Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.743
Filtrar
Más filtros

Intervalo de año de publicación
1.
Circ Res ; 132(4): 415-431, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36700539

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. METHODS AND RESULTS: We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively. CONCLUSIONS: The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Insuficiencia Renal Crónica , Calcificación Vascular , Ratas , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Calcificación Vascular/metabolismo , Insuficiencia Renal Crónica/metabolismo , Vesículas Extracelulares/metabolismo , Fósforo/metabolismo , Miocitos del Músculo Liso/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(19): e2106965119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35522709

RESUMEN

Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of ß-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca­Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general.


Asunto(s)
Proteínas del Esmalte Dental , Nanotubos de Carbono , Amelogenina/química , Proteínas Amiloidogénicas , Sitios de Unión , Fosfatos de Calcio
3.
Nano Lett ; 24(26): 7821-7824, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913950

RESUMEN

Liquid-transmission electron microscopy (liquid-TEM) provides exciting potential for capturing mineralization events at biomaterial interfaces, though it is largely unexplored. To address this, we established a unique approach to visualize calcium phosphate (CaP)-titanium (Ti) interfacial mineralization events by combining the nanofabrication of Ti lamellae by focused ion beam with in situ liquid-TEM. Multiphasic CaP particles were observed to nucleate, adhere, and form different assemblies onto and adjacent to Ti lamellae. Here, we discuss new approaches for exploring the interaction between biomaterials and liquids at the nanoscale. Driving this technology is crucial for understanding and controlling biomineralization to improve implant osseointegration and direct new pathways for mineralized tissue disease treatment in the future.


Asunto(s)
Materiales Biocompatibles , Fosfatos de Calcio , Microscopía Electrónica de Transmisión , Titanio , Titanio/química , Materiales Biocompatibles/química , Fosfatos de Calcio/química , Microscopía Electrónica de Transmisión/métodos , Propiedades de Superficie , Oseointegración , Humanos
4.
J Cell Physiol ; 239(5): e31256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38591855

RESUMEN

Osteosarcoma (OS) cancer treatments include systemic chemotherapy and surgical resection. In the last years, novel treatment approaches have been proposed, which employ a drug-delivery system to prevent offside effects and improves treatment efficacy. Locally delivering anticancer compounds improves on high local concentrations with more efficient tumour-killing effect, reduced drugs resistance and confined systemic effects. Here, the synthesis of injectable strontium-doped calcium phosphate (SrCPC) scaffold was proposed as drug delivery system to combine bone tissue regeneration and anticancer treatment by controlled release of methotrexate (MTX) and doxorubicin (DOX), coded as SrCPC-MTX and SrCPC-DOX, respectively. The drug-loaded cements were tested in an in vitro model of human OS cell line SAOS-2, engineered OS cell line (SAOS-2-eGFP) and U2-OS. The ability of doped scaffolds to induce OS cell death and apoptosis was assessed analysing cell proliferation and Caspase-3/7 activities, respectively. To determine if OS cells grown on doped-scaffolds change their migratory ability and invasiveness, a wound-healing assay was performed. In addition, the osteogenic potential of SrCPC material was evaluated using human adipose derived-mesenchymal stem cells. Osteogenic markers such as (i) the mineral matrix deposition was analysed by alizarin red staining; (ii) the osteocalcin (OCN) protein expression was investigated by enzyme-linked immunosorbent assay test, and (iii) the osteogenic process was studied by real-time polymerase chain reaction array. The delivery system induced cell-killing cytotoxic effects and apoptosis in OS cell lines up to Day 7. SrCPC demonstrates a good cytocompatibility and it induced upregulation of osteogenic genes involved in the skeletal development pathway, together with OCN protein expression and mineral matrix deposition. The proposed approach, based on the local, sustained release of anticancer drugs from nanostructured biomimetic drug-loaded cements is promising for future therapies aiming to combine bone regeneration and anticancer local therapy.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias Óseas , Fosfatos de Calcio , Doxorrubicina , Metotrexato , Osteogénesis , Osteosarcoma , Andamios del Tejido , Humanos , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Fosfatos de Calcio/administración & dosificación , Fosfatos de Calcio/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Estroncio/farmacología , Estroncio/química , Andamios del Tejido/química , Sistemas de Liberación de Medicamentos , Metotrexato/administración & dosificación , Metotrexato/farmacología
5.
Small ; 20(3): e2207951, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37621037

RESUMEN

Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.


Asunto(s)
Biomimética , Calcificación Fisiológica , Animales , Minerales/química , Huesos , Materiales Biocompatibles/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-38735362

RESUMEN

OBJECTIVE: Ectopic articular calcification is a common phenomenon of osteoarthritic joints, and closely related to disease progression. Identification of the involved calcium crystal types represents an important topic in research and clinical practice. Difficulties in accurate detection and crystal type identification have led to inconsistent data on the prevalence and spatial distribution of Basic calcium phosphate (BCP) and calcium pyrophosphate (CPP) deposition. METHOD: Combining multiple imaging methods including conventional radiography, histology and Raman spectroscopy, this study provides a comprehensive analysis of BCP and CPP-based calcification, its frequency and distribution in cartilage and synovial membrane samples of 92 osteoarthritis patients undergoing knee replacement surgery. RESULTS: Conventional radiography showed calcifications in 35% of patients. Von Kossa staining detected calcified deposits in 88% and 57% of cartilage and synovial samples, respectively. BCP crystals presented as brittle deposits on top of the cartilage surface or embedded in synovial tissue. CPP deposits appeared as larger granular needle-shaped clusters or dense circular pockets below the cartilage surface or within synovial tissue. Spectroscopic analysis detected BCP crystals in 75% of cartilage and 43% of synovial samples. CPP deposition was only detected in 18% of cartilage and 15% of synovial samples, often coinciding with BCP deposits. CONCLUSION: BCP is the predominant crystal type in calcified cartilage and synovium while CPP deposition is rare, often coinciding with BCP. Distinct and qualitative information on BCP and CPP deposits in joint tissues gives rise to the speculation that different disease entities are involved that might need different treatment strategies.

7.
Biotechnol Bioeng ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963234

RESUMEN

Bringing effective cancer therapy in the form of chimeric antigen receptor technology to untapped markets faces numerous challenges, including a global shortage of therapeutic lentiviral or retroviral vectors on which all current clinical therapies using genetically modified T cells are based. Production of these lentiviral vectors in academic settings in principle opens the way to local production of therapeutic cells, which is the only economically viable approach to make this therapy available to patients in developing countries. The conditions for obtaining and concentrating lentiviral vectors have been optimized and described. The calcium phosphate precipitation method was found to be suitable for transfecting high cell-density cultures, a prerequisite for high titers. We describe protocols for gradually increasing production from 6-well plates to P100 plates, T-175 flasks, and 5-layer stacks while maintaining high titers, >108 transducing units. Concentration experiments using ultracentrifugation revealed the advantage of lower centrifugation speeds compared to competing protocols. The resulting batches of lentiviral vectors had a titer of 1010 infectious particles and were used to transduce primary human T lymphocytes generating chimeric antigen receptor T cells, the quality of which was checked and found potential applicability for treatment.

8.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38061837

RESUMEN

AIMS: This study explores the phosphate (Pi)-solubilizing characteristics and mechanisms of a novel phosphate-solubilizing bacterium, Agrobacterium deltaense C1 (C1 hereafter). METHODS AND RESULTS: The growth-promoting effects of C1 were investigated by gnotobiotic experiments, and the Pi-solubilizing mechanism was revealed by extracellular metabolomics, liquid chromatography analysis, and reverse transcription quantitative polymerase chain reaction. Results showed that C1 significantly increased Arabidopsis biomass and total phosphorus (P) content under P deficiency. Under Ca3(PO4)2 condition, the presence of C1 resulted in a significant and negative correlation between available P content and medium pH changes, implying that Pi dissolution occurs through acid release. Metabolomics revealed C1's ability to release 99 organic acids, with gluconic acid (GA), citric acid, and α-ketoglutaric acid contributing 64.86%, 9.58%, and 0.94%, respectively, to Pi solubilization. These acids were significantly induced by P deficiency. Moreover, C1's Pi solubilization may remain significant even in the presence of available P, as evidenced by substantial pH reduction and high gcd gene expression. Additionally, C1 produced over 10 plant growth-promoting substances. CONCLUSIONS: C1 dissolves Pi primarily by releasing GA, which enhances plant growth under P deficiency. Notably, its Pi solubilization effect is not significantly limited by available Pi.


Asunto(s)
Fosfatos , Microbiología del Suelo , Fosfatos/metabolismo , Fósforo/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Bacterias/genética
9.
Nutr Metab Cardiovasc Dis ; 34(2): 353-359, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37788961

RESUMEN

BACKGROUND AND AIMS: Data on P homeostasis in insulin resistance (IR) are still conflicting. We investigated calcium-phosphate homeostasis parameters in men with/without IR. METHODS AND RESULTS: 177 volunteers (aged 61.62 ± 12.11), whose body mass index (BMI) was 29.97 ± 6.35, were studied. On fasting blood and spot urine samples, we measured serum creatinine, sodium (sNa), potassium (sK), chloride (sCl), calcium (sCa), phosphate (sP), alkaline phosphatase total activity (ALP), glucose, insulin, parathyroid hormone (PTH), 25-hydroxy-vitamin D [25(OH)D], and urinary electrolytes corrected for creatinine (uNa/Cr, uK/Cr, uCl/Cr, uCa/Cr, and uP/Cr). Through the QUICKI index, we separated subjects with (IR+, n = 68) or without (IR-, n = 109) IR, and their parameters were compared. Associations were assessed by age-adjusted partial correlation, whose coefficients were compared by Fisher's transform. IR + had higher sP (3.54 ± 0.65 vs. 3.35 ± 0.47, p = 0.044) and lower uCa/Cr levels (0.073 ± 0.056 vs. 0.095 ± 0.072, p = 0.047) than IR-. BMI correlated with sP (r = 0.21, p < 0.05) and PTH (r = 0.29, p < 0.01). QUICKI negatively correlated with sCa (r = -0.22, p < 0.05) and positively with uCa/Cr (r = 0.21, p < 0.05), in turn correlating with uNa/Cr (r = 0.45, p < 0.001). In both groups, uCa/Cr correlated with eGFR and uNa/Cr (p < 0.05 to p < 0.001). In IR + only, sP correlated with BMI, PTH with insulin, and uP/Cr (p < 0.05 for all). IR+ and IR-coefficients differed (p < 0.05 to p < 0.001) for the correlation of sP with BMI and of PTH with insulin and uP/Cr. CONCLUSION: The higher sP and lower uCa/Cr levels found in men with IR + suggest that IR could modulate calcium-phosphate homeostasis, likely by affecting their renal handling.


Asunto(s)
Conservadores de la Densidad Ósea , Fosfatos de Calcio , Resistencia a la Insulina , Masculino , Humanos , Calcio , Fosfatos , Calcio de la Dieta , Homeostasis , Insulina , Hormona Paratiroidea , Creatinina
10.
Biotechnol Appl Biochem ; 71(2): 314-325, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037222

RESUMEN

Ongoing mutations of SARS-CoV-2 present challenges for vaccine development, promising renewed global efforts to create more effective vaccines against coronavirus disease (COVID-19). One approach is to target highly immunogenic viral proteins, such as the spike receptor binding domain (RBD), which can stimulate the production of potent neutralizing antibodies. This study aimed to design and test a subunit vaccine candidate based on the RBD. Bioinformatics analysis identified antigenic regions of the RBD for recombinant protein design. In silico analysis identified the RBD region as a feasible target for designing a recombinant vaccine. Bioinformatics tools predicted the stability and antigenicity of epitopes, and a 3D model of the RBD-angiotensin-converting enzyme 2 complex was constructed using molecular docking and codon optimization. The resulting construct was cloned into the pET-28a (+) vector and successfully expressed in Escherichia coli BL21DE3. As evidenced by sodium dodecyl-polyacrylamide gel electrophoresis and Western blotting analyses, the affinity purification of RBD antigens produced high-quality products. Mice were immunized with the RBD antigen alone or combined with aluminum hydroxide (AlOH), calcium phosphate (CaP), or zinc oxide (ZnO) nanoparticles (NPs) as adjuvants. Enzyme-linked immunosorbent assay assays were used to evaluate immune responses in mice. In-silico analysis confirmed the stability and antigenicity of the designed protein structure. RBD with CaP NPs generated the highest immunoglobulin G titer compared to AlOH and ZnO after three doses, indicating its effectiveness as a vaccine platform. In conclusion, the recombinant RBD antigen administered with CaP adjuvant NPs induces potent humoral immunity in mice, supporting further vaccine development. These results contribute to ongoing efforts to develop more effective COVID-19 vaccines.


Asunto(s)
Nanopartículas , Vacunas Virales , Óxido de Zinc , Animales , Ratones , Humanos , Vacunas contra la COVID-19/genética , Anticuerpos Antivirales , Simulación del Acoplamiento Molecular , Vacunas Virales/genética , Modelos Animales , Ratones Endogámicos BALB C
11.
J Nanobiotechnology ; 22(1): 47, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297240

RESUMEN

The osteoimmune microenvironment induced by implants plays a significant role in bone regeneration. It is essential to efficiently and timely switch the macrophage phenotype from M1 to M2 for optimal bone healing. This study examined the impact of a calcium phosphate (CaP) coating on the physiochemical properties of highly ordered polycaprolactone (PCL) scaffolds fabricated using melt electrowritten (MEW). Additionally, it investigated the influence of these scaffolds on macrophage polarization and their immunomodulation on osteogenesis. The results revealed that the CaP coated PCL scaffold exhibited a rougher surface topography and higher hydrophilicity in comparison to the PCL scaffold without coating. Besides, the surface morphology of the coating and the release of Ca2+ from the CaP coating were crucial in regulating the transition of macrophages from M1 to M2 phenotypes. They might activate the PI3K/AKT and cAMP-PKA pathways, respectively, to facilitate M2 polarization. In addition, the osteoimmune microenvironment induced by CaP coated PCL could not only enhance the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro but also promote the bone regeneration in vivo. Taken together, the CaP coating can be employed to control the phenotypic switching of macrophages, thereby creating a beneficial immunomodulatory microenvironment that promotes bone regeneration.


Asunto(s)
Osteogénesis , Andamios del Tejido , Andamios del Tejido/química , Fosfatidilinositol 3-Quinasas/metabolismo , Regeneración Ósea , Macrófagos/metabolismo , Fosfatos de Calcio/química
12.
J Nanobiotechnology ; 22(1): 453, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080653

RESUMEN

Bioactive agents have demonstrated regenerative potential for cell-free bone tissue engineering. Nevertheless, certain challenges persist, including ineffective delivery methods and confined therapeutic potency. Here, we demonstrated that the biomimetic calcium phosphate coating system (BioCaP) could effectively uptake and slowly release the incorporated bioactive agents compared to the surface absorption system via osteoclast-mediated degradation of BioCaP coatings. The release kinetics were determined as a function of time. The release rate was stable without remarkable burst release during the first 1 day, followed by a sustained release from day 7 to day 19. Then, we developed the bi-functional BioCaP-coated silk fibroin scaffolds enabling the effective co-delivery of TGF-ß3 and BMP-2 (SFI-T/SFI-B) and the corresponding slow release of TGF-ß3 and BMP-2 exhibited superior potential in promoting chondrogenesis and osteogenesis without impairing cell vitality in vitro. The SFI-T/SFI-B scaffolds could improve cartilage and bone regeneration in 5 × 4 mm rabbit osteochondral (OC) defect. These findings indicate that the biomimetic calcium-phosphate coated silk fibroin scaffolds with slowly co-released TGF-ß3 and BMP-2 effectively promote the repair of OC defects, hence facilitating the future clinical translation of controlled drug delivery in tissue engineering.


Asunto(s)
Proteína Morfogenética Ósea 2 , Regeneración Ósea , Fosfatos de Calcio , Fibroínas , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Factor de Crecimiento Transformador beta3 , Fibroínas/química , Fibroínas/farmacología , Animales , Proteína Morfogenética Ósea 2/farmacología , Factor de Crecimiento Transformador beta3/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Conejos , Andamios del Tejido/química , Regeneración Ósea/efectos de los fármacos , Ingeniería de Tejidos/métodos , Osteogénesis/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Bombyx , Masculino
13.
J Nanobiotechnology ; 22(1): 368, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918787

RESUMEN

Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.


Asunto(s)
Cementos para Huesos , Péptido Relacionado con Gen de Calcitonina , Fosfatos de Calcio , Osteogénesis , Porcinos Enanos , Animales , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cementos para Huesos/farmacología , Cementos para Huesos/química , Ratones , Porcinos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Osteogénesis/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Columna Vertebral/cirugía , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Línea Celular , Magnesio/farmacología , Magnesio/química
14.
J Endocrinol Invest ; 47(6): 1505-1511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38129742

RESUMEN

PURPOSE: Serum calcium/phosphate ratio (Ca/P) has been recently proposed as an additional tool to identify primary hyperparathyroidism (PHPT), especially in patients with subclinical presentation, with a proposed cut-off of 3.3 when both values are expressed in mg/dL. No data are available on the relationship between Ca/P and the clinical presentation of PHPT. We thus evaluated this relationship in a large, single-center, unselected series. METHODS: 515 consecutive PHPT patients (mean age 65 ± 13.15 years, 77.1% females) were retrospectively evaluated at diagnosis. RESULTS: Mean Ca/P was 4.54 ± 1.5 (range 2.36-13.9), being higher than 3.3 in 88.5% of patients. Ca/P was significantly higher in (1) males, (2) symptomatic PHPT, (3) patients with 25-hydroxy vitamin D levels lower than 20 µg/L, (4) patients with osteitis fibrosa cystica, (5) patients with T score < - 2.5 at the radial site. In a multivariate regression analysis, Ca/P resulted significantly associated with PTH levels. After the exclusion of 57 patients with asymptomatic PHPT (aPHPT) patients and serum Ca higher than 1 mg/dL above the upper limit of normal range, no differences were found in Ca/P between aPHPT meeting or not surgical criteria. CONCLUSIONS: In PHPT Ca/P ratio is associated with increased biochemical and clinical severity of disease and represents a direct indicator of clinical bone damage. However, it does not seem an additional tool to identify aPHPT patients reaching surgical indication.


Asunto(s)
Calcio , Hiperparatiroidismo Primario , Fosfatos , Humanos , Hiperparatiroidismo Primario/sangre , Hiperparatiroidismo Primario/diagnóstico , Hiperparatiroidismo Primario/cirugía , Femenino , Masculino , Anciano , Calcio/sangre , Estudios Retrospectivos , Persona de Mediana Edad , Fosfatos/sangre , Biomarcadores/sangre , Enfermedades Asintomáticas/terapia , Hormona Paratiroidea/sangre
15.
Caries Res ; 58(1): 1-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37883928

RESUMEN

There is a growing need for effective methods in the management of early stage carious lesions. Therefore, the aim of this study was to evaluate the effect of combined casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and fluoride on white spot lesions (WSLs) compared to fluoride-only interventions. This meta-analysis was performed according to PRISMA guidelines and registered in PROSPERO (CRD42021286245). The Medline, Embase, and Cochrane Central databases were searched until October 17, 2022. Eligible studies were randomized controlled trials. Outcome variables included laser fluorescence (LF), quantitative light-induced fluorescence (QLF), and lesion area scores. The random-effects model was used for analysis, and results were given as standardized mean difference (SMD) and mean difference (MD) with a 95% confidence interval. Risk of bias was assessed using the RoB 2 tool, and the level of evidence with GRADE. Our systematic search yielded 973 records after duplicate removal, 21 studies were included for qualitative synthesis, and 15 studies were eligible for quantitative analysis. No significant difference was found between CPP-ACP and fluoride versus fluoride alone in LF at 1, 3, and 6 months of use: SMD -0.30 (-0.64; 0.04); SMD -0.47 (-1.02; 0.07); SMD -0.49 (-1.13; 0.15), respectively. For QLF, the analysis did not demonstrate significant differences between these two kinds of treatment at 1 and 6 months of use: MD 0.21 (-0.30;0.71); MD 0.60 (-1.70;2.90), but at 3 months, higher QLF values were found in the fluoride-only group compared to the CPP-ACP and fluoride combination was shown regarding the WSLs: MD 0.58 (0.25;0.91). On the contrary, data showed a small but statistically significant decrease in the lesion area in favor of the CPP-ACP plus fluoride versus fluoride alone at 6 months MD -0.38 (-0.72; -0.04). None of these observed changes indicated substantial clinical relevance. The combination of CPP-ACP and fluoride did not overcome the effect of fluoride given alone. Our data suggest that fluoride itself is effective in improving WSLs. However, the certainty of evidence was very low. These results indicate that further studies and future development of more effective products than CPP-ACP are needed in addition to fluoride to achieve robust amelioration of WSLs.


Asunto(s)
Fosfatos de Calcio , Caries Dental , Fluoruros , Humanos , Fluoruros/farmacología , Fluoruros/uso terapéutico , Cariostáticos/farmacología , Cariostáticos/uso terapéutico , Fosfopéptidos/uso terapéutico , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Caseínas/farmacología , Caseínas/uso terapéutico , Remineralización Dental/métodos
16.
Mar Drugs ; 22(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38667777

RESUMEN

Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.


Asunto(s)
Fosfatos de Calcio , Quitosano , Técnicas de Cocultivo , Fibroblastos , Nanofibras , Osteoblastos , Osteoblastos/efectos de los fármacos , Quitosano/química , Fibroblastos/efectos de los fármacos , Porosidad , Nanofibras/química , Fosfatos de Calcio/química , Animales , Regeneración Ósea/efectos de los fármacos , Ratones , Andamios del Tejido/química , Carbonatos/química , Calcificación Fisiológica/efectos de los fármacos
17.
J Dairy Sci ; 107(8): 5259-5279, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38522835

RESUMEN

Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.


Asunto(s)
Caseínas , Leche , Animales , Leche/química , Proteína de Suero de Leche , Proteínas de la Leche/química , Concentración de Iones de Hidrógeno , Micelas , Solubilidad
18.
Environ Toxicol ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38400521

RESUMEN

Lung cancer is one of the most common malignant tumors in the world. In approximately 30%-40% of lung cancer patients, bone metastases ensues with osteolytic destruction. Worse still, intractable pain, pathological fracture, and nerve compression caused by bone metastases are currently the bottleneck of research, diagnosis, and treatment of lung cancer. Therefore, the present study aims at investigating the effectiveness of a new composite material made of calcium phosphate cement (CPC) and Endostar on repairing bone defects in vitro and in vivo. As indicated in results, the mechanical properties of CPC+Endostar and CPC+PLGA+Endostar do not differ from those of pure CPC. The PLGA-embedded Endostar slow-release microspheres were designed and prepared, and were combined with CPC. Poly (lactic-co-glycolic acid (PLGA) is a biodegradable polymer material in vivo, so the effect on its mechanical properties is negligible. CPC+Endostar and CPC+PLGA+Endostar have been proved to inhibit cell proliferation, promote apoptosis and block cell cycle in G2 phase; the expression levels of osteoclast-related genes CXCL2, TGF-ß1, IGF-1, IL-6, and RANKL were significantly decreased while osteogenic ability and alkaline phosphatase activity observably enhanced. In vivo studies have revealed that the expression levels of TRAP, RANKL, and Caspase3 in CPC+PLGA+ENDO-treated tumor tissues after 3 weeks were higher than those in other groups with the prolongation of animal treatment time, while the expression levels of OPN and BCL2 were lower than those in other groups. In hematoxylin and eosin and TUNEL staining, 3 weeks of CPC+PLGA+ENDO-treatment yielded higher tissue necrosis and apoptosis than other groups; computed tomography and magnetic resonance imaging results showed the posterior edge bone damage reduced as a result of the CPC+PLGA+ENDO grafting in vertebral pedicle. Overall, the feasibility and reliability of CPC-loaded Endostar in the treatment of bone metastasis in lung cancer were investigated in this study, so as to promote the basic research and treatment of bone metastasis in lung cancer and other malignant tumors.

19.
Clin Oral Investig ; 28(6): 342, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801474

RESUMEN

OBJECTIVE: To compare implant stability and clinical outcome in implant placement between osteotome sinus floor elevation (OSFE) with biphasic calcium phosphate (BCP) which consisted of 30% of hydroxyapatite (HA) and 70% of beta-tricalcium phosphate (ß -TCP) grafting material and OSFE without using bone grafting material. The research questions is whether the BCP provides any benefit in OSFE or not. MATERIALS AND METHODS: Thirty patients (30 implants) with a single edentulous area of upper premolar or molar were randomly separated into OSFE with BCP (n = 15) and OSFE without grafting (n = 15). The patients were reevaluated 3, 6, 9, and 12 months after implant loading. The clinical assessments (implant stability quotient (ISQ), implant survival-failure rate, and surgical complication) were analyzed. Together with radiographic assessments in 2D (endo-sinus bone gain (ESBG), mean marginal bone change (MMBC)) and 3D (endo-sinus bone gain in CBCT (ESBG-CT)) were evaluated, with a mean follow-up time of at least 12 months of functional loading and prosthetic complication. RESULTS: 20 remaining implants (OSFE with BCP, n = 10; OSFE without grafting, n = 10) were analyzed. Mean ISQ was 79.18 ± 3.43 in 1-year follow-up (ISQ; OSFE with BCP = 78.72 ± 3.46, OSFE without grafting = 79.65 ± 3.52). ISQ in both groups increased steadily without significant differences in each follow-up. (p = 0.56). In radiographic evaluation, at 6-, 9-, and 12-month, OSFE without grafting group showed statistically significant lower MMBC (p < 0.05). The 1-year clinical results showed that 2 implants failed in OSFE with BCP, and 1 implant failed in OSFE without grafting. CONCLUSIONS: Graft material "BCP" (HA30:TCP70) coupled with OSFE presents no extraordinary benefit in implant stability, clinical and radiographic outcome in 1-year follow-up. CLINICAL RELEVANCE: Clinically, OSFE with grafting materials provides no additional benefit. CLINICAL TRIAL REGISTRATION NUMBER: TCTR20210517008 (date of registration: May 17, 2021).


Asunto(s)
Sustitutos de Huesos , Tomografía Computarizada de Haz Cónico , Implantación Dental Endoósea , Hidroxiapatitas , Elevación del Piso del Seno Maxilar , Humanos , Elevación del Piso del Seno Maxilar/métodos , Masculino , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Hidroxiapatitas/uso terapéutico , Implantación Dental Endoósea/métodos , Adulto , Sustitutos de Huesos/uso terapéutico , Trasplante Óseo/métodos , Anciano , Osteotomía/métodos
20.
Nano Lett ; 23(10): 4290-4297, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37141413

RESUMEN

Supramolecular structures of matrix proteins in mineralizing tissues are known to direct the crystallization of inorganic materials. Here we demonstrate how such structures can be synthetically directed into predetermined patterns for which functionality is maintained. The study employs block copolymer lamellar patterns with alternating hydrophilic and hydrophobic regions to direct the assembly of amelogenin-derived peptide nanoribbons that template calcium phosphate nucleation by creating a low-energy interface. Results show that the patterned nanoribbons retain their ß-sheet structure and function and direct the formation of filamentous and plate-shaped calcium phosphate with high fidelity, where the phase, amorphous or crystalline, depends on the choice of mineral precursor and the fidelity depends on peptide sequence. The common ability of supramolecular systems to assemble on surfaces with appropriate chemistry combined with the tendency of many templates to mineralize multiple inorganic materials implies this approach defines a general platform for bottom-up-patterning of hybrid organic-inorganic materials.


Asunto(s)
Biomimética , Nanotubos de Carbono , Polímeros/química , Minerales , Fosfatos de Calcio/química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA