Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400244

RESUMEN

A 28 GHz digitally controlled 6-bit phase shifter with a precision calibration technique in GaN high-electron mobility transistor (HEMT) technology is presented for Ka-band phased-array systems and applications. It comprises six stages, in which stages 1 and 2 for 5.625° and 11.25° are designed in the form of a switched-line circuit, and stages 3, 4, and 5 for 22.5°, 45°, and 90° are designed in the form of a switched-filter circuit. The final stage 6 for 180° is designed in a single-to-differential balun followed by a single-pole double-throw (SPDT) switch for achieving an efficient phase inversion. A novel continuous tuning calibration technique is proposed to improve the phase accuracy. It controls the gate bias voltage of off-state HEMTs at the stage 6 SPDT switch for fine calibration of the output phase. Fabricated in a 0.15 µm GaN HEMT process using a die size of 1.75 mm2, the circuit produces 64 phase states at 28 GHz with a 5.625° step. The experimental results show that the Root-Mean-Square (RMS) phase error is significantly improved from 8.56° before calibration to 1.08° after calibration. It is also found that the calibration does not induce significant changes for other performances such as the insertion loss, RMS amplitude error, and input-referred P1dB. This work successfully demonstrates that the GaN technology can be applied to millimeter-wave high-power phased-array transceiver systems.

2.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514670

RESUMEN

In this paper, a microwave monolithic integrated circuit (MMIC) high-power amplifier (HPA) for Ku-band active radar applications based on gallium nitride on silicon (GaN-on-Si) is presented. The design is based on a three-stage architecture and was implemented using the D01GH technology provided by OMMIC foundry. Details on the architecture definition and design process to maximize delivered power are provided along with stability and thermal analyses. To optimize the amplifier performance, an asymmetry was included at the output combiner. Experimental results show that the HPA achieves a 39.5 dBm pulsed-mode output power, a peak linear gain of 23 dB, a drain efficiency of 27%, and good input/output matching in the 16-19 GHz frequency range. The chip area is 5 × 3.5 mm2 and for the measurements was mounted on a custom-made module. These results demonstrate that GaN-on-Si-based Solid-State Power Amplifiers (SSPAs) can be used for the implementation of Ku-band active radars.

3.
Sensors (Basel) ; 23(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37430754

RESUMEN

This paper describes Monolithic Microwave Integrated Circuits (MMICs) for an X-band radar transceiver front-end implemented in 0.25 µm GaN High Electron Mobility Transistor (HEMT) technology. Two versions of single pole double throw (SPDT) T/R switches are introduced to realize a fully GaN-based transmit/receive module (TRM), each of which achieves an insertion loss of 1.21 dB and 0.66 dB at 9 GHz, IP1dB higher than 46.3 dBm and 44.7 dBm, respectively. Therefore, it can substitute a lossy circulator and limiter used for a conventional GaAs receiver. A driving amplifier (DA), a high-power amplifier (HPA), and a robust low-noise amplifier (LNA) are also designed and verified for a low-cost X-band transmit-receive module (TRM). For the transmitting path, the implemented DA achieves a saturated output power (Psat) of 38.0 dBm and output 1-dB compression (OP1dB) of 25.84 dBm. The HPA reaches a Psat of 43.0 dBm and power-added efficiency (PAE) of 35.6%. For the receiving path, the fabricated LNA measures a small-signal gain of 34.9 dB and a noise figure of 2.56 dB, and it can endure higher than 38 dBm input power in the measurement. The presented GaN MMICs can be useful in implementing a cost-effective TRM for Active Electronically Scanned Array (AESA) radar systems at X-band.

4.
Sensors (Basel) ; 21(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477377

RESUMEN

In this work, a TiO2-coated GaN nanowire-based back-gate field-effect transistor (FET) device was designed and implemented to address the well-known cross-sensitive nature of metal oxides. Even though a two-terminal TiO2/GaN chemiresistor is highly sensitive to NO2, it suffers from lack of selectivity toward NO2 and SO2. Here, a Si back gate with C-AlGaN as the gate dielectric was demonstrated as a tunable parameter, which enhances discrimination of these cross-sensitive gases at room temperature (20 °C). Compared to no bias, a back-gate bias resulted in a significant 60% increase in NO2 response, whereas the increase was an insignificant 10% in SO2 response. The differential change in gas response was explained with the help of a band diagram, derived from the energetics of molecular models based on density functional theory (DFT). The device geometries in this work are not optimized and are intended only for proving the concept.

5.
Sensors (Basel) ; 20(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668634

RESUMEN

In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group's work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2-Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed.

6.
Sensors (Basel) ; 19(5)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832229

RESUMEN

The fabrication of a single pixel sensor, which is a fundamental element device for the fabrication of an array-type pixel sensor, requires an integration technique of a photodetector and transistor on a wafer. In conventional GaN-based ultraviolet (UV) imaging devices, a hybrid-type integration process is typically utilized, which involves a backside substrate etching and a wafer-to-wafer bonding process. In this work, we developed a GaN-based UV passive pixel sensor (PPS) by integrating a GaN metal-semiconductor-metal (MSM) UV photodetector and a Schottky-barrier (SB) metal-oxide-semiconductor field-effect transistor (MOSFET) on an epitaxially grown GaN layer on silicon substrate. An MSM-type UV sensor had a low dark current density of 3.3 × 10-7 A/cm² and a high UV/visible rejection ratio of 10³. The GaN SB-MOSFET showed a normally-off operation and exhibited a maximum drain current of 0.5 mA/mm and a maximum transconductance of 30 µS/mm with a threshold voltage of 4.5 V. The UV PPS showed good UV response and a high dark-to-photo contrast ratio of 10³ under irradiation of 365-nm UV. This integration technique will provide one possible way for a monolithic integration of the GaN-based optoelectronic devices.

7.
Sensors (Basel) ; 18(2)2018 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-29401655

RESUMEN

Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e-, obtaining avalanche gains up to 10³. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.

8.
Sensors (Basel) ; 17(7)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28753989

RESUMEN

The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded AlxGa-xN buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded AlxGa1-xN buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 10-² A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers.

9.
J Colloid Interface Sci ; 678(Pt C): 789-795, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39312867

RESUMEN

Surface states have been a longstanding and sometimes underestimated problem in gallium nitride (GaN) based devices. The instability caused by surface-charge-trapping in GaN-based transistors is practically the same problem faced by the inventors of the silicon (Si) field effect transistors more than half a century ago. Although in Si this problem was eventually solved by oxygen and hydrogen-based passivation, in GaN, such breakthrough has yet to be made. Apparently, some of this surface charge originates in molecules adsorbed on its surface. Here, it is shown that the charge density associated with the GaN yellow band desorbs upon mild heat treatment in vacuum and re-adsorbs on exposure to the air. Selective exposure of GaN to nitrogen dioxide (NO2) reproduces this surface charge to its original distribution, as does exposure to air. Residual gas analysis of the gases desorbed during heat treatment shows a large concentration of nitric oxide (NO). These observations suggest that selective adsorption of NO2 is responsible for the surface charge that deleteriously affects the electrical properties of GaN. The physics and chemistry of this NO2 adsorption, reported here, may open a new path in the search for passivation to improve GaN device reliability.

10.
Materials (Basel) ; 17(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39336261

RESUMEN

The impact of wet treatment using an (NH4)2S-alcohol solution on the interface state of the p-GaN/Ni/Au/Pt contact system and laser diode processing was investigated. Sulfur wet cleaning resulted in reduced surface roughness and contact resistivity. The lowest specific contact resistance (ρc < 1 × 10-4 Ω·cm2) was achieved with samples treated with an (NH4)2S-isopropanol solution, whereas the highest resistivity (ρc = 3.3 × 10-4 Ω·cm2) and surface roughness (Ra = 16 nm) were observed in samples prepared by standard methods. Annealing the contact system in an N2 + O2 + H2O atmosphere caused degradation through species inter-diffusion and metal-metal solid solution formation, irrespective of the preparation method. Standard prepared substrates developed a thin GaN-Au intermediate layer at the interface after heat treatment. Enhanced adhesion and the absence of GaN decomposition were observed in samples additionally cleaned with the (NH4)2S-solvent solution. Complete oxidation of nickel to NiO was observed in samples that underwent additional sulfur solution treatment. The intensity of metal species mixing and nickel oxidation was influenced by the metal diffusion rate and was affected by the initial state of the GaN substrate obtained through different wet treatment methods.

11.
Materials (Basel) ; 17(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930290

RESUMEN

GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) technology and investigated using multiple characterization techniques of Nomarski microscopy (NM), high-resolution X-ray diffraction (HR-XRD), variable angular spectroscopic ellipsometry (VASE), Raman scattering, photoluminescence (PL), and synchrotron radiation (SR) near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NM confirmed crack-free wurtzite (w-) GaN thin films in a large range of 180-1500 nm. XRD identified the w- single crystalline structure for these GaN films with the orientation along the c-axis in the normal growth direction. An optimized 700 °C growth temperature, plus other corresponding parameters, was obtained for the PA-MBE growth of GaN on Si, exhibiting strong PL emission, narrow/strong Raman phonon modes, XRD w-GaN peaks, and high crystalline perfection. VASE studies identified this set of MBE-grown GaN/Si as having very low Urbach energy of about 18 meV. UV (325 nm)-excited Raman spectra of GaN/Si samples exhibited the GaN E2(low) and E2(high) phonon modes clearly without Raman features from the Si substrate, overcoming the difficulties from visible (532 nm) Raman measurements with strong Si Raman features overwhelming the GaN signals. The combined UV excitation Raman-PL spectra revealed multiple LO phonons spread over the GaN fundamental band edge emission PL band due to the outgoing resonance effect. Calculation of the UV Raman spectra determined the carrier concentrations with excellent values. Angular-dependent NEXAFS on Ga K-edge revealed the significant anisotropy of the conduction band of w-GaN and identified the NEXAFS resonances corresponding to different final states in the hexagonal GaN films on Si. Comparative GaN material properties are investigated in depth.

12.
Materials (Basel) ; 16(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834705

RESUMEN

In this paper, we investigate the effect of Pd thickness and heat treatment on Pd/Ni/Au/p-GaN metal contacts. The as-deposited samples exhibit a smooth morphology and non-linear I-V characteristics. Heat treatment in a N2 atmosphere leads to degradation of the contact microstructure, resulting in diffusion of Ga, void formation on the interface and mixing of metals. Annealing in a mixture of N2 and O2 improves adhesion and reduces contact resistance. However, this process also induces GaN decomposition and species mixing. The mixing of metal-Ga and metal-metal remains unaffected by the method of thermal treatment but depends on gas composition for thin Pd contacts. To achieve low-resistance contacts (≈1 × 10-4 Ω cm2), we found that increasing the Pd thickness and using N2 + O2 as the annealing environment are effective measures. Nevertheless, the degradation effect of the annealed contact microstructure in the form of the void generation becomes evident as the thickness of Pd increases. Laser diodes (LDs) with optimized palladium-based contacts operate at a voltage of 4.1 V and a current density of 3.3 kA/cm².

13.
J Mol Model ; 29(6): 170, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148380

RESUMEN

CONTEXT: Langmuir adsorption of gas molecules of NO, NO2, and NH3 on the graphitic GaN and GaP sheets has been accomplished using density functional theory. The changes of charge density have shown a more important charge transfer for GaN compared to GaP which acts both as the electron donor while gas molecules act as the stronger electron acceptors through adsorption on the graphitic-like GaN surface. The adsorption of NO and NO2 molecules introduced spin polarization in the PL-GaN sheet, indicating that it can be employed as a magnetic gas sensor for NO and NO2 sensing. METHODS: The partial electron density states based on "PDOS" graphs have explained that the NO and NO2 states in both of GaN and GaP nanosheets, respectively, have more of the conduction band between - 5 and - 10 eV, while expanded contribution of phosphorus states is close to gallium states, but nitrogen and oxygen states have minor contributions. GaN and GaP nanosheets represent having enough capability for adsorbing gases of NO, NO2, and NH3 through charge transfer from nitrogen atom and oxygen atom to the gallium element owing to intra-atomic and interatomic interactions. Ga sites in GaN and GaP nanosheets have higher interaction energy from Van der Waals' forces with gas molecules.

14.
Nanoscale Res Lett ; 17(1): 14, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032235

RESUMEN

In this work, a vertical gallium nitride (GaN)-based trench MOSFET on 4-inch free-standing GaN substrate is presented with threshold voltage of 3.15 V, specific on-resistance of 1.93 mΩ·cm2, breakdown voltage of 1306 V, and figure of merit of 0.88 GW/cm2. High-quality and stable MOS interface is obtained through two-step process, including simple acid cleaning and a following (NH4)2S passivation. Based on the calibration with experiment, the simulation results of physical model are consistent well with the experiment data in transfer, output, and breakdown characteristic curves, which demonstrate the validity of the simulation data obtained by Silvaco technology computer aided design (Silvaco TCAD). The mechanisms of on-state and breakdown are thoroughly studied using Silvaco TCAD physical model. The device parameters, including n--GaN drift layer, p-GaN channel layer and gate dielectric layer, are systematically designed for optimization. This comprehensive analysis and optimization on the vertical GaN-based trench MOSFETs provide significant guide for vertical GaN-based high power applications.

15.
Adv Sci (Weinh) ; 9(17): e2200910, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35404518

RESUMEN

The ability to quantitatively monitor various cellular activities is critical for understanding their biological functions and the therapeutic response of cells to drugs. Unfortunately, existing approaches such as fluorescent staining and impedance-based methods are often hindered by their multiple time-consuming preparation steps, sophisticated labeling procedures, and complicated apparatus. The cost-effective, monolithic gallium nitride (GaN) photonic chip has been demonstrated as an ultrasensitive and ultracompact optical refractometer in a previous work, but it has never been applied to cell studies. Here, for the first time, the so-called GaN chipscope is proposed to quantitatively monitor the progression of different intracellular processes in a label-free manner. Specifically, the GaN-based monolithic chip enables not only a photoelectric readout of cellular/subcellular refractive index changes but also the direct imaging of cellular/subcellular ultrastructural features using a customized differential interference contrast (DIC) microscope. The miniaturized chipscope adopts an ultracompact design, which can be readily mounted with conventional cell culture dishes and placed inside standard cell incubators for real-time observation of cell activities. As a proof-of-concept demonstration, its applications are explored in 1) cell adhesion dynamics monitoring, 2) drug screening, and 3) cell differentiation studies, highlighting its potential in broad fundamental cell biology studies as well as in clinical applications.


Asunto(s)
Galio , Adhesión Celular , Galio/química , Incubadoras , Refractometría
16.
Front Microbiol ; 13: 970147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188007

RESUMEN

Gallium (Ga) is considered a high-tech Critical Metal, used in the manufacture of several microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). The current high demand for this critical metal urges the development of effective recovery processes from secondary resources such as mine tailings or electronic recycling material. The importance of bioleaching as a biotechnological process to recover metals prompted this study, where an integrative approach combining experimental and genomic analysis was undertaken to identify potential mechanisms involved in bioleaching ability and strategies to cope with high metal(loid)s concentrations in five mine isolates. The Clusters of Orthologous Group (COG) annotation showed that the "amino acid transport and metabolism" [E] was the most predominant functional category in all genomes. In addition, the KEEG pathways analysis also showed predicted genes for the biosynthetic pathways of most amino acids, indicating that amino acids could have an important role in the Ga leaching mechanism. The presence of effective resistance mechanisms to Ga and arsenic (As) was particularly important in GaAs bioleaching batch assays, and might explain the divergence in bioleaching efficiency among the bacterial strains. Rhodanobacter sp. B2A1Ga4 and Sphingomonas sp. A2-49 with higher resistance, mainly to As, were the most efficient bioleaching strains under these conditions. In bioleaching assays using cell-free spent medium Arthrobacter silviterrae A2-55 with lower As resistance outperformed all the other stains. Overall, higher efficiency in Ga leaching was obtained in bioleaching assays using GaAs when compared to GaN.

17.
Materials (Basel) ; 15(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35329651

RESUMEN

A study is presented on the synthesis of reaction-mixed nitride nanopowders in the reference system of aluminium nitride AlN, gallium nitride GaN, and titanium nitride TiN (Al:Ga:Ti = 1:1:1) followed by their high-pressure and high-temperature sintering towards novel multi-nitride composite nanoceramics. The synthesis starts with a 4 h reflux in hexane of the mixture of the respective metal dimethylamides, which is followed by hexane evacuation, and reactions of the residue in liquid ammonia at -33 °C to afford a mixed metal amide/imide precursor. Plausible equilibration towards a bimetallic Al/Ga-dimethylamide compound upon mixing of the solutions of the individual metal-dimethylamide precursors containing dimeric {Al[N(CH3)2]3}2 and dimeric {Ga[N(CH3)2]3}2 is confirmed by 1H- and 13C{H}-NMR spectroscopy in C6D6 solution. The precursor is pyrolyzed under ammonia at 800 and 950 °C yielding, respectively, two different reaction-mixed composite nitride nanopowders. The latter are subjected to no-additive high-pressure and high-temperature sintering under conditions either conservative for the initial powder nanocrystallinity (650 °C, 7.7 GPa) or promoting crystal growth/recrystallization and, possibly, solid solution formation via reactions of AlN and GaN towards Al0.5Ga0.5N (1000 and 1100 °C, 7.7 GPa). The sintered composite pellets show moderately high mechanical hardness as determined by the Vicker's method. The starting nanopowders and resulting nanoceramics are characterized by powder XRD, Raman spectroscopy, and SEM/EDX. It is demonstrated that, in addition to the multi-nitride composite nanoceramics of hexagonal AlN/hexagonal GaN/cubic TiN, under specific conditions the novel composite nanoceramics made of hexagonal Al0.5Ga0.5N and cubic TiN can be prepared.

18.
Materials (Basel) ; 15(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36234338

RESUMEN

In this paper, we investigate, using X-ray Bragg diffraction imaging and defect selective etching, a new type of extended defect that occurs in ammonothermally grown gallium nitride (GaN) single crystals. This hexagonal "honeycomb" shaped defect is composed of bundles of parallel threading edge dislocations located in the corners of the hexagon. The observed size of the honeycomb ranges from 0.05 mm to 2 mm and is clearly correlated with the number of dislocations located in each of the hexagon's corners: typically ~5 to 200, respectively. These dislocations are either grouped in areas that exhibit "diameters" of 100-250 µm, or they show up as straight long chain alignments of the same size that behave like limited subgrain boundaries. The lattice distortions associated with these hexagonally arranged dislocation bundles are extensively measured on one of these honeycombs using rocking curve imaging, and the ensemble of the results is discussed with the aim of providing clues about the origin of these "honeycombs".

19.
Materials (Basel) ; 15(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35160771

RESUMEN

The self-heating effects (SHEs) on the electrical characteristics of the GaN MOSFETs with a stacked TiO2/Si3N4 dual-layer insulator are investigated by using rigorous TCAD simulations. To accurately analyze them, the GaN MOSFETs with Si3N4 single-layer insulator are conducted to the simulation works together. The stacked TiO2/Si3N4 GaN MOSFET has a maximum on-state current of 743.8 mA/mm, which is the improved value due to the larger oxide capacitance of TiO2/Si3N4 than that of a Si3N4 single-layer insulator. However, the electrical field and current density increased by the stacked TiO2/Si3N4 layers make the device's temperature higher. That results in the degradation of the device's performance. We simulated and analyzed the operation mechanisms of the GaN MOSFETs modulated by the SHEs in view of high-power and high-frequency characteristics. The maximum temperature inside the device was increased to 409.89 K by the SHEs. In this case, the stacked TiO2/Si3N4-based GaN MOSFETs had 25%-lower values for both the maximum on-state current and the maximum transconductance compared with the device where SHEs did not occur; Ron increased from 1.41 mΩ·cm2 to 2.56 mΩ·cm2, and the cut-off frequency was reduced by 26% from 5.45 GHz. Although the performance of the stacked TiO2/Si3N4-based GaN MOSFET is degraded by SHEs, it shows superior electrical performance than GaN MOSFETs with Si3N4 single-layer insulator.

20.
Micromachines (Basel) ; 12(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34442485

RESUMEN

This study investigated the combined effects of proton irradiation and surface pre-treatment on the current characteristics of Gallium Nitride (GaN)-based metal-insulator-semiconductor high-electron-mobility-transistors (MIS-HEMTs) to evaluate the radiation hardness involved with the Silicon Nitride (SiN) passivation/GaN cap interface. The impact of proton irradiation on the static and dynamic current characteristics of devices with and without pre-treatment were analyzed with 5 MeV proton irradiation. In terms of transfer characteristics before and after the proton irradiation, the drain current of the devices without and with pre-treatment were reduced by an increase in sheet and contact resistances after the proton irradiation. In contrast with the static current characteristics, the gate-lag characteristics of the device with pre-treatment were significantly degenerated. In the device with pre-treatment, the hydrogen passivation for surface states of the GaN cap was formed by the pre-treatment and SiN deposition processes. Since the hydrogen passivation was removed by the proton irradiation, the newly created vacancies resulted in the degeneration of gate-lag characteristics. After nine months in an ambient atmosphere, the gate-lag characteristics of the device with pre-treatment were recovered because of the hydrogen recombination. These results demonstrated that the radiation hardness of MIS-HEMTs was affected by the SiN/GaN interface quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA