. multicopy genes or mobile genetic elements). To overcome these limitations, we designed an approach using the same sgRNA and CRISPR-Cas9 system to independently perform gene editing at different loci. RESULTS: We developed a two-step procedure based on the introduction by homologous recombination of 'bait' DNA at the vicinity of a gene copy of interest before inducing CRISPR-Cas9 activity. The introduction of a genetic tool encoding a CRISPR-Cas9 complex targeting this 'bait' DNA induces a double strand break near the copy of interest. Its repair by homologous recombination can lead either to reversion or gene copy-specific editing. The relative frequencies of these events are linked to the impact of gene editing on cell fitness. In our study, we used this technology to successfully delete the native copies of two xenogeneic silencers lsr2 paralogs in Streptomyces ambofaciens. We observed that one of these paralogs is a candidate-essential gene since its native locus can be deleted only in the presence of an extra copy. CONCLUSION: By targeting 'bait' DNA, we designed a 'generic' CRISPR-Cas9 toolkit that can be used to edit different loci. The differential action of this CRISPR-Cas9 system is exclusively based on the specific recombination between regions surrounding the gene copy of interest. This approach is suitable to edit multicopy genes. One such particular example corresponds to the mutagenesis of candidate-essential genes that requires the presence of an extra copy of the gene before gene disruption. This opens new insights to explore gene essentiality in bacteria and to limit off-target effects during systematic CRISPR-Cas9 based approaches.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Proteínas Bacterianas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Recombinación Homóloga , Streptomyces/genética
14.
Dev Biol ; 413(1): 128-44, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26945717

RESUMEN

C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Animales , Linaje de la Célula , Elementos de Facilitación Genéticos , Factores de Transcripción GATA/metabolismo , Genes Reporteros , Células Madre Hematopoyéticas/citología , Macrófagos/metabolismo , Ratones , Análisis de Secuencia de ADN , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
15.
Int J Audiol ; 55 Suppl 1: S59-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26821935

RESUMEN

OBJECTIVE: Firearm discharges produce hazardous levels of impulse noise that can lead to permanent hearing loss. In the present study, we evaluated the effects of suppression, ammunition, and barrel length on AR-15 rifles. DESIGN: Sound levels were measured left/right of a user's head, and 1-m left of the muzzle, per MIL-STD-1474-D, under both unsuppressed and suppressed conditions. STUDY SAMPLE: Nine commercially available AR-15 rifles and 14 suppressors were used. RESULTS: Suppressors significantly decreased peak dB SPL at the 1-m location and the left ear location. However, under most rifle/ammunition conditions, levels remained above 140 dB peak SPL near a user's right ear. In a subset of conditions, subsonic ammunition produced values near or below 140 dB peak SPL. Overall suppression ranged from 7-32 dB across conditions. CONCLUSIONS: These data indicate that (1) suppressors reduce discharge levels to 140 dB peak SPL or below in only a subset of AR-15 conditions, (2) shorter barrel length and use of muzzle brake devices can substantially increase exposure level for the user, and (3) there are significant left/right ear sound pressure differences under suppressed conditions as a function of the AR-15 direct impingement design that must be considered during sound measurements to fully evaluate overall efficacy.


Asunto(s)
Armas de Fuego , Pérdida Auditiva Provocada por Ruido/etiología , Ruido/efectos adversos , Sonido , Diseño de Equipo , Pérdida Auditiva Provocada por Ruido/prevención & control , Humanos , Personal Militar , Ruido/prevención & control , Enfermedades Profesionales/etiología , Enfermedades Profesionales/prevención & control , Exposición Profesional/efectos adversos , Exposición Profesional/prevención & control , Policia , Recreación , Espectrografía del Sonido
16.
RNA Biol ; 12(1): 54-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826413

RESUMEN

Splice-site selection is controlled by secondary structure through sequestration or approximation of splicing signals in primary transcripts but the exact role of even the simplest and most prevalent structural motifs in exon recognition remains poorly understood. Here we took advantage of a single-hairpin exon that was activated in a mammalian-wide interspersed repeat (MIR) by a mutation stabilizing a terminal triloop, with splice sites positioned close to each other in a lower stem of the hairpin. We first show that the MIR exon inclusion in mRNA correlated inversely with hairpin stabilities. Employing a systematic manipulation of unpaired regions without altering splice-site configuration, we demonstrate a high correlation between exon inclusion of terminal tri- and tetraloop mutants and matching tri-/tetramers in splicing silencers/enhancers. Loop-specific exon inclusion levels and enhancer/silencer associations were preserved across primate cell lines, in 4 hybrid transcripts and also in the context of a distinct stem, but only if its loop-closing base pairs were shared with the MIR hairpin. Unlike terminal loops, splicing activities of internal loop mutants were predicted by their intramolecular Watson-Crick interactions with the antiparallel strand of the MIR hairpin rather than by frequencies of corresponding trinucleotides in splicing silencers/enhancers. We also show that splicing outcome of oligonucleotides targeting the MIR exon depend on the identity of the triloop adjacent to their antisense target. Finally, we identify proteins regulating MIR exon recognition and reveal a distinct requirement of adjacent exons for C-terminal extensions of Tra2α and Tra2ß RNA recognition motifs.


Asunto(s)
Exones , Secuencias Invertidas Repetidas , Mamíferos/genética , Conformación de Ácido Nucleico , ARN Mensajero/metabolismo , Animales , Línea Celular Tumoral , Humanos , Empalme del ARN
17.
Methods ; 65(3): 350-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23974071

RESUMEN

The majority of human genes undergo alternative splicing to generate multiple isoforms with distinct functions. This process is generally controlled by cis-acting splicing regulatory elements (SREs) that recruit trans-acting factors to promote or inhibit the use of nearby splice sites. The growing interest in understanding the regulatory rules of splicing necessitates the systematic identification of these SREs and their cognate protein factors using experimental and computational approaches. Here we describe a strategy to identify and analyze both cis-acting SREs and trans-acting splicing factors. This strategy involves a cell-based screen to identify SREs from a random sequences library and a modified RNA affinity purification approach to unbiasedly identify the splicing factors. These methods can be adopted to identify splicing enhancers or silencers in both exons and introns, and can be extended to different cultured cells. The resulting SREs and splicing factors can be further analyzed with a series of computational and experimental approaches. This approach will help us to collect a molecular part-list for splicing regulation, providing a rich data source that enables a better understanding of the "splicing code".


Asunto(s)
Empalme Alternativo , Elementos de Facilitación Genéticos , Proteínas de Unión al ARN/química , ARN/química , Elementos Silenciadores Transcripcionales , Cromatografía de Afinidad , Exones , Genes Reporteros , Células HeLa , Humanos , Intrones , ARN/genética , Proteínas de Unión al ARN/genética
18.
Heart Int ; 18(1): 30-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006464

RESUMEN

Transthyretin cardiac amyloidosis (ATTR-CA) represents an inexorably progressive and fatal cardiomyopathy. Increased understanding of the underlying pathogenesis responsible for the misfolding of transthyretin and the subsequent accumulation of amyloid fibrils within the myocardium has led to the development of several disease-modifying therapies that act on different stages of the disease pathway. Tafamidis is the first, and to date remains the only, therapy approved for the treatment of ATTR-CA, which, alongside acoramidis, stabilizes the transthyretin tetramer, preventing disaggregation, misfolding and formation of amyloid fibrils. Gene-silencing agents, such as patisiran, vutrisian and eplontersen, and novel gene-editing therapies, such as NTLA-2001, act to reduce the hepatic synthesis of transthyretin. Anti-amyloid therapies represent another strategy in the treatment of ATTR-CA and are designed to bind amyloid fibril epitopes and stimulate macrophage-mediated removal of amyloid fibrils from the myocardium. Many of these treatments are at an early investigational stage but represent an important area of unmet clinical need and could potentially reverse disease and restore cardiac functions even in patients with advanced disease.

19.
Genome Biol ; 25(1): 184, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978133

RESUMEN

BACKGROUND: Although disease-causal genetic variants have been found within silencer sequences, we still lack a comprehensive analysis of the association of silencers with diseases. Here, we profiled GWAS variants in 2.8 million candidate silencers across 97 human samples derived from a diverse panel of tissues and developmental time points, using deep learning models. RESULTS: We show that candidate silencers exhibit strong enrichment in disease-associated variants, and several diseases display a much stronger association with silencer variants than enhancer variants. Close to 52% of candidate silencers cluster, forming silencer-rich loci, and, in the loci of Parkinson's-disease-hallmark genes TRIM31 and MAL, the associated SNPs densely populate clustered candidate silencers rather than enhancers displaying an overall twofold enrichment in silencers versus enhancers. The disruption of apoptosis in neuronal cells is associated with both schizophrenia and bipolar disorder and can largely be attributed to variants within candidate silencers. Our model permits a mechanistic explanation of causative SNP effects by identifying altered binding of tissue-specific repressors and activators, validated with a 70% of directional concordance using SNP-SELEX. Narrowing the focus of the analysis to individual silencer variants, experimental data confirms the role of the rs62055708 SNP in Parkinson's disease, rs2535629 in schizophrenia, and rs6207121 in type 1 diabetes. CONCLUSIONS: In summary, our results indicate that advances in deep learning models for the discovery of disease-causal variants within candidate silencers effectively "double" the number of functionally characterized GWAS variants. This provides a basis for explaining mechanisms of action and designing novel diagnostics and therapeutics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad , Aprendizaje Profundo , Esquizofrenia/genética , Elementos Silenciadores Transcripcionales/genética
20.
Genome Biol ; 24(1): 264, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38012713

RESUMEN

BACKGROUND: Common diseases manifest differentially between patients, but the genetic origin of this variation remains unclear. To explore possible involvement of gene transcriptional-variation, we produce a DNA methylation-oriented, driver-gene-wide dataset of regulatory elements in human glioblastomas and study their effect on inter-patient gene expression variation. RESULTS: In 175 of 177 analyzed gene regulatory domains, transcriptional enhancers and silencers are intermixed. Under experimental conditions, DNA methylation induces enhancers to alter their enhancing effects or convert into silencers, while silencers are affected inversely. High-resolution mapping of the association between DNA methylation and gene expression in intact genomes reveals methylation-related regulatory units (average size = 915.1 base-pairs). Upon increased methylation of these units, their target-genes either increased or decreased in expression. Gene-enhancing and silencing units constitute cis-regulatory networks of genes. Mathematical modeling of the networks highlights indicative methylation sites, which signified the effect of key regulatory units, and add up to make the overall transcriptional effect of the network. Methylation variation in these sites effectively describe inter-patient expression variation and, compared with DNA sequence-alterations, appears as a major contributor of gene-expression variation among glioblastoma patients. CONCLUSIONS: We describe complex cis-regulatory networks, which determine gene expression by summing the effects of positive and negative transcriptional inputs. In these networks, DNA methylation induces both enhancing and silencing effects, depending on the context. The revealed mechanism sheds light on the regulatory role of DNA methylation, explains inter-individual gene-expression variation, and opens the way for monitoring the driving forces behind deferential courses of cancer and other diseases.


Asunto(s)
Metilación de ADN , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Regulación de la Expresión Génica , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA