Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Immunol ; 54(2): e2250248, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957831

RESUMEN

Human intestinal organoids are an ideal model system for studying gastrointestinal physiology and immunopathology. Altered physiology and mucosal immune response are hallmarks of numerous intestinal functional and inflammatory diseases, including inflammatory bowel disease (IBD), coeliac disease, irritable bowel syndrome (IBS), and obesity. These conditions impact the normal epithelial functions of the intestine, such as absorption, barrier function, secretion, and host-microbiome communication. They are accompanied by characteristic intestinal symptoms and have significant societal, economic, and healthcare burdens. To develop new treatment options, cutting-edge research is required to investigate their etiology and pathology. Human intestinal organoids derived from patient tissue recapitulate the key physiological and immunopathological aspects of these conditions, providing a promising platform for elucidating disease mechanisms. This review will summarize recent reports on patient-derived human small intestinal and colonic organoids and highlight how these models have been used to study intestinal epithelial functions in the context of inflammation, altered physiology, and immune response. Furthermore, it will elaborate on the various organoid systems in use and the techniques/assays currently available to study epithelial functions. Finally, it will conclude by discussing the limitations and future perspectives of organoid technology.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Humanos , Intestinos/patología , Organoides/patología , Organoides/fisiología , Intestino Delgado/patología
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901695

RESUMEN

Cation and anion transport in the colonocyte apical membrane is highly spatially organized along the cryptal axis. Because of lack of experimental accessibility, information about the functionality of ion transporters in the colonocyte apical membrane in the lower part of the crypt is scarce. The aim of this study was to establish an in vitro model of the colonic lower crypt compartment, which expresses the transit amplifying/progenitor (TA/PE) cells, with accessibility of the apical membrane for functional study of lower crypt-expressed Na+/H+ exchangers (NHEs). Colonic crypts and myofibroblasts were isolated from human transverse colonic biopsies, expanded as three-dimensional (3D) colonoids and myofibroblast monolayers, and characterized. Filter-grown colonic myofibroblast-colonic epithelial cell (CM-CE) cocultures (myofibroblasts on the bottom of the transwell and colonocytes on the filter) were established. The expression pattern for ion transport/junctional/stem cell markers of the CM-CE monolayers was compared with that of nondifferentiated (EM) and differentiated (DM) colonoid monolayers. Fluorometric pHi measurements were performed to characterize apical NHEs. CM-CE cocultures displayed a rapid increase in transepithelial electrical resistance (TEER), paralleled by downregulation of claudin-2. They maintained proliferative activity and an expression pattern resembling TA/PE cells. The CM-CE monolayers displayed high apical Na+/H+ exchange activity, mediated to >80% by NHE2. Human colonoid-myofibroblast cocultures allow the study of ion transporters that are expressed in the apical membrane of the nondifferentiated colonocytes of the cryptal neck region. The NHE2 isoform is the predominant apical Na+/H+ exchanger in this epithelial compartment.


Asunto(s)
Miofibroblastos , Intercambiadores de Sodio-Hidrógeno , Humanos , Intercambiadores de Sodio-Hidrógeno/metabolismo , Miofibroblastos/metabolismo , Técnicas de Cocultivo , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Concentración de Iones de Hidrógeno
3.
J Infect Dis ; 226(10): 1781-1789, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-35255136

RESUMEN

BACKGROUND: Immunocompromised individuals can become chronically infected with norovirus, but effective antiviral therapies are not yet available. METHODS: Treatments with nitazoxanide, ribavirin, interferon alpha-2a, and nasoduodenally administered immunoglobulins were evaluated sequentially in an immunocompromised patient chronically infected with norovirus. In support, these components were also applied to measure norovirus inhibition in intestinal enteroid cultures in vitro. Viral RNA levels were determined in fecal and plasma samples during each treatment and viral genomes were sequenced. RESULTS: None of the antivirals resulted in a reduction of viral RNA levels in feces or plasma. However, during ribavirin treatment, there was an increased accumulation of virus genome mutations. In vitro, an effect of interferon alpha-2a on virus replication was observed and a genetically related strain was neutralized effectively in vitro using immunoglobulins and post-norovirus-infection antiserum. In agreement, after administration of immunoglobulins, the patient cleared the infection. CONCLUSIONS: Intestinal enteroid cultures provide a relevant system to evaluate antivirals and the neutralizing potential of immunoglobulins. We successfully treated a chronically infected patient with immunoglobulins, despite varying results reported by others. This case study provides in-depth, multifaceted exploration of norovirus treatment that can be used as a guidance for further research towards norovirus treatments.


Asunto(s)
Infecciones por Caliciviridae , Inmunodeficiencia Variable Común , Norovirus , Humanos , Antivirales/uso terapéutico , Antivirales/farmacología , Infecciones por Caliciviridae/tratamiento farmacológico , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/tratamiento farmacológico , Inmunoglobulinas , Interferón-alfa/uso terapéutico , Norovirus/genética , Ribavirina/uso terapéutico , Ribavirina/farmacología , ARN Viral/genética , Replicación Viral
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216325

RESUMEN

Gefitinib is a tyrosine kinase inhibitor (TKI) that selectively inhibits the epidermal growth factor receptor (EGFR), hampering cell growth and proliferation. Due to its action, gefitinib has been used in the treatment of cancers that present abnormally increased expression of EGFR. However, side effects from gefitinib therapy may occur, among which diarrhoea is most common, that can lead to interruption of the planned therapy in the more severe cases. The mechanisms underlying intestinal toxicity induced by gefitinib are not well understood. Therefore, this study aims at providing insight into these mechanisms based on transcriptomic responses induced in vitro. A 3D culture of healthy human colon and small intestine (SI) organoids was exposed to 0.1, 1, 10 and 30 µM of gefitinib, for a maximum of three days. These drug concentrations were selected using physiologically-based pharmacokinetic simulation considering patient dosing regimens. Samples were used for the analysis of viability and caspase 3/7 activation, image-based analysis of structural changes, as well as RNA isolation and sequencing via high-throughput techniques. Differential gene expression analysis showed that gefitinib perturbed signal transduction pathways, apoptosis, cell cycle, FOXO-mediated transcription, p53 signalling pathway, and metabolic pathways. Remarkably, opposite expression patterns of genes associated with metabolism of lipids and cholesterol biosynthesis were observed in colon versus SI organoids in response to gefitinib. These differences in the organoids' responses could be linked to increased activated protein kinase (AMPK) activity in colon, which can influence the sensitivity of the colon to the drug. Therefore, this study sheds light on how gefitinib induces toxicity in intestinal organoids and provides an avenue towards the development of a potential tool for drug screening and development.


Asunto(s)
Gefitinib/farmacología , Intestinos/efectos de los fármacos , Organoides/efectos de los fármacos , Transcriptoma/genética , Anciano , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Intestinos/metabolismo , Masculino , Organoides/metabolismo , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955755

RESUMEN

Human intestinal organoids (HIOs) generated from human pluripotent stem cells hold great promise for modeling human development and as a possible source of tissue for transplantation. HIOs generate all of the main epithelial and mesenchymal cell types found in the developing human intestine and mature into intestinal tissue with crypts and villi following transplantation into immunocompromised mice. However, incomplete in vitro patterning and the presence of contaminating neurons could hinder their use for regenerative medicine in humans. Based on studies in model organisms, we hypothesized that the treatment of HIOs with all trans retinoic acid (ATRA) would improve their in vitro growth and patterning. We found that ATRA not only improved the patterning of HIOs, ATRA also increased organoid forming efficiency, improved epithelial growth, enriched intestinal subepithelial myofibroblasts (ISEMFs) and reduced neuronal contamination in HIOs. Taken together, our studies demonstrate how the manipulation of a single developmental signaling pathway can be used to improve the survival, patterning and cellular composition of HIOs.


Asunto(s)
Organoides , Células Madre Pluripotentes , Animales , Diferenciación Celular , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Tretinoina/metabolismo , Tretinoina/farmacología
6.
Pediatr Surg Int ; 37(11): 1543-1554, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34216241

RESUMEN

PURPOSE: Refinement of organoid technology is important for studying physiology and disease of the intestine. We aimed to optimize defined serum-free conditions for human infant small intestinal (SI) organoid culture with predetermined doses of Wnt3a and Rspo1 from surgical specimens. We further assessed whether intestinal specimens could be stored before use as a source of organoids. METHODS: Different doses of Wnt3a and Rspo1 in a serum-free medium were tested to establish a condition in which surgically resected SI cells grew as organoids over multiple passages. The expression of marker genes for stem and differentiated cells was assessed by quantitative polymerase chain reaction. We also investigated the organoid-forming efficiency of cells in degenerating intestines stored at 4 °C for various intervals post-resection. RESULTS: We determined the doses of Wnt3a and Rspo1 required for the continuous growth of infant SI organoids with multi-differentiation potential. We revealed that, despite the time-dependent loss of stem cells, tissues stored for up to 2 days preserved cells capable of generating amplifiable organoids. CONCLUSION: SI cells can be grown as organoids under defined conditions. This could provide a reproducible and customizable method of using surgical specimens for the study of intestinal maturation and their relevance to pediatric diseases.


Asunto(s)
Intestino Delgado , Organoides , Diferenciación Celular , Humanos , Lactante , Intestino Delgado/cirugía , Intestinos , Células Madre , Proteína Wnt3A/genética
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093254

RESUMEN

In inflammatory bowel disease (IBD), the intestinal epithelium is characterized by increased permeability both in active disease and remission states. The genetic underpinnings of this increased intestinal permeability are largely unstudied, in part due to a lack of appropriate modelling systems. Our aim is to develop an in vitro model of intestinal permeability using induced pluripotent stem cell (iPSC)-derived human intestinal organoids (HIOs) and human colonic organoids (HCOs) to study barrier dysfunction. iPSCs were generated from healthy controls, adult onset IBD, and very early onset IBD (VEO-IBD) patients and differentiated into HIOs and HCOs. EpCAM+ selected cells were seeded onto Transwell inserts and barrier integrity studies were carried out in the presence or absence of pro-inflammatory cytokines TNFα and IFNγ. Quantitative real-time PCR (qRT-PCR), transmission electron microscopy (TEM), and immunofluorescence were used to determine altered tight and adherens junction protein expression or localization. Differentiation to HCO indicated an increased gene expression of CDX2, CD147, and CA2, and increased basal transepithelial electrical resistance compared to HIO. Permeability studies were carried out in HIO- and HCO-derived epithelium, and permeability of FD4 was significantly increased when exposed to TNFα and IFNγ. TEM and immunofluorescence imaging indicated a mislocalization of E-cadherin and ZO-1 in TNFα and IFNγ challenged organoids with a corresponding decrease in mRNA expression. Comparisons between HIO- and HCO-epithelium show a difference in gene expression, electrophysiology, and morphology: both are responsive to TNFα and IFNγ stimulation resulting in enhanced permeability, and changes in tight and adherens junction architecture. This data indicate that iPSC-derived HIOs and HCOs constitute an appropriate physiologically responsive model to study barrier dysfunction and the role of the epithelium in IBD and VEO-IBD.


Asunto(s)
Colon/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Modelos Biológicos , Línea Celular , Colon/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Organoides/metabolismo , Organoides/patología
8.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396621

RESUMEN

Human intestinal organoids (HIOs) are increasingly being used to model intestinal responses to various stimuli, yet few studies have confirmed the fidelity of this modeling system. Given that the interferon-gamma (IFN-γ) response has been well characterized in various other cell types, our goal was to characterize the response to IFN-γ in HIOs derived from induced pluripotent stem cells (iPSCs). To achieve this, iPSCs were directed to form HIOs and subsequently treated with IFN-γ. Our results demonstrate that IFN-γ phosphorylates STAT1 but has little effect on the expression or localization of tight and adherens junction proteins in HIOs. However, transcriptomic profiling by microarray revealed numerous upregulated genes such as IDO1, GBP1, CXCL9, CXCL10 and CXCL11, which have previously been shown to be upregulated in other cell types in response to IFN-γ. Notably, "Response to Interferon Gamma" was determined to be one of the most significantly upregulated gene sets in IFN-γ-treated HIOs using gene set enrichment analysis. Interestingly, similar genes and pathways were upregulated in publicly available datasets contrasting the gene expression of in vivo biopsy tissue from patients with IBD against healthy controls. These data confirm that the iPSC-derived HIO modeling system represents an appropriate platform to evaluate the effects of various stimuli and specific environmental factors responsible for the alterations in the intestinal epithelium seen in various gastrointestinal conditions such as inflammatory bowel disease.


Asunto(s)
Células Madre Pluripotentes Inducidas/efectos de los fármacos , Interferón gamma/farmacología , Mucosa Intestinal/efectos de los fármacos , Organoides/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular , Claudinas/genética , Claudinas/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Organoides/citología , Organoides/metabolismo
9.
Gastroenterology ; 154(3): 585-598, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29031501

RESUMEN

BACKGROUND & AIMS: We analyzed DNA methylation patterns and transcriptomes of primary intestinal epithelial cells (IEC) of children newly diagnosed with inflammatory bowel diseases (IBD) to learn more about pathogenesis. METHODS: We obtained mucosal biopsies (N = 236) collected from terminal ileum and ascending and sigmoid colons of children (median age 13 years) newly diagnosed with IBD (43 with Crohn's disease [CD], 23 with ulcerative colitis [UC]), and 30 children without IBD (controls). Patients were recruited and managed at a hospital in the United Kingdom from 2013 through 2016. We also obtained biopsies collected at later stages from a subset of patients. IECs were purified and analyzed for genome-wide DNA methylation patterns and gene expression profiles. Adjacent microbiota were isolated from biopsies and analyzed by 16S gene sequencing. We generated intestinal organoid cultures from a subset of samples and genome-wide DNA methylation analysis was performed. RESULTS: We found gut segment-specific differences in DNA methylation and transcription profiles of IECs from children with IBD vs controls; some were independent of mucosal inflammation. Changes in gut microbiota between IBD and control groups were not as large and were difficult to assess because of large amounts of intra-individual variation. Only IECs from patients with CD had changes in DNA methylation and transcription patterns in terminal ileum epithelium, compared with controls. Colon epithelium from patients with CD and from patients with ulcerative colitis had distinct changes in DNA methylation and transcription patterns, compared with controls. In IECs from patients with IBD, changes in DNA methylation, compared with controls, were stable over time and were partially retained in ex-vivo organoid cultures. Statistical analyses of epithelial cell profiles allowed us to distinguish children with CD or UC from controls; profiles correlated with disease outcome parameters, such as the requirement for treatment with biologic agents. CONCLUSIONS: We identified specific changes in DNA methylation and transcriptome patterns in IECs from pediatric patients with IBD compared with controls. These data indicate that IECs undergo changes during IBD development and could be involved in pathogenesis. Further analyses of primary IECs from patients with IBD could improve our understanding of the large variations in disease progression and outcomes.


Asunto(s)
Colitis Ulcerosa/genética , Colon Sigmoide/metabolismo , Enfermedad de Crohn/genética , Metilación de ADN , Epigénesis Genética , Células Epiteliales/metabolismo , Íleon/metabolismo , Mucosa Intestinal/metabolismo , Transcripción Genética , Transcriptoma , Adolescente , Factores de Edad , Biopsia , Estudios de Casos y Controles , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/microbiología , Colon Sigmoide/microbiología , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/microbiología , Diagnóstico Diferencial , Inglaterra , Células Epiteliales/microbiología , Femenino , Microbioma Gastrointestinal , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo , Humanos , Íleon/microbiología , Mucosa Intestinal/microbiología , Masculino , Organoides , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Ribotipificación , Factores de Tiempo , Técnicas de Cultivo de Tejidos
10.
Adv Mater ; 36(9): e2307678, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37987171

RESUMEN

Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.


Asunto(s)
Intestinos , Células Madre Pluripotentes , Humanos , Organoides , Matriz Extracelular , Hidrogeles/química
11.
Gastroenterol Clin North Am ; 53(3): 461-472, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068007

RESUMEN

Intestinal failure manifests as an impaired capacity of the intestine to sufficiently absorb vital nutrients and electrolytes essential for growth and well-being in pediatric and adult populations. Although parenteral nutrition remains the mainstay therapeutic approach, the pursuit of a definitive and curative strategy, such as regenerative medicine, is imperative. Substantial advancements in the field of engineered intestinal tissues present a promising avenue for addressing intestinal failure; nevertheless, extensive research is still necessary for effective translation from experimental benchwork to clinical bedside applications.


Asunto(s)
Intestinos , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Intestinos/trasplante , Insuficiencia Intestinal/terapia , Bioingeniería/métodos , Medicina Regenerativa/métodos , Andamios del Tejido
12.
Parasit Vectors ; 17(1): 393, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285481

RESUMEN

BACKGROUND: Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS: Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS: Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS: The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.


Asunto(s)
Anisakis , Vesículas Extracelulares , Organoides , Humanos , Organoides/parasitología , Organoides/inmunología , Anisakis/inmunología , Anisakis/genética , Animales , Vesículas Extracelulares/inmunología , Anisakiasis/parasitología , Anisakiasis/inmunología , Citocinas/metabolismo , Citocinas/genética , Intestinos/parasitología , Intestinos/inmunología , Carcinogénesis , Inmunomodulación
13.
J Control Release ; 366: 621-636, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215986

RESUMEN

Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptidos Similares al Glucagón , Lactatos , Nanopartículas , Polietilenglicoles , Recién Nacido , Humanos , Células CACO-2 , Péptidos , Receptores Fc
14.
Emerg Microbes Infect ; 12(1): 2195020, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36951188

RESUMEN

SARS-CoV-2, the causative virus of COVID-19, continues to threaten global public health. COVID-19 is a multi-organ disease, causing not only respiratory distress, but also extrapulmonary manifestations, including gastrointestinal symptoms with SARS-CoV-2 RNA shedding in stool long after respiratory clearance. Despite global vaccination and existing antiviral treatments, variants of concern are still emerging and circulating. Of note, new Omicron BA.5 sublineages both increasingly evade neutralizing antibodies and demonstrate an increased preference for entry via the endocytic entry route. Alternative to direct-acting antivirals, host-directed therapies interfere with host mechanisms hijacked by viruses, and enhance cell-mediated resistance with a reduced likelihood of drug resistance development. Here, we demonstrate that the autophagy-blocking therapeutic berbamine dihydrochloride robustly prevents SARS-CoV-2 acquisition by human intestinal epithelial cells via an autophagy-mediated BNIP3 mechanism. Strikingly, berbamine dihydrochloride exhibited pan-antiviral activity against Omicron subvariants BA.2 and BA.5 at nanomolar potency, providing a proof of concept for the potential for targeting autophagy machinery to thwart infection of current circulating SARS-CoV-2 subvariants. Furthermore, we show that autophagy-blocking therapies limited virus-induced damage to intestinal barrier function, affirming the therapeutic relevance of autophagy manipulation to avert the intestinal permeability associated with acute COVID-19 and post-COVID-19 syndrome. Our findings underscore that SARS-CoV-2 exploits host autophagy machinery for intestinal dissemination and indicate that repurposed autophagy-based antivirals represent a pertinent therapeutic option to boost protection and ameliorate disease pathogenesis against current and future SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , SARS-CoV-2 , Antivirales/farmacología , Síndrome Post Agudo de COVID-19 , ARN Viral , Anticuerpos Neutralizantes , Autofagia , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus , Proteínas de la Membrana
15.
Sci Total Environ ; 838(Pt 2): 155811, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35597345

RESUMEN

Plastic particles, especially nanoplastics, represent an emerging concern of threat to human health, oral uptake is an important pathway for the plastic particles ingestion by human. While their fate and adverse effects in animal gastrointestinal tract are increasingly investigated, knowledge about their uptake and toxicity in human intestine is still limited. Here, by exposing human intestinal organoids to polystyrene nanoplastics (PS-NPs, ~50 nm in size) with concentrations of 10 and 100 µg/mL, we present evidence of their distinct accumulation in various type cells in intestinal organoids, then causing the cell apoptosis and inflammatory response. Our results further revealed that the effective inhibition of PS-NPs accumulation in secretive cells through co-exposure to a clathrin-mediated endocytosis inhibitor (chlorpromazine), and proved the essential role of active endocytosis in the PS-NPs uptaking into enterocyte cells. Our work not only elucidated the potential uptake and toxicity of PS-NPs in human intestinal cells and the underlying mechanism, but also provide a potential therapeutic approach to relieve the toxicity of PS-NPs to human through the endocytosis inhibition.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Humanos , Intestinos , Microplásticos , Nanopartículas/toxicidad , Organoides/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad
16.
Front Cell Dev Biol ; 10: 854740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359445

RESUMEN

The study of human intestinal biology in healthy and diseased conditions has always been challenging. Primary obstacles have included limited tissue accessibility, inadequate in vitro maintenance and ethical constrains. The development of three-dimensional organoid cultures has transformed this entirely. Intestinal organoids are self-organized three-dimensional structures that partially recapitulate the identity, cell heterogeneity and cell behaviour of the original tissue in vitro. This includes the capacity of stem cells to self-renew, as well as to differentiate towards major intestinal lineages. Therefore, over the past decade, the use of human organoid cultures has been instrumental to model human intestinal development, homeostasis, disease, and regeneration. Intestinal organoids can be derived from pluripotent stem cells (PSC) or from adult somatic intestinal stem cells (ISC). Both types of organoid sources harbour their respective strengths and weaknesses. In this mini review, we describe the applications of human intestinal organoids, discussing the differences, advantages, and disadvantages of PSC-derived and ISC-derived organoids.

17.
Inflamm Bowel Dis ; 28(5): 667-679, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34918082

RESUMEN

BACKGROUND: Intestinal fibrosis is a serious complication of Crohn's disease. Numerous cell types including intestinal epithelial and mesenchymal cells are implicated in this process, yet studies are hampered by the lack of personalized in vitro models. Human intestinal organoids (HIOs) derived from induced pluripotent stem cells (iPSCs) contain these cell types, and our goal was to determine the feasibility of utilizing these to develop a personalized intestinal fibrosis model. METHODS: iPSCs from 2 control individuals and 2 very early onset inflammatory bowel disease patients with stricturing complications were obtained and directed to form HIOs. Purified populations of epithelial and mesenchymal cells were derived from HIOs, and both types were treated with the profibrogenic cytokine transforming growth factor ß (TGFß). Quantitative polymerase chain reaction and RNA sequencing analysis were used to assay their responses. RESULTS: In iPSC-derived mesenchymal cells, there was a significant increase in the expression of profibrotic genes (Col1a1, Col5a1, and TIMP1) in response to TGFß. RNA sequencing analysis identified further profibrotic genes and demonstrated differential responses to this cytokine in each of the 4 lines. Increases in profibrotic gene expression (Col1a1, FN, TIMP1) along with genes associated with epithelial-mesenchymal transition (vimentin and N-cadherin) were observed in TGFß -treated epithelial cells. CONCLUSIONS: We demonstrate the feasibility of utilizing iPSC-HIO technology to model intestinal fibrotic responses in vitro. This now permits the generation of near unlimited quantities of patient-specific cells that could be used to reveal cell- and environmental-specific mechanisms underpinning intestinal fibrosis.


Intestinal fibrosis is a serious complication of Crohn's disease and novel in vitro models are urgently needed to study this. We describe an induced pluripotent stem cell­derived modeling system whereby a near unlimited number of both epithelial and mesenchymal cells could be used in a personalized intestinal fibrosis model.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Fibrosis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Intestinos , Organoides/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
18.
Cell Mol Gastroenterol Hepatol ; 13(3): 681-694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34774803

RESUMEN

BACKGROUND & AIMS: Intestinal ischemia-reperfusion injury is a serious and life-threatening condition. A better understanding of molecular mechanisms related to intestinal ischemia-reperfusion injury in human beings is imperative to find therapeutic targets and improve patient outcome. METHODS: First, the in vivo dynamic modulation of mucosal gene expression of the ischemia-reperfusion-injured human small intestine was studied. Based on functional enrichment analysis of the changing transcriptome, one of the predominantly regulated pathways was selected for further investigation in an in vitro human intestinal organoid model. RESULTS: Ischemia-reperfusion massively changed the transcriptional landscape of the human small intestine. Functional enrichment analysis based on gene ontology and pathways pointed to the response to unfolded protein as a predominantly regulated process. In addition, regulatory network analysis identified hypoxia-inducing factor 1A as one of the key mediators of ischemia-reperfusion-induced changes, including the unfolded protein response (UPR). Differential expression of genes involved in the UPR was confirmed using quantitative polymerase chain reaction analysis. Electron microscopy showed signs of endoplasmic reticulum stress. Collectively, these findings point to a critical role for unfolded protein stress in intestinal ischemia-reperfusion injury in human beings. In a human intestinal organoid model exposed to hypoxia-reoxygenation, attenuation of UPR activation with integrated stress response inhibitor strongly reduced pro-apoptotic activating transcription factor 4 (ATF4)-CCAAT/enhancer-binding protein homologous protein (CHOP) signaling. CONCLUSIONS: Transcriptome analysis showed a crucial role for unfolded protein stress in the response to ischemia-reperfusion in human small intestine. UPR inhibition during hypoxia-reoxygenation in an intestinal organoid model suggests that downstream protein kinase R-like ER kinase (PERK) signaling may be a promising target to reduce intestinal ischemia-reperfusion injury. Microarray data are available in GEO (https://www.ncbi.nlm.nih.gov/gds, accession number GSE37013).


Asunto(s)
Daño por Reperfusión , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada
19.
Int J Stem Cells ; 15(1): 70-84, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35220293

RESUMEN

The advent of human intestinal organoid systems has revolutionized the way we understand the interactions between the human gut and microorganisms given the host tropism of human microorganisms. The gut microorganisms have regionality (i.e., small versus large intestine) and the expression of various virulence factors in pathogens is influenced by the gut milieu. However, the culture conditions, optimized for human intestinal organoids, often do not fully support the proliferation and functionality of gut microorganisms. In addition, the regional identity of human intestinal organoids has not been considered to study specific microorganisms with regional preference. In this review we provide an overview of current efforts to understand the role of microorganisms in human intestinal organoids. Specifically, we will emphasize the importance of matching the regional preference of microorganisms in the gut and tailoring the appropriate luminal environmental conditions (i.e., oxygen, pH, and biochemical levels) for modeling real interactions between the gut and the microorganisms with human intestinal organoids.

20.
Front Microbiol ; 13: 846215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321078

RESUMEN

Clostridioides difficile infection (CDI) in humans causes pseudomembranous colitis (PMC), which is a severe pathology characterized by a loss of epithelial barrier function and massive colonic inflammation. PMC has been attributed to the action of two large protein toxins, Toxin A (TcdA) and Toxin B (TcdB). TcdA and TcdB mono-O-glucosylate and thereby inactivate a broad spectrum of Rho GTPases and (in the case of TcdA) also some Ras GTPases. Rho/Ras GTPases promote G1-S transition through the activation of components of the ERK, AKT, and WNT signaling pathways. With regard to CDI pathology, TcdB is regarded of being capable of inhibiting colonic stem cell proliferation and colonic regeneration, which is likely causative for PMC. In particular, it is still unclear, the glucosylation of which substrate Rho-GTPase is critical for TcdB-induced arrest of G1-S transition. Exploiting SV40-immortalized mouse embryonic fibroblasts (MEFs) with deleted Rho subtype GTPases, evidence is provided that Rac1 (not Cdc42) positively regulates Cyclin D1, an essential factor of G1-S transition. TcdB-catalyzed Rac1 glucosylation results in Cyclin D1 suppression and arrested G1-S transition in MEFs and in human colonic epithelial cells (HCEC), Remarkably, Rac1-/- MEFs are insensitive to TcdB-induced arrest of G1-S transition, suggesting that TcdB arrests G1-S transition in a Rac1 glucosylation-dependent manner. Human intestinal organoids (HIOs) specifically expressed Cyclin D1 (neither Cyclin D2 nor Cyclin D3), which expression was suppressed upon TcdB treatment. In sum, Cyclin D1 expression in colonic cells seems to be regulated by Rho GTPases (most likely Rac1) and in turn seems to be susceptible to TcdB-induced suppression. With regard to PMC, toxin-catalyzed Rac1 glucosylation and subsequent G1-S arrest of colonic stem cells seems to be causative for decreased repair capacity of the colonic epithelium and delayed epithelial renewal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA