Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.822
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37804830

RESUMEN

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Asunto(s)
Arginina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Arginina/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Metabolismo de los Lípidos , Neoplasias Hepáticas/metabolismo
2.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169217

RESUMEN

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Asunto(s)
Arabidopsis/metabolismo , Transporte de Proteínas/fisiología , Sistema de Translocación de Arginina Gemela/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Orgánulos/metabolismo , Transición de Fase , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Sistema de Translocación de Arginina Gemela/fisiología
3.
Cell ; 173(3): 706-719.e13, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677514

RESUMEN

Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.


Asunto(s)
Arginina/química , Proteína FUS de Unión a ARN/química , beta Carioferinas/química , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Citoplasma/metabolismo , Metilación de ADN , ADN Complementario/metabolismo , Densitometría , Degeneración Lobar Frontotemporal/metabolismo , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Espectroscopía de Resonancia Magnética , Metilación , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/metabolismo , Unión Proteica , Dominios Proteicos
4.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677515

RESUMEN

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Asunto(s)
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Unión a ARN/química , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Cationes , Metilación de ADN , Demencia Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteína FUS de Unión a ARN/metabolismo , Tirosina/química , Xenopus laevis
5.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759626

RESUMEN

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Asunto(s)
Arginina , Cisteína , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteoma/metabolismo , Arginina/metabolismo , Mutación , Argininosuccinato Sintasa/metabolismo , Argininosuccinato Sintasa/genética , Cisplatino/farmacología , Línea Celular Tumoral , Proteómica/métodos , Regulación Neoplásica de la Expresión Génica , Supervivencia Celular/efectos de los fármacos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética
6.
Cell ; 167(3): 829-842.e13, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27745970

RESUMEN

Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses.


Asunto(s)
Arginina/metabolismo , Linfocitos T CD4-Positivos/inmunología , Inmunomodulación , Activación de Linfocitos , Melanoma Experimental/inmunología , Neoplasias Cutáneas/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Proteínas de Unión al ADN/metabolismo , Técnicas de Inactivación de Genes , Glucólisis , Humanos , Memoria Inmunológica , Metaboloma , Ratones , Ratones Endogámicos BALB C , Fosforilación Oxidativa , Proteoma , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Mol Cell ; 83(14): 2449-2463.e13, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402367

RESUMEN

Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.


Asunto(s)
ARN , Factores de Transcripción , Factores de Transcripción/metabolismo , ARN/metabolismo , Sitios de Unión , Unión Proteica , ADN/genética
8.
Annu Rev Biochem ; 84: 685-709, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26034892

RESUMEN

Hv1 is a voltage-gated proton-selective channel that plays critical parts in host defense, sperm motility, and cancer progression. Hv1 contains a conserved voltage-sensor domain (VSD) that is shared by a large family of voltage-gated ion channels, but it lacks a pore domain. Voltage sensitivity and proton conductivity are conferred by a unitary VSD that consists of four transmembrane helices. The architecture of Hv1 differs from that of cation channels that form a pore in the center among multiple subunits (as in most cation channels) or homologous repeats (as in voltage-gated sodium and calcium channels). Hv1 forms a dimer in which a cytoplasmic coiled coil underpins the two protomers and forms a single, long helix that is contiguous with S4, the transmembrane voltage-sensing segment. The closed-state structure of Hv1 was recently solved using X-ray crystallography. In this article, we discuss the gating mechanism of Hv1 and focus on cooperativity within dimers and their sensitivity to metal ions.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares
9.
Annu Rev Biochem ; 84: 843-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25494301

RESUMEN

The twin-arginine translocation (Tat) system, found in prokaryotes, chloroplasts, and some mitochondria, allows folded proteins to be moved across membranes. How this transport is achieved without significant ion leakage is an intriguing mechanistic question. Tat transport is mediated by complexes formed from small integral membrane proteins from just two protein families. Atomic-resolution structures have recently been determined for representatives of both these protein families, providing the first molecular-level glimpse of the Tat machinery. I review our current understanding of the mechanism of Tat transport in light of these new structural data.


Asunto(s)
Transporte de Proteínas , Sistema de Translocación de Arginina Gemela/metabolismo , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Cloroplastos/metabolismo , Mitocondrias/metabolismo , Células Procariotas/metabolismo , Fuerza Protón-Motriz , Sistema de Translocación de Arginina Gemela/química
10.
Mol Cell ; 81(6): 1276-1291.e9, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33539787

RESUMEN

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Carcinogénesis , Proteínas de Ciclo Celular , Glioblastoma , Factores de Intercambio de Guanina Nucleótido , Mitosis/efectos de la radiación , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/efectos de la radiación , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Mitosis/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Cell ; 81(15): 3171-3186.e8, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34171297

RESUMEN

Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arginina/metabolismo , Interacciones Huésped-Patógeno/fisiología , Inmunidad Innata/fisiología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteína 58 DEAD Box/metabolismo , Fibroblastos/virología , Células HEK293 , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpes Simple/virología , Humanos , Metilación , Ratones , Ratones Noqueados , Alcamidas Poliinsaturadas , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/inmunología , Receptores Inmunológicos/metabolismo , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/virología , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Mol Cell ; 81(21): 4357-4368, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34619091

RESUMEN

Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.


Asunto(s)
Arginina/química , Metilación , Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Empalme Alternativo , Animales , Antígeno B7-H1/metabolismo , Sistemas CRISPR-Cas , Comunicación Celular , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Inhibidores Enzimáticos/farmacología , Epigénesis Genética , Histonas , Humanos , Sistema Inmunológico , Inmunoterapia/métodos , Ratones , Ratones Noqueados , Proteína-Arginina N-Metiltransferasas/química , Empalme del ARN , ARN Mensajero/metabolismo , Transducción de Señal
13.
Mol Cell ; 81(17): 3481-3495.e7, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34358446

RESUMEN

PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.


Asunto(s)
Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/fisiología , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Femenino , Células HCT116 , Células HEK293 , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales Iónicos/metabolismo , Masculino , Metilación , Ratones , Ratones Desnudos , Proteínas Nucleares/metabolismo , Péptidos/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Empalmosomas/metabolismo
14.
Immunity ; 51(2): 272-284.e7, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31399282

RESUMEN

Macrophage polarization is accompanied by drastic changes in L-arginine metabolism. Two L-arginine catalytic enzymes, iNOS and arginase 1, are well-characterized hallmark molecules of classically and alternatively activated macrophages, respectively. The third metabolic fate of L-arginine is the generation of creatine that acts as a key source of cellular energy reserve, yet little is known about the role of creatine in the immune system. Here, genetic, genomic, metabolic, and immunological analyses revealed that creatine reprogrammed macrophage polarization by suppressing M(interferon-γ [IFN-γ]) yet promoting M(interleukin-4 [IL-4]) effector functions. Mechanistically, creatine inhibited the induction of immune effector molecules, including iNOS, by suppressing IFN-γ-JAK-STAT1 transcription-factor signaling while supporting IL-4-STAT6-activated arginase 1 expression by promoting chromatin remodeling. Depletion of intracellular creatine by ablation of the creatine transporter Slc6a8 altered macrophage-mediated immune responses in vivo. These results uncover a previously uncharacterized role for creatine in macrophage polarization by modulating cellular responses to cytokines such as IFN-γ and IL-4.


Asunto(s)
Arginina/metabolismo , Creatina/metabolismo , Cirrosis Hepática/metabolismo , Macrófagos/fisiología , Proteínas de Transporte de Membrana/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Humanos , Inmunidad Celular , Interferón gamma/metabolismo , Cirrosis Hepática/inducido químicamente , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Tetracloroetileno
15.
EMBO J ; 42(6): e112647, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36740997

RESUMEN

Neurogenesis in the developing and adult brain is intimately linked to remodeling of cellular metabolism. However, it is still unclear how distinct metabolic programs and energy sources govern neural stem cell (NSC) behavior and subsequent neuronal differentiation. Here, we found that adult mice lacking the mitochondrial urea metabolism enzyme, Arginase-II (Arg-II), exhibited NSC overactivation, thereby leading to accelerated NSC pool depletion and decreased hippocampal neurogenesis over time. Mechanistically, Arg-II deficiency resulted in elevated L-arginine levels and induction of a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) caused by impaired attachment of hexokinase-I to mitochondria. Notably, selective inhibition of OXPHOS ameliorated NSC overactivation and restored abnormal neurogenesis in Arg-II deficient mice. Therefore, Arg-II-mediated intracellular L-arginine homeostasis directly influences the metabolic fitness of neural stem cells that is essential to maintain neurogenesis with age.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Proliferación Celular , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Glucólisis , Homeostasis , Arginina/metabolismo
16.
Mol Cell ; 73(1): 84-96.e7, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472187

RESUMEN

The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/enzimología , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Transcripción Genética , Arginina , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Citrulinación , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Arginina Deiminasa Proteína-Tipo 2 , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/genética , Transducción de Señal
17.
Mol Cell ; 74(5): 922-935.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30979585

RESUMEN

Enteropathogenic E. coli NleB and related type III effectors catalyze arginine GlcNAcylation of death domain (DD) proteins to block host defense, but the underlying mechanism is unknown. Here we solve crystal structures of NleB alone and in complex with FADD-DD, UDP, and Mn2+ as well as NleB-GlcNAcylated DDs of TRADD and RIPK1. NleB adopts a GT-A fold with a unique helix-pair insertion to hold FADD-DD; the interface contacts explain the selectivity of NleB for certain DDs. The acceptor arginine is fixed into a cleft, in which Glu253 serves as a base to activate the guanidinium. Analyses of the enzyme-substrate complex and the product structures reveal an inverting sugar-transfer reaction and a detailed catalytic mechanism. These structural insights are validated by mutagenesis analyses of NleB-mediated GlcNAcylation in vitro and its function in mouse infection. Our study builds a structural framework for understanding of NleB-catalyzed arginine GlcNAcylation of host death domain.


Asunto(s)
Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/química , Interacciones Huésped-Patógeno/genética , Conformación Proteica , Factores de Virulencia/química , Animales , Apoptosis/genética , Arginina/química , Arginina/genética , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , Cristalografía por Rayos X , Dominio de Muerte/genética , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/genética , Guanidina/química , Humanos , Manganeso/química , Ratones , Mutagénesis , Proteína de Dominio de Muerte Asociada a Receptor de TNF/química , Proteína de Dominio de Muerte Asociada a Receptor de TNF/genética , Factores de Virulencia/genética
18.
Mol Cell ; 76(5): 767-783.e11, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31540874

RESUMEN

Fibrillar centers (FCs) and dense fibrillar components (DFCs) are essential morphologically distinct sub-regions of mammalian cell nucleoli for rDNA transcription and pre-rRNA processing. Here, we report that a human nucleolus consists of several dozen FC/DFC units, each containing 2-3 transcriptionally active rDNAs at the FC/DFC border. Pre-rRNA processing factors, such as fibrillarin (FBL), form 18-24 clusters that further assemble into the DFC surrounding the FC. Mechanistically, the 5' end of nascent 47S pre-rRNA binds co-transcriptionally to the RNA-binding domain of FBL. FBL diffuses to the DFC, where local self-association via its glycine- and arginine-rich (GAR) domain forms phase-separated clusters to immobilize FBL-interacting pre-rRNA, thus promoting directional traffic of nascent pre-rRNA while facilitating pre-rRNA processing and DFC formation. These results unveil FC/DFC ultrastructures in nucleoli and suggest a conceptual framework for considering nascent RNA sorting using multivalent interactions of their binding proteins.


Asunto(s)
Nucléolo Celular/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Transporte Activo de Núcleo Celular , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Precursores del ARN/genética , Precursores del ARN/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico/ultraestructura
19.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602916

RESUMEN

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Asunto(s)
Arginina , Ligasas , Arginina/metabolismo , Citrulina/metabolismo , Amoníaco , Ornitina/genética , Adenosina Trifosfato/metabolismo , Fosfatos , Adenosina , Catálisis
20.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753512

RESUMEN

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Asunto(s)
Compuestos de Bencidrilo , Neuronas , Fenoles , Diferenciación Sexual , Animales , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Femenino , Masculino , Ratones , Diferenciación Sexual/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Embarazo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Arginina Vasopresina/metabolismo , Vasopresinas/metabolismo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratones Endogámicos C57BL , Estrógenos/metabolismo , Estrógenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA