Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 700
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 285: 120492, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070840

RESUMEN

BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBVdHb) rather than CVR. With this in mind, a new method was implemented to map a marker of CBVdHb, termed BOLD-CBV, based on the normalization of voxel-wise BOLD signal variation by an estimate of the intravascular venous BOLD signal from voxels filled with venous blood. The intravascular venous BOLD signal variation, recorded during repeated breath-holding, was extracted from the superior sagittal sinus in a cohort of 27 healthy volunteers and used as a regressor across the whole brain, yielding maps of BOLD-CBV. In the same cohort, we demonstrated the potential use of BOLD-CBV for the normalization of stimulus-evoked BOLD fMRI by comparing group-level BOLD fMRI responses to a visuomotor learning task with and without the inclusion of voxel-wise vascular covariates of BOLD-CBV and the BOLD signal change per mmHg variation in end-tidal carbon dioxide (BOLD-CVR). The empirical measure of BOLD-CBV accounted for more between-subject variability in the motor task-induced BOLD responses than BOLD-CVR estimated from end-tidal carbon dioxide recordings. The new method can potentially increase the power of group fMRI studies by including a measure of vascular characteristics and has the strong practical advantage of not requiring experimental measurement of end-tidal carbon dioxide, unlike traditional methods to estimate BOLD-CVR. It also more closely represents a specific physiological characteristic of brain vasculature than BOLD-CVR, namely blood volume.


Asunto(s)
Dióxido de Carbono , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Volumen Sanguíneo Cerebral , Encéfalo/fisiología , Mapeo Encefálico/métodos , Circulación Cerebrovascular/fisiología , Oxígeno
2.
Hum Brain Mapp ; 45(1): e26515, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38183372

RESUMEN

Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold (BH) task is commonly used to understand cerebrovascular reactivity (CVR) in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's BH data set from the Nathan Kline Institute (NKI) Rockland Sample (aged 6-18 years old at enrollment). A general linear model approach was applied to derive CVR from BH data. To model both the longitudinal and cross-sectional effects of age on BH response, we used mixed-effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased BH BOLD signals in multiple networks across age, in which linear and logarithmic mixed-effects models provided the best fit with the lowest Akaike information criterion scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes that occur with age.


Asunto(s)
Circulación Cerebrovascular , Imagen por Resonancia Magnética , Niño , Humanos , Adolescente , Imagen por Resonancia Magnética/métodos , Estudios Transversales , Circulación Cerebrovascular/fisiología , Oxígeno , Encéfalo/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-39241005

RESUMEN

While existing literature covers significant detail on the physiology of human freediving, the lack of standardized protocols has hindered comparisons due to confounding variables such as exercise and depth. By accounting for these variables, direct depth-dependent impacts on cardiovascular and blood oxygen regulation can be investigated. In this study, depth-dependent effects on 1) cerebral hemodynamic and oxygenation changes, 2) arterial oxygen saturation (SpO2), and 3) heart rate during breath-hold diving without confounding effects of exercise were investigated. Six freedivers (51.0 ± 12.6 years; mean ± s.d.), instrumented with continuous-wave near-infrared spectroscopy for monitoring cerebral hemodynamic and oxygenation measurements, heart rate and SpO2, performed sled-assisted breath-hold dives to 15 m and 42 m. Arterial blood gas tensions were validated through cross-sectional periodic blood sampling. Cerebral hemodynamic changes were characteristic of breath-hold diving, with changes during ascent from both depths likely driven by decreasing SpO2 due to lung expansion. While SpO2 was significantly lower following 42 m dives (t(5) = -4.183, p < 0.05), mean cerebral arterial-venous blood oxygen saturation remained at 74% following dives to both depths. Cerebral oxygenation during ascent from 42 m may have been maintained through increased arterial delivery. Heart rate was variable with no significant difference in minimum heart rate between both depths (t(5) = -1.017, p > 0.05). This study presents a standardized methodology, which could provide a basis for future research on human freediving physiology and uncover ways in which freedivers can reduce potential risks of the sport.

4.
J Magn Reson Imaging ; 59(2): 688-698, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37194646

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) stromal disposition is thought to influence chemotherapy efficacy and increase tissue stiffness, which could be quantified noninvasively via MR elastography (MRE). Current methods cause position-based errors in pancreas location over time, hampering accuracy. It would be beneficial to have a single breath-hold acquisition. PURPOSE: To develop and test a single breath-hold three-dimensional MRE technique utilizing prospective undersampling and a compressed sensing reconstruction (CS-MRE). STUDY TYPE: Prospective. POPULATION: A total of 30 healthy volunteers (HV) (31 ± 9 years; 33% male) and five patients with PDAC (69 ± 5 years; 80% male). FIELD STRENGTH/SEQUENCE: 3-T, GRE Ristretto MRE. ASSESSMENT: First, optimization of multi breath-hold MRE was done in 10 HV using four combinations of vibration frequency, number of measured wave-phase offsets, and TE and looking at MRE quality measures in the pancreas head. Second, viscoelastic parameters delineated in the pancreas head or tumor of CS-MRE were compared against (I) 2D and (II) 3D four breath-hold acquisitions in HV (N = 20) and PDAC patients. Intrasession repeatability was assessed for CS-MRE in a subgroup of healthy volunteers (N = 15). STATISTICAL TESTS: Tests include repeated measures analysis of variance (ANOVA), Bland-Altman analysis, and coefficients of variation (CoVs). A P-value <.05 was considered statistically significant. RESULTS: Optimization of the four breath-hold acquisitions resulted in 40 Hz vibration frequency, five wave-phases, and echo time (TE) = 6.9 msec as the preferred method (4BH-MRE). CS-MRE quantitative results did not differ from 4BH-MRE. Shear wave speed (SWS) and phase angle differed significantly between HV and PDAC patients using 4BH-MRE or CS-MRE. The limits of agreement for SWS were [-0.09, 0.10] m/second and the within-subject CoV was 4.8% for CS-MRE. DATA CONCLUSION: CS-MRE might allow a single breath-hold MRE acquisition with comparable SWS and phase angle as 4BH-MRE, and it may still enable to differentiate between HV and PDAC. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias Pancreáticas , Humanos , Masculino , Femenino , Estudios Prospectivos , Diagnóstico por Imagen de Elasticidad/métodos , Reproducibilidad de los Resultados , Contencion de la Respiración , Páncreas/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
5.
Exp Physiol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031986

RESUMEN

Acute breath-holding (apnoea) induces a spleen contraction leading to a transient increase in haemoglobin concentration. Additionally, the apnoea-induced hypoxia has been shown to lead to an increase in erythropoietin concentration up to 5 h after acute breath-holding, suggesting long-term haemoglobin enhancement. Given its potential to improve haemoglobin content, an important determinant for oxygen transport, apnoea has been suggested as a novel training method to improve aerobic performance. This review aims to provide an update on the current state of the literature on this topic. Although the apnoea-induced spleen contraction appears to be effective in improving oxygen uptake kinetics, this does not seem to transfer into immediately improved aerobic performance when apnoea is integrated into a warm-up. Furthermore, only long and intense apnoea protocols in individuals who are experienced in breath-holding show increased erythropoietin and reticulocytes. So far, studies on inexperienced individuals have failed to induce acute changes in erythropoietin concentration following apnoea. As such, apnoea training protocols fail to demonstrate longitudinal changes in haemoglobin mass and aerobic performance. The low hypoxic dose, as evidenced by minor oxygen desaturation, is likely insufficient to elicit a strong erythropoietic response. Apnoea therefore does not seem to be useful for improving aerobic performance. However, variations in apnoea, such as hypoventilation training at low lung volume and repeated-sprint training in hypoxia through short end-expiratory breath-holds, have been shown to induce metabolic adaptations and improve several physical qualities. This shows promise for application of dynamic apnoea in order to improve exercise performance. HIGHLIGHTS: What is the topic of this review? Apnoea is considered as an innovative method to improve performance. This review discusses the effectiveness of apnoea (training) on performance. What advances does it highlight? Although the apnoea-induced spleen contraction and the increase in EPO observed in freedivers seem promising to improve haematological variables both acutely and on the long term, they do not improve exercise performance in an athletic population. However, performing repeated sprints on end-expiratory breath-holds seems promising to improve repeated-sprint capacity.

6.
J Cardiovasc Magn Reson ; 26(2): 101046, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810732

RESUMEN

BACKGROUND: Three-dimensional (3D) contrast-enhanced magnetic resonance angiography (CEMRA) is routinely used for vascular evaluation. With existing techniques for CEMRA, diagnostic image quality is only obtained during the first pass of the contrast agent or shortly thereafter, whereas angiographic quality tends to be poor when imaging is delayed to the equilibrium phase. We hypothesized that prolonged blood pool contrast enhancement could be obtained by imaging with a balanced T1 relaxation-enhanced steady-state (bT1RESS) pulse sequence, which combines 3D balanced steady-state free precession (bSSFP) with a saturation recovery magnetization preparation to impart T1 weighting and suppress background tissues. An electrocardiographic-gated, two-dimensional-accelerated version with isotropic 1.1-mm spatial resolution was evaluated for breath-hold equilibrium phase CEMRA of the thoracic aorta and heart. METHODS: The study was approved by the institutional review board. Twenty-one subjects were imaged using unenhanced 3D bSSFP, time-resolved CEMRA, first-pass gated CEMRA, followed by early and late equilibrium phase gated CEMRA and bT1RESS. Nine additional subjects were imaged using equilibrium phase 3D bSSFP and bT1RESS. Images were evaluated for image quality, aortic root sharpness, and visualization of the coronary artery origins, as well as using standard quantitative measures. RESULTS: Equilibrium phase bT1RESS provided better image quality, aortic root sharpness, and coronary artery origin visualization than gated CEMRA (P < 0.05), and improved image quality and aortic root sharpness versus unenhanced 3D bSSFP (P < 0.05). It provided significantly larger apparent signal-to-noise and apparent contrast-to-noise ratio values than gated CEMRA and unenhanced 3D bSSFP (P < 0.05) and provided ninefold better fluid suppression than equilibrium phase 3D bSSFP. Aortic diameter and main pulmonary artery diameter measurements obtained with bT1RESS and first-pass gated CEMRA strongly correlated (P < 0.05). CONCLUSIONS: We found that using bT1RESS greatly prolongs the useful duration of blood pool contrast enhancement while improving angiographic image quality compared with standard CEMRA techniques. Although further study is needed, potential advantages for vascular imaging include eliminating the current requirement for first-pass imaging along with better reliability and accuracy for a wide range of cardiovascular applications.

7.
Anal Bioanal Chem ; 416(6): 1485-1492, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38270634

RESUMEN

The study focuses on the application range of nitrous oxide as a hold-up time marker in supercritical fluid chromatography (SFC). This compound has been suggested a decade ago to be used as unretained marker, something that the field of SFC was missing for a long time, since its beneficial properties make it an ideal candidate as hold-up time marker. Determination of the hold-up volume and actual volumetric flow rates have always been problematic in SFC due to the compressibility of carbon dioxide and one part of this is the difficulty of hold-up time measurements. Depending on the mobile phase, different methods have been used to measure the hold-up time with varying results. Nitrous oxide and other molecules have been compared in different conditions, mobile phases and stationary phases. In all cases, nitrous oxide gave the lowest elution times. However, detection was difficult in mobile phases containing 10% or more of organic modifier, because most solvents mask the signal of nitrous oxide. Interestingly, the choice of stationary phase also had a slight effect on detection, while different pressure and temperature settings affected each compound in a different manner.

8.
J Sep Sci ; 47(16): e2400419, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39178022

RESUMEN

A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically for gas chromatographic systems in this work. With this approach, it is possible to easily calculate flow and pressures in complex gas chromatographic systems, like flow-modulated or thermal-modulated multidimensional gas chromatographic systems, or systems with multiple outlets at different pressures. A mathematic abstraction using graph theory is used to represent the system of capillaries. With this graph, the flow balance equations at the connections of the capillaries can easily be set up. Using a computer algebra system, the system of flow balance equations can be solved for the pressures at the connection points. For simple systems, this approach is presented, and calculated flows, pressures, and hold-up times are compared with measured values. In addition, two complex systems (4-Way-Splitter, Deans Switch system) of capillaries are presented with calculations only. For these systems, certain conditions were formulated, that is, a certain difference in hold-up times and a defined split ratio between different paths of these systems. Using a numeric non-linear solver, configurations of these systems were found, that fulfill these conditions.

9.
Artif Organs ; 48(1): 70-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37819003

RESUMEN

BACKGROUND: Dynamic respiratory maneuvers induce heterogenous changes to flow-pulsatility in continuous-flow left ventricular assist device patients. We evaluated the association of these pulsatility responses with patient hemodynamics and outcomes. METHODS: Responses obtained from HVAD (Medtronic) outpatients during successive weekly clinics were categorized into three ordinal groups according to the percentage reduction in flow-waveform pulsatility (peak-trough flow) upon inspiratory-breath-hold, (%∆P): (1) minimal change (%∆P ≤ 50), (2) reduced pulsatility (%∆P > 50 but <100), (3) flatline (%∆P = 100). Same-day echocardiography and right-heart-catheterization were performed. Readmissions were compared between patients with ≥1 flatline response (F-group) and those without (NF-group). RESULTS: Overall, 712 responses were obtained from 55 patients (82% male, age 56.4 ± 11.5). When compared to minimal change, reduced pulsatility and flatline responses were associated with lower central venous pressure (14.2 vs. 11.4 vs. 9.0 mm Hg, p = 0.08) and pulmonary capillary wedge pressure (19.8 vs. 14.3 vs. 13.0 mm Hg, p = 0.03), lower rates of ≥moderate mitral regurgitation (48% vs. 13% vs. 10%, p = 0.01), lower rates of ≥moderate right ventricular impairment (62% vs. 25% vs. 27%, p = 0.03), and increased rates of aortic valve opening (32% vs. 50% vs. 75%, p = 0.03). The F-group (n = 28) experienced numerically lower all-cause readmissions (1.51 vs. 2.79 events-per-patient-year [EPPY], hazard-ratio [HR] = 0.67, p = 0.12), reduced heart failure readmissions (0.07 vs. 0.57 EPPY, HR = 0.15, p = 0.008), and superior readmission-free survival (HR = 0.47, log-rank p = 0.04). Syncopal readmissions occurred exclusively in the F-group (0.20 vs. 0 EPPY, p = 0.01). CONCLUSION: Responses to inspiratory-breath-hold predicted hemodynamics and readmission risk. The impact of inspiratory-breath-hold on pulsatility can non-invasively guide hemodynamic management decisions, patient optimization, and readmission risk stratification.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Femenino , Readmisión del Paciente , Corazón Auxiliar/efectos adversos , Función Ventricular Izquierda/fisiología , Presión Esfenoidal Pulmonar , Cateterismo Cardíaco , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Hemodinámica/fisiología , Estudios Retrospectivos
10.
Eur J Appl Physiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044031

RESUMEN

PURPOSE: Apnea duration is dependent on three factors: oxygen storage, oxygen consumption, hypoxia and hypercapnia tolerance. While current literature focuses on maximal apneas to improve apnea duration, apnea trained individuals use timed-repeated submaximal apneas, called "O2 and CO2 tables". These tables claim to accommodate the body to cope with hypoxia and hypercapnia, respectively. The aim of this study was twofold. First, to investigate the determinants of maximal apnea duration in apnea novices. Second, to compare physiologic responses to maximal apneas, O2 and CO2 tables. METHODS: After medical screening, lung function test and hemoglobin mass measurement, twenty-eight apnea novices performed three apnea protocols in random order: maximal apneas, O2 table and CO2 table. During apnea, peripheral oxygen saturation (SpO2), heart rate (HR), muscle (mTOI) and cerebral (cTOI) tissue oxygenation index were measured continuously. End-tidal carbon dioxide (EtCO2) was measured before and after apneas. RESULTS: Larger lung volumes, higher resting cTOI and lower resting EtCO2 levels correlated with longer apnea durations. Maximal apneas induced greater decreases in SpO2 (- 16%) and cTOI (- 13%) than O2 (- 8%; - 8%) and CO2 tables (- 6%; - 6%), whereas changes in EtCO2, HR and mTOI did not differ between protocols. CONCLUSION: These results suggest that, in apnea novices, O2 and CO2 tables did not induce a more profound hypoxia and hypercapnia, but a similar reduction in oxygen consumption than maximal apneas. Therefore, apnea novices should mainly focus on maximal apneas to improve hypoxia and hypercapnia tolerance. The use of specific lung training protocols can help to increase oxygen storage capacity.

11.
Eur J Appl Physiol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138688

RESUMEN

PURPOSE: To investigate the impact of voluntary hypoventilation at low lung volumes (VHL) during upper body repeated sprints (RS) on performance, metabolic markers and muscle oxygenation in Brazilian Jiu-Jitsu (BJJ) athletes. METHODS: Eighteen male well-trained athletes performed two randomized RS sessions, one with normal breathing (RSN) and another with VHL (RS-VHL), on an arm cycle ergometer, consisting of two sets of eight all-out 6-s sprints performed every 30 s. Peak (PPO), mean power output (MPO), and RS percentage decrement score were calculated. Arterial oxygen saturation (SpO2), heart rate (HR), gas exchange, and muscle oxygenation of the long head of the triceps brachii were continuously recorded. Blood lactate concentration ([La]) was measured at the end of each set. Bench press throw peak power (BPPP) was recorded before and after the RS protocol. RESULTS: Although SpO2 was not different between conditions, PPO and MPO were significantly lower in RS-VHL. V ˙ E, HR, [La], and RER were lower in RS-VHL, and VO2 was higher in RS-VLH than in RSN. Muscle oxygenation was not different between conditions nor was its pattern of change across the RS protocol influenced by condition. [La] was lower in RS-VHL than in RSN after both sets. CONCLUSION: Performance was significantly lower in RS-VHL, even though SPO2 was not consistent with hypoxemia. However, the fatigue index was not significantly affected by VHL, nor was the neuromuscular upper body power after the RS-VHL protocol. Additionally, [La] was lower, and oxygen consumption was higher in RS-VHL, suggesting a higher aerobic contribution in this condition.

12.
Acta Radiol ; 65(7): 735-743, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38343006

RESUMEN

BACKGROUND: Breath-hold volumetric interpolated breath-hold examination (BH-VIBE) of multiphase contrast-enhanced liver magnetic resonance imaging (MPCE-LMRI) requires good cooperative individuals to comply with multiple breath-holds. PURPOSE: To develop a free-breathing modified VIBE (FB-mVIBE) as a substitute of BH-VIBE in MPCE-LMRI. MATERIAL AND METHODS: We modified VIBE with a high acceleration factor (2 × 2) and four averages to produce the mVIBE scan. A total of 90 individuals (40 men; mean age = 54.6 ± 10.0 years) who had received MPCE-LMRI as part of a voluntary health check-up for oncology survey were enrolled. Each participant was scanned in four phases (pre-contrast, arterial phase, venous phase, and delay phase), and each phase had two sequential scans. To encounter the timing effect of contrast enhancement, three scan orders were designed: BH-VIBE and FB-mVIBE (group A, n = 30); BH-VIBE and FB-VIBE (group B, n = 30); and FB-mVIBE and BH-VIBE (group C, n = 30). The comparisons included the objective measurements and 25 visual-score by two abdominal radiologists independently. RESULTS: Consistency between raters was observed for all three sequences (intraclass correlation coefficient [ICC] = 0.741-0.829). For rater 1, the mean scores of FB-mVIBE (23.67 ± 1.32) were equal to those of BH-VIBE (23.83 ± 1.98) in groups C and B (P = 0.852). The mean scores of FB-mVIBE (22.07 ± 3.02), but significantly higher than those of FB-VIBE (14.7 ± 3.41) in groups A and B (P <0.001). Similar scores were found for rater 2. The objective measurement of FB-mVIBE were equal to or higher than BH-VIBE and markedly superior to FB-VIBE. CONCLUSION: FB-mVIBE is a practical alternative to BH-VIBE for individuals who cannot cooperate with multiple breath-holds for MPCE-LMRI.


Asunto(s)
Contencion de la Respiración , Medios de Contraste , Hígado , Imagen por Resonancia Magnética , Humanos , Masculino , Persona de Mediana Edad , Femenino , Imagen por Resonancia Magnética/métodos , Hígado/diagnóstico por imagen , Aumento de la Imagen/métodos , Anciano , Reproducibilidad de los Resultados , Adulto , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Hepatopatías/diagnóstico por imagen
13.
Bioethics ; 38(8): 667-673, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38989594

RESUMEN

Involuntary psychiatric holds, such as the 5150 hold in California, allow for an individual to be taken into custody for evaluation and treatment for up to 72 h when they present a risk of danger to themselves. 5150s and other coerced holds present a bioethical tension as patient autonomy is overridden to provide psychiatric care. I discuss two arguments that aim to provide ethical justifications for overriding patient autonomy during 5150 holds: the "clinical benefit" and "lack of capacity" arguments. By demonstrating that these arguments do not always hold, I argue that overriding patient autonomy during 5150 holds is not always ethical and can be harmful. Lastly, I make recommendations for the 5150 and similar involuntary psychiatric holds to minimize harmful breaches of patient dignity: creating consistent field guidelines for assessing prehospital capacity, educating prehospital providers about the potential harms of 5150s, and utilizing existing support structures within the social context of the patient when they have capacity to refuse further prehospital care.


Asunto(s)
Coerción , Autonomía Personal , Humanos , Negativa del Paciente al Tratamiento/ética , Competencia Mental , California , Internamiento Obligatorio del Enfermo Mental , Trastornos Mentales/terapia , Personeidad , Respeto
14.
J Appl Clin Med Phys ; 25(8): e14414, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38803045

RESUMEN

PURPOSE: To evaluate the intra-fractional tumor motion in lung stereotactic body radiotherapy (SBRT) with deep inspiration breath-hold (DIBH), and to investigate the adequacy of the current planning target volume (PTV) margins. METHODS: Twenty-eight lung SBRT patients with DIBH were selected in this study. Among the lesions, twenty-three were at right or left lower lobe, two at right middle lobe, and three at right or left upper lobe. Post-treatment gated cone-beam computed tomography (CBCT) was acquired to quantify the intra-fractional tumor shift at each treatment. These obtained shifts were then used to calculate the required PTV margin, which was compared with the current applied margin of 5 mm margin in anterior-posterior (AP) and right-left (RL) directions and 8 mm in superior-inferior (SI) direction. The beam delivery time was prolonged with DIBH. The actual beam delivery time with DIBH (Tbeam_DIBH) was compared with the beam delivery time without DIBH (Tbeam_wo_DIBH) for the corresponding SBRT plan. RESULTS: A total of 113 treatments were analyzed. At six treatments (5.3%), the shifts exceeded the tolerance defined by the current PTV margin. The average shifts were 0.0 ± 1.9 mm, 0.1±1.5 mm, and -0.5 ± 3.7 mm in AP, RL, and SI directions, respectively. The required PTV margins were determined to be 4.5, 3.9, and 7.4 mm in AP, RL, and SI directions, respectively. The average Tbeam_wo_DIBH and Tbeam_DIBH were 2.4 ± 0.4 min and 3.6 ± 1.5 min, respectively. The average treatment slot for lung SBRT with DIBH was 25.3 ± 7.9 min. CONCLUSION: Intra-fractional tumor motion is the predominant source of treatment uncertainties in CBCT-guided lung SBRT with DIBH. The required PTV margin should be determined based on data specific to each institute, considering different techniques and populations. Our data indicate that our current applied PTV margin is adequate, and it is possible to reduce further in the RL direction. The time increase of Tbeam_DIBH, relative to the treatment slot, is not clinically significant.


Asunto(s)
Contencion de la Respiración , Tomografía Computarizada de Haz Cónico , Neoplasias Pulmonares , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Planificación de la Radioterapia Asistida por Computador/métodos , Radiocirugia/métodos , Tomografía Computarizada de Haz Cónico/métodos , Radioterapia de Intensidad Modulada/métodos , Masculino , Anciano , Femenino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Movimiento , Anciano de 80 o más Años , Fraccionamiento de la Dosis de Radiación , Pronóstico , Inhalación
15.
J Appl Clin Med Phys ; 25(6): e14271, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38273673

RESUMEN

PURPOSE: The use of volumetric modulated arc therapy (VMAT), simultaneous integrated boost (SIB), and hypofractionated regimen requires adequate patient setup accuracy to achieve an optimal outcome. The purpose of this study was to assess the setup accuracy of patients receiving left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT) and to calculate the corresponding setup margins. METHODS: The patient setup accuracy between and within radiotherapy fractions was measured by comparing the 6DOF shifts made by the SGRT system AlignRT with the shifts made by kV-CBCT. Three hundred and three radiotherapy fractions of 23 left-sided breast cancer patients using DIBH and SGRT were used for the analysis. All patients received pre-treatment DIBH training and visual feedback during DIBH. An analysis of variance (ANOVA) was used to test patient setup differences for statistical significance. The corresponding setup margins were calculated using the van Herk's formula. RESULTS: The intrafractional patient setup accuracy was significantly better than the interfractional setup accuracy (p < 0.001). The setup margin for the combined inter- and intrafractional setup error was 4, 6, and 4 mm in the lateral, longitudinal, and vertical directions if based on SGRT alone. The intrafractional error contributed ≤1 mm to the calculated setup margins. CONCLUSION: With SGRT, excellent intrafractional and acceptable interfractional patient setup accuracy can be achieved for the radiotherapy of left-sided breast cancer using DIBH and modern radiation techniques. This allows for reducing the frequency of kV-CBCTs, thereby saving treatment time and radiation exposure.


Asunto(s)
Contencion de la Respiración , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Errores de Configuración en Radioterapia , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Neoplasias de Mama Unilaterales , Humanos , Femenino , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de Mama Unilaterales/radioterapia , Errores de Configuración en Radioterapia/prevención & control , Radioterapia Guiada por Imagen/métodos , Órganos en Riesgo/efectos de la radiación , Persona de Mediana Edad , Neoplasias de la Mama/radioterapia , Pronóstico
16.
Sensors (Basel) ; 24(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39204825

RESUMEN

This study researched the prediction of the BSR noise evaluation quantitative index, Loudness N10, for sound sources with noise using statistics and machine learning. A total of 1170 data points was obtained from 130 automotive seats measured at 9-point positions, with Gaussian noise integrated to construct synthetic sound data. Ten physical quantities related to sound quality and sound pressure were used and defined as dB and fluctuation strength, considering statistical characteristics and Loudness N10. BSR quantitative index prediction was performed using regression analysis with K-fold cross-validation, DNN in hold-out, and DNN in K-fold cross-validation. The DNN in the K-fold cross-validation model demonstrated relatively superior prediction accuracy, especially when the data quantity was relatively small. The results demonstrate that applying machine learning to BSR prediction allows for the prediction of quantitative indicators without complex formulas and that specific physical quantities can be easily estimated even with noise.

17.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474303

RESUMEN

Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.


Asunto(s)
Buceo , Oxígeno , Humanos , Buceo/fisiología , Nitrógeno , Hipoxia , Inflamación
18.
Undersea Hyperb Med ; 51(2): 189-196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985155

RESUMEN

Hypoxia, centralization of blood in pulmonary vessels, and increased cardiac output during physical exertion are the pathogenetic pathways of acute pulmonary edema observed during exposure to extraordinary environments. This study aimed to evaluate the effects of breath-hold diving at altitude, which exposes simultaneously to several of the stimuli mentioned above. To this aim, 11 healthy male experienced divers (age 18-52y) were evaluated (by Doppler echocardiography, lung echography to evaluate ultrasound lung B-lines (BL), hemoglobin saturation, arterial blood pressure, fractional NO (Nitrous Oxide) exhalation in basal condition (altitude 300m asl), at altitude (2507m asl) and after breath-hold diving at altitude. A significant increase in E/e' ratio (a Doppler-echocardiographic index of left atrial pressure) was observed at altitude, with no further change after the diving session. The number of BL significantly increased after diving at altitude as compared to basal conditions. Finally, fractional exhaled nitrous oxide was significantly reduced by altitude; no further change was observed after diving. Our results suggest that exposure to hypoxia may increase left ventricular filling pressure and, in turn, pulmonary capillary pressure. Breath-hold diving at altitude may contribute to interstitial edema (as evaluated by BL score), possibly because of physical efforts made during a diving session. The reduction of exhaled nitrous oxide at altitude confirms previous reports of nitrous oxide reduction after repeated exposure to hypoxic stimuli. This finding should be further investigated since reduced nitrous oxide production in hypoxic conditions has been reported in subjects prone to high-altitude pulmonary edema.


Asunto(s)
Altitud , Contencion de la Respiración , Buceo , Ecocardiografía Doppler , Hipoxia , Pulmón , Humanos , Masculino , Buceo/fisiología , Buceo/efectos adversos , Adulto , Adulto Joven , Hipoxia/fisiopatología , Persona de Mediana Edad , Adolescente , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/irrigación sanguínea , Edema Pulmonar/etiología , Edema Pulmonar/fisiopatología , Edema Pulmonar/diagnóstico por imagen , Presión Arterial/fisiología , Saturación de Oxígeno/fisiología , Óxido Nítrico/metabolismo , Presión Sanguínea/fisiología , Hemoglobinas/análisis
19.
Undersea Hyperb Med ; 51(1): 59-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38615355

RESUMEN

Introduction: Indigenous populations renowned for apneic diving have comparatively large spleen volumes. It has been proposed that a larger spleen translates to heightened apnea-induced splenic contraction and elevations in circulating hemoglobin mass (Hbmass), which, in theory, improves O2 carrying and/or CO2/pH buffering capacities. However, the relation between resting spleen volume and apnea- induced increases in Hbmass is unknown. Therefore, we tested the hypothesis that resting spleen volume is positively related to apnea-induced increases in total Hbmass. Methods: Fourteen healthy adults (six women; 29 ± 5 years) completed a two-minute carbon monoxide rebreathe procedure to measure pre-apneas Hbmass and blood volume. Spleen length, width, and thickness were measured pre-and post-five maximal apneas via ultrasound. Spleen volume was calculated via the Pilström equation (test-retest CV:2 ± 2%). Hemoglobin concentration ([Hb]; g/dl) and hematocrit (%) were measured pre- and post-apneas via capillary blood samples. Post-apneas Hbmass was estimated as post-apnea [Hb] x pre-apnea blood volume. Data are presented as mean ± SD. Results: Spleen volume decreased from pre- (247 ± 95 mL) to post- (200 ± 82 mL, p<0.01) apneas. [Hb] (14.6 ± 1.2 vs. 14.9 ± 1.2 g/dL, p<0.01), hematocrit (44 ± 3 vs. 45 ± 3%, p=0.04), and Hbmass (1025 ± 322 vs. 1046 ± 339 g, p=0.03) increased from pre- to post-apneas. Pre-apneas spleen volume was unrelated to post-apneas increases in Hbmass (r=-0.02, p=0.47). O2 (+28 ± 31 mL, p<0.01) and CO2 (+31 ± 35 mL, p<0.01) carrying capacities increased post-apneas. Conclusion: Larger spleen volume is not associated with a greater rise in apneas-induced increases in Hbmass in non-apnea-trained healthy adults.


Asunto(s)
Apnea , Bazo , Adulto , Femenino , Humanos , Bazo/diagnóstico por imagen , Dióxido de Carbono , Volumen Sanguíneo , Hemoglobinas
20.
Undersea Hyperb Med ; 51(1): 93-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38615358

RESUMEN

An arterial gas embolism (AGE) is a potentially fatal complication of scuba diving that is related to insufficient exhalation during ascent. During breath-hold diving, an arterial gas embolism is unlikely because the volume of gas in the lungs generally cannot exceed the volume at the beginning of the dive. However, if a diver breathes from a gas source at any time during the dive, they are at risk for an AGE or other pulmonary overinflation syndromes (POIS). In this case report, a breath-hold diver suffered a suspected AGE due to rapidly ascending without exhalation following breathing from an air pocket at approximately 40 feet.


Asunto(s)
Buceo , Embolia Aérea , Humanos , Embolia Aérea/etiología , Contencion de la Respiración , Respiración , Buceo/efectos adversos , Espiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA