Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
Más filtros

Intervalo de año de publicación
1.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37020337

RESUMEN

Identification of potent peptides through model prediction can reduce benchwork in wet experiments. However, the conventional process of model buildings can be complex and time consuming due to challenges such as peptide representation, feature selection, model selection and hyperparameter tuning. Recently, advanced pretrained deep learning-based language models (LMs) have been released for protein sequence embedding and applied to structure and function prediction. Based on these developments, we have developed UniDL4BioPep, a universal deep-learning model architecture for transfer learning in bioactive peptide binary classification modeling. It can directly assist users in training a high-performance deep-learning model with a fixed architecture and achieve cutting-edge performance to meet the demands in efficiently novel bioactive peptide discovery. To the best of our best knowledge, this is the first time that a pretrained biological language model is utilized for peptide embeddings and successfully predicts peptide bioactivities through large-scale evaluations of those peptide embeddings. The model was also validated through uniform manifold approximation and projection analysis. By combining the LM with a convolutional neural network, UniDL4BioPep achieved greater performances than the respective state-of-the-art models for 15 out of 20 different bioactivity dataset prediction tasks. The accuracy, Mathews correlation coefficient and area under the curve were 0.7-7, 1.23-26.7 and 0.3-25.6% higher, respectively. A user-friendly web server of UniDL4BioPep for the tested bioactivities is established and freely accessible at https://nepc2pvmzy.us-east-1.awsapprunner.com. The source codes, datasets and templates of UniDL4BioPep for other bioactivity fitting and prediction tasks are available at https://github.com/dzjxzyd/UniDL4BioPep.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Péptidos/química , Programas Informáticos , Secuencia de Aminoácidos
2.
Anal Biochem ; 690: 115491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38460901

RESUMEN

Bioactive peptides can hinder oxidative processes and microbial spoilage in foodstuffs and play important roles in treating diverse diseases and disorders. While most of the methods focus on single-functional bioactive peptides and have obtained promising prediction performance, it is still a significant challenge to accurately detect complex and diverse functions simultaneously with the quick increase of multi-functional bioactive peptides. In contrast to previous research on multi-functional bioactive peptide prediction based solely on sequence, we propose a novel multimodal dual-branch (MMDB) lightweight deep learning model that designs two different branches to effectively capture the complementary information of peptide sequence and structural properties. Specifically, a multi-scale dilated convolution with Bi-LSTM branch is presented to effectively model the different scales sequence properties of peptides while a multi-layer convolution branch is proposed to capture structural information. To the best of our knowledge, this is the first effective extraction of peptide sequence features using multi-scale dilated convolution without parameter increase. Multimodal features from both branches are integrated via a fully connected layer for multi-label classification. Compared to state-of-the-art methods, our MMDB model exhibits competitive results across metrics, with a 9.1% Coverage increase and 5.3% and 3.5% improvements in Precision and Accuracy, respectively.

3.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881345

RESUMEN

Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.

4.
Br J Nutr ; 131(6): 974-986, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37886873

RESUMEN

To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.


Asunto(s)
Antioxidantes , Glycine max , Antioxidantes/metabolismo , Inmunidad Innata , Dieta/veterinaria , Péptidos/farmacología , Malondialdehído , Alimentación Animal/análisis
5.
Bioorg Chem ; 145: 107242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428285

RESUMEN

Colostrum/Milk is a chief repertoire of antioxidant peptides. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a viable target for Parkinson's Disease (PD), as this pathway deduced to be impaired in PD. Cullin-3 is one of the crucial E3 ligase responsible for its regulation. The present study screened peptide libraries of buffalo colostrum & milk peptides for Cullin-3 inhibition, thus ensuing activation of Nrf2 to alleviate the molecular etiopathology in PD using the C. elegans as a model. The structure was modelled, binding sites analyzed and peptide-interactions analyzed by docking. Among the 55 sequences (≤1 kDa), the peptide SFVSEVPEL having the highest dock score (-16.919) was synthesized and evaluated for its effects on oxidative stress markers, antioxidant enzymes, neurochemical marker and Nrf2/Skn-1 levels. The lead peptide alleviated the oxidative pathophysiology and behavioural deficits associated with PD in C. elegans.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Femenino , Embarazo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Antioxidantes/farmacología , Búfalos/metabolismo , Proteínas Cullin/metabolismo , Caenorhabditis elegans/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Calostro/metabolismo , Estrés Oxidativo , Péptidos/farmacología , Péptidos/metabolismo , Fármacos Neuroprotectores/farmacología
6.
J Dairy Sci ; 107(10): 7594-7608, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38851572

RESUMEN

Mare milk has a unique protein composition that makes it a preferred option for adult and infant nutrition. Several functional properties have been attributed to this milk, but with little current evidence. In fact, knowledge on mare milk composition is still limited. In particular, studies addressing the performance of mare milk proteins during human gastrointestinal digestion are scarce, which limits the understanding of mare milk nutritional quality and functionality. For this reason, the present study describes the digestibility of mare milk proteins and the release of peptides as affected by management and lactation stage, factors which are known to affect milk composition. Mare milk samples from 3 different farms collected during 6 mo of lactation (n = 54) were subjected to a static in vitro gastrointestinal model to measure peptide release and protein digestibility. In the present study, a detailed description of protein and individual amino acid behavior during the digestion process was given. For the first time, digestion of the 2 equine ß-lactoglobulin isoforms (I and II) was described individually. In addition, it was found that lactation stage and management system can significantly affect protein digestibility and peptide release during gastrointestinal digestion of mare milk. Presumably, differences in the composition of mare milk influence the protein structure and enzyme accessibility, which might have an impact on digestion behavior. Although no specific bioactive peptides were identified, several precursors of previously described bioactive peptides were found. These findings could support the idea of mare milk as a food with added value.


Asunto(s)
Digestión , Lactancia , Leche , Animales , Femenino , Caballos , Leche/química , Leche/metabolismo , Proteínas de la Leche/metabolismo , Péptidos/metabolismo
7.
Molecules ; 29(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338437

RESUMEN

This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.


Asunto(s)
Bombyx , Maclura , Animales , Humanos , Hidrólisis , Bombyx/metabolismo , Papaína/metabolismo , Frutas/metabolismo , Polvos , Péptido Hidrolasas/metabolismo , Proteína de Suero de Leche , Proteínas de Soja , Subtilisinas/metabolismo , Etanol
8.
J Sci Food Agric ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855927

RESUMEN

BACKGROUND: The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS: After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION: The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.

9.
Amino Acids ; 55(2): 235-242, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36474016

RESUMEN

Peptide quantitative structure-activity relationships (pQSARs) have been widely applied to the statistical modeling and empirical prediction of peptide activity, property and feature. In the procedure, the peptide structure is characterized at sequence level using amino acid descriptors (AADs) and then correlated with observations by machine learning methods (MLMs), consequently resulting in a variety of quantitative regression models used to explain the structural factors that govern peptide activities, to generalize peptide properties of unknown from known samples, and to design new peptides with desired features. In this study, we developed a comprehensive platform, termed PepQSAR database, which is a systematic collection and decomposition of various data sources and abundant information regarding the pQSARs, including AADs, MLMs, data sets, peptide sequences, measured activities, model statistics, and literatures. The database also provides a comparison function for the various previously built pQSAR models reported by different groups via distinct approaches. The structured and searchable PepQSAR database is expected to provide a useful resource and powerful tool for the computational peptidology community, which is freely available at http://i.uestc.edu.cn/PQsarDB .


Asunto(s)
Fuentes de Información , Relación Estructura-Actividad Cuantitativa , Péptidos/química , Secuencia de Aminoácidos
10.
Crit Rev Food Sci Nutr ; 63(20): 4261-4273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34802348

RESUMEN

Bioactive peptides derived from bovine milk proteins have gained much attention due to their health promoting functions. All over the world, cheese industry generates high volumes of sweet whey that could be used as an alternative source of bioactive peptide in nutraceuticals and food industry. Caseinomacropeptide (CMP) is a bioactive peptide derived from κ-casein by the action of chymosin during cheese manufacturing. CMP consist of two forms which are glycosylated (gCMP) and non-glycosylated (aCMP). The predominant carbohydrate in gCMP is N-acetylneuraminic (sialic acid) which gives functional and biological properties to gCMP. Due to its unique composition and technological characteristics such as wide pH range solubility, emulsifying, gelling, and foaming ability, CMP has received special attention. Therefore, there is an increased interest in researches for isolation and concentration of CMP. However, the isolation and purification methods are not cost-effective. It would be easier to optimize the conditions for isolation, purification, and utilization of CMP in nutraceuticals and food industry through deeper understanding of the effective factors. In this review, the structure of CMP, biological activities, isolation, and purification methods, the factors affecting functional properties and application areas of CMP in food industry are discussed.


Asunto(s)
Caseínas , Suero Lácteo , Suero Lácteo/química , Proteína de Suero de Leche/química , Caseínas/análisis , Caseínas/química , Caseínas/metabolismo , Fragmentos de Péptidos/química
11.
Crit Rev Food Sci Nutr ; 63(30): 10351-10381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35612490

RESUMEN

Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.


Asunto(s)
Promoción de la Salud , Suero Lácteo , Humanos , Proteína de Suero de Leche , Péptidos/farmacología , Péptidos/química , Hidrólisis
12.
Mar Drugs ; 21(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37623739

RESUMEN

The objective of this study was to prepare an angiotensin I-converting enzyme (ACE)-inhibitory peptide from the hydrothermal vent mussel, Gigantidas vrijenhoeki. The G. vrijenhoeki protein was hydrolyzed by various hydrolytic enzymes. The peptic hydrolysate exhibited the highest ACE-inhibitory activity and was fractionated into four molecular weight ranges by ultrafiltration. The <1 kDa fraction exhibited the highest ACE inhibitory activity and was found to have 11 peptide sequences. Among the analyzed peptides, KLLWNGKM exhibited stronger ACE inhibitory activity and an IC50 value of 0.007 µM. To investigate the ACE-inhibitory activity of the analyzed peptides, a molecular docking study was performed. KLLWNGKM exhibited the highest binding energy (-1317.01 kcal/mol), which was mainly attributed to the formation of hydrogen bonds with the ACE active pockets, zinc-binding motif, and zinc ion. These results indicate that G. vrijenhoeki-derived peptides can serve as nutritional and pharmacological candidates for controlling blood pressure.


Asunto(s)
Mytilidae , Peptidil-Dipeptidasa A , Animales , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Zinc
13.
Molecules ; 28(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298867

RESUMEN

Loach, rich in nutrients, such as proteins, amino acids, and mineral elements, is being gradually favored by consumers. Therefore, in this study, the antioxidant activity and structural characteristics of loach peptides were comprehensively analyzed. The loach protein (LAP) with a molecular weight between 150 and 3000 Da was graded by ultrafiltration and nanofiltration processes, which exhibited excellent scavenging activity against DPPH radical (IC50 2.91 ± 0.02 mg/mL), hydroxyl radical (IC50 9.95 ± 0.03 mg/mL), and superoxide anion radical (IC50 13.67 ± 0.33 mg/mL). Additionally, LAP was purified by gel filtration chromatography, and two principal components (named as LAP-I and LAP-II) were isolated. A total of 582 and 672 peptides were identified in LAP-I and LAP-II, respectively, through structural analysis. The XRD results revealed that LAP-I and LAP-II had an irregular amorphous structure. The 2D-NMR spectroscopy results suggested that LAP-I had a compact stretch conformation in the D2O solution, while LAP-II had a folded conformation. Overall, the study results suggested that loach peptide could be a potential antioxidant agent and might provide valuable information for chain conformation and antioxidant mechanism research further.


Asunto(s)
Antioxidantes , Hidrolisados de Proteína , Antioxidantes/química , Hidrolisados de Proteína/química , Depuradores de Radicales Libres/química , Péptidos/química , Proteínas , Superóxidos/química
14.
Molecules ; 28(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985630

RESUMEN

This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.


Asunto(s)
Alérgenos , Hipersensibilidad al Huevo , Humanos , Péptidos/química , Huevos/análisis , Proteínas del Huevo/química
15.
J Sci Food Agric ; 103(15): 7869-7876, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37467368

RESUMEN

BACKGROUND: The satiety hormone cholecystokinin (CCK) plays an important role in food intake inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that induce CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of highland barley protein digest (HBPD) to stimulate CCK secretion in vitro and in vivo and identify the responsible peptide sequences. RESULTS: HBPD was prepared by in vitro gastrointestinal digestion model. Peptides of <1000 Da in HBPD accounted for 82%. HBPD was rich in essential amino acids Leu, Phe and Val, but lack in sulfur amino acids Met and Cys. HBPD treatment at a concentration of 5 mg mL-1 significantly stimulated CCK secretion from enteroendocrine STC-1 cells (P < 0.05). Moreover, oral gavage with HBPD in mice significantly increased plasma CCK level. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion and peptide sequence was determined by ultra-performance liquid chromatography-tandem mass spectrometry. Two novel CCK-releasing peptides, PDLP and YRIVPL, were pointed out for their outstanding CCK secretagogue activity. CONCLUSION: This study demonstrated for the first time that HBPD had an ability to stimulate CCK secretion in vitro and in vivo and determined the bioactive peptides exerting CCK secretagogue activity in HBPD. © 2023 Society of Chemical Industry.


Asunto(s)
Colecistoquinina , Hordeum , Ratones , Animales , Colecistoquinina/metabolismo , Hordeum/metabolismo , Secretagogos , Péptidos/farmacología , Proteínas , Digestión
16.
J Sci Food Agric ; 103(14): 7207-7217, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37347843

RESUMEN

BACKGROUND: As major industrial poultry by-products, chicken feet are considered as notable sources of several bioactive molecules. The current work covers the processing of chicken feet proteins as substrates to be hydrolysed by combinations of three commercial enzymes (Alcalase®, Flavourzyme® and Protana® Prime) during different hydrolysis periods and the evaluation of the identified peptides having antioxidant activity after simulated gastrointestinal digestion. RESULTS: Enzymatic hydrolysis with Alcalase® and Protana® Prime combination for 4 h resulted in the highest activities. Reversed-phase high-performance liquid chromatographic separation of the purified hydrolysate yielded three active fractions that were further identified by nano-liquid chromatography-tandem mass spectrometry. The bioactivities of over 230 identified peptide sequences were estimated after simulated gastrointestinal digestion, and those peptides with the highest chance of exerting antioxidant activity were selected to be further synthesised and tested. In this sense, the synthesised dipeptides CF and GY showed the highest antioxidant capacity. CF presented IC50 values of 69.63 and 145.41 µmol L-1 in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assays, respectively. In contrast, GY IC50 values were 15.27 and 10.06 µmol L-1 in ABTS and ORAC assays, respectively. Significant differences (P < 0.05) were registered between peptides in the same antioxidant assays. CONCLUSION: Overall, the findings emphasised the favourable impact of enzymatic hydrolysis with the obtaining of antioxidant peptides from poultry by-products that could be evaluated as a safe and economical source to retard oxidation in food systems. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Antioxidantes , Hidrolisados de Proteína , Animales , Antioxidantes/química , Hidrolisados de Proteína/química , Pollos/metabolismo , Péptidos/química , Hidrólisis , Subtilisinas
17.
Compr Rev Food Sci Food Saf ; 22(6): 4698-4733, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37732471

RESUMEN

Food protein-derived peptides have garnered considerable attention due to their potential bioactivities and functional properties. However, the limited activity poses a challenge in effective utilization aspects. To overcome this hurdle, various methods have been explored to enhance the activity of these peptides. This comprehensive review offers an extensive overview of pretreatment, preparation methods, and modification strategies employed to augment the activity of food protein-derived peptides. Additionally, it encompasses a discussion on the current status and future prospects of bioactive peptide applications. The review also addresses the standardization of mass production processes and safety considerations for bioactive peptides while examining the future challenges and opportunities associated with these compounds. This comprehensive review serves as a valuable guide for researchers in the food industry, offering insights and recommendations to optimize the production process of bioactive peptides.


Asunto(s)
Alimentos , Péptidos , Péptidos/química
18.
J Food Sci Technol ; 60(1): 211-221, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36259044

RESUMEN

Colostrum known as "liquid gold" contains approximately 60-80% of whey proteins that can be a great source of bioactive peptide production. Therefore, this study aimed to perform a comparative antimicrobial evaluation of the bioactive peptide generated from L. rhamnosus C25, L. rhamnosus C6, and L. casei NCDC17 fermented colostrum whey. Peptide fractions 10 kDa, 5 kDa, and 3 kDa were isolated using their respective molecular weight cut-off membranes and antimicrobial activity was evaluated against diarrheagenic E. coli strains. The higher inhibition was shown by < 10 kDa peptide fractions from L. rhamnosus C25 fermented colostrum whey and the zone of inhibition was 15 ± 0.06 (E. coli MTCC 723), 17 ± 0.04 (E. coli MTCC 724), 18 ± 0.05 (E. coli MTCC 725), and 17 ± 0.02 (E. coli ATCC 25922). In addition, ST-1 and LT-1 genes of E. coli strains were also confirmed using PCR which is responsible for the diarrheagenic property. Further, the interaction of potent peptides against E. coli strains was also observed by scanning electron microscope. Hence, the significance of the present study emphasized that these bioactive peptides generated from fermented colostrum whey can be used as ingredients in functional food against diarrhoea.

19.
J Cell Mol Med ; 26(10): 2793-2807, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35460166

RESUMEN

Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.


Asunto(s)
Antioxidantes , Fármacos Neuroprotectores , Animales , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Ratones , Microglía/metabolismo , Péptidos/química , Ranidae/metabolismo , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
20.
Amino Acids ; 54(5): 733-747, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35279763

RESUMEN

Bombesin mediates several biological activities in the gastrointestinal (GI) tract and central nervous system in mammals, including smooth muscle contraction, secretion of GI hormones and regulation of homeostatic mechanisms. Here, we report a novel bombesin-like peptide isolated from Boana raniceps. Its amino acid sequence, GGNQWAIGHFM-NH2, was identified and structurally confirmed by HPLC, MS/MS and 454-pyrosequencing; the peptide was named BR-bombesin. The effect of BR-bombesin on smooth muscle contraction was assessed in ileum and esophagus, and its anti-secretory activity was investigated in the stomach. BR-bombesin exerted significant contractile activity with a concentration-response curve similar to that of commercially available bombesin in ileum strips of Wistar rats. In esophageal strips, BR-bombesin acted as an agonist, as many other bombesin-related peptides act, although with different behavior compared to the muscarinic agonist carbachol. Moreover, BR-bombesin inhibited stomach secretion by approximately 50% compared to the untreated control group. This novel peptide has 80% and 70% similarity with the 10-residue C-terminal domain of human neuromedin B (NMB) and human gastrin releasing peptide (GRP10), respectively. Molecular docking analysis revealed that the GRP receptor had a binding energy equal to - 7.3 kcal.mol-1 and - 8.5 kcal.mol-1 when interacting with bombesin and BR-bombesin, respectively. Taken together, our data open an avenue to investigate BR-bombesin in disorders that involve gastrointestinal tract motility and acid gastric secretion.


Asunto(s)
Bombesina , Receptores de Bombesina , Animales , Anuros/metabolismo , Bombesina/metabolismo , Bombesina/farmacología , Mamíferos/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Ratas , Ratas Wistar , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Estómago , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA