RESUMEN
Excessive inflammatory response and oxidative stress (OS) play an important role in the pathogenesis of spinal cord injury (SCI). Balance of inflammation and prevention of OS have been considered an effective strategy for the treatment of SCI. Hyaluronan and proteoglycan link protein 1 (HAPLN1), also known as cartilage link protein, has displayed a wide range of biological and physiological functions in different types of tissues and cells. However, whether HAPLN1 regulates inflammation and OS during SCI is unknown. Therefore, we aimed to examine whether HAPLN1 can have a protective effect on SCI. In this study, both in vitro and in vivo SCI models were established. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays were used. Western blotting and enzyme-linked immunosorbent assay were employed to assess the expression of proteins. Our results demonstrate that the administration of HAPLN1 promoted the recovery of motor neurons after SCI by increasing the Basso mouse scale score, increasing the numbers of motor neurons, and preventing apoptosis of spinal cord cells. Additionally, HAPLN1 mitigated OS in spinal cord tissue after SCI by increasing the content of superoxide dismutase SOD and the activity of glutathione peroxidase but reducing the levels of malondialdehyde. Importantly, we found that HAPLN1 stimulated the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and stimulated the expression of heme oxygenase-1 and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, which mediated the attenuation of HAPLN1 in activation of the NOD-like receptor protein 3 (NLRP3) inflammasome by reducing the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1ß. Correspondingly, in vitro experiments show that the presence of HAPLN1 suppressed the NLRP3 inflammasome and prevented cell injury against H2O2 in PC12 cells. These effects were mediated by the Nrf2/ARE pathway, and inhibition of Nrf2 with ML385 abolished the beneficial effects of HAPLN1. Based on these findings, we conclude that HAPLN1 inhibits the NLRP3 inflammasome through the stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, enhancing motor neuronal survival, and improving the recovery of nerve function after SCI.
Asunto(s)
Factor 2 Relacionado con NF-E2 , Proteoglicanos , Traumatismos de la Médula Espinal , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ratones , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Ratas , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BLRESUMEN
Nuclear factor-κB (NF-κB) is a family of transcription factors that play a key role in cell survival and proliferation in many hematological malignancies, including multiple myeloma (MM). Bortezomib, a proteasome inhibitor used in the management of MM, can inhibit both canonical and noncanonical activation of NF-κB in MM cells. However, we previously reported that a significant fraction of freshly isolated MM cells harbor bortezomib-resistant NF-κB activity. Here, we report that hyaluronan and proteoglycan link protein 1 (HAPLN1) is produced in bone marrow stromal cells from MM patients, is detected in patients' bone marrow plasma, and can activate an atypical bortezomib-resistant NF-κB pathway in MM cells. We found that this pathway involves bortezomib-resistant degradation of the inhibitor of NF-κB (IκBα), despite efficient bortezomib-mediated inhibition of proteasome activity. Moreover, HAPLN1 can also confer bortezomib-resistant survival of MM cells. We propose that HAPLN1 is a novel pathogenic factor in MM that induces an atypical NF-κB activation and thereby promotes bortezomib resistance in MM cells.
Asunto(s)
Antineoplásicos/farmacología , Bortezomib/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Mieloma Múltiple/metabolismo , FN-kappa B/metabolismo , Proteoglicanos/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Resistencia a Antineoplásicos , Proteínas de la Matriz Extracelular/genética , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , FN-kappa B/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoglicanos/genética , ProteolisisRESUMEN
Hyaluronan and proteoglycan link protein 1 (HAPLN1) is an extracellular matrix protein stabilizing interactions between hyaluronan and proteoglycan. Although HAPLN1 is being investigated for various biological roles, its N-glycosylation is poorly understood. In this study, the structure of N-glycopeptides of trypsin-treated recombinant human HAPLN1 (rhHAPLN1) expressed from CHO cells were identified by nano-liquid chromatography-tandem mass spectrometry. A total of 66 N-glycopeptides were obtained, including 16 and 12 N-glycans at sites Asn 6 (located in the N-terminal region) and Asn 41 (located in the Ig-like domain, which interacts with proteoglycan), respectively. The quantities (%) of each N-glycan relative to the totals (100 %) at each site were calculated. Tri- and tetra-sialylation (to resist proteolysis and extend half-life) were more abundant at Asn 6, and di- (core- and terminal-) fucosylation (to increase binding affinity and stability) and sialyl-Lewis X/a epitope (a major ligand for E-selectin) were more abundant at Asn 41. These results indicate that N-glycans attached to Asn 6 (protecting HAPLN1) and Asn 41 (supporting molecular interactions) play different roles in HAPLN1. This is the first study of site-specific N-glycosylation in rhHAPLN1, which will be useful for understanding its molecular interactions in the extracellular matrix.
Asunto(s)
Ácido Hialurónico , Polisacáridos , Animales , Cricetinae , Humanos , Glicosilación , Cricetulus , Polisacáridos/química , Proteoglicanos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicopéptidos/metabolismoRESUMEN
BACKGROUND: Bronchopulmonary dysplasia (BPD) has a lasting effect on the respiratory function of infants, imposing chronic health burdens. BPD is influenced by various prenatal, postnatal, and genetic factors. This study explored the connection between BPD and home oxygen therapy (HOT), and then we examined the association between HOT and a specific single-nucleotide polymorphism (SNP) in the hyaluronan and proteoglycan link protein 1 (HAPLN1) gene among premature Japanese infants. MATERIALS AND METHODS: Prenatal and postnatal data from 212 premature infants were collected and analyzed by four SNPs (rs975563, rs10942332, rs179851, and rs4703570) around HAPLN1 using the TaqMan polymerase chain reaction method. The clinical characteristics and genotype frequencies of HAPLN1 were assessed and compared between HOT and non-HOT groups. RESULTS: Individuals with AA/AC genotypes in the rs4703570 SNP exhibited significantly higher HOT rates at discharge than those with CC homozygotes (odds ratio, 1.20, 95% confidence interval, 1.07-1.35, p = .038). A logistic regression analysis determined that CC homozygotes in the rs4703570 SNP did not show a statistically significant independent association with HOT at discharge. CONCLUSIONS: Although our study did not reveal a correlation between HAPLN1 and the onset of BPD, we observed that individuals with CC homozygosity at the rs4703570 SNP exhibit a reduced risk of HOT.
Asunto(s)
Displasia Broncopulmonar , Proteínas de la Matriz Extracelular , Ácido Hialurónico , Recién Nacido , Lactante , Femenino , Humanos , Embarazo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/terapia , Japón , Recien Nacido Prematuro , Proteoglicanos/genética , OxígenoRESUMEN
HAPLN1 maintains aggregation and the binding activity of extracellular matrix (ECM) molecules (such as hyaluronic acid and proteoglycan) to stabilize the macromolecular structure of the ECM. An increase in HAPLN1 expression is observed in a few types of musculoskeletal diseases including rheumatoid arthritis (RA); however, its functions are obscure. This study examined the role of HAPLN1 in determining the viability, proliferation, mobility, and pro-inflammatory phenotype of RA- fibroblast-like synoviocytes (RA-FLSs) by using small interfering RNA (siHAPLN1), over-expression vector (HAPLN1OE), and a recombinant HAPLN1 (rHAPLN1) protein. HAPLN1 was found to promote proliferation but inhibit RA-FLS migration. Metformin, an AMPK activator, was previously found by us to be able to inhibit FLS activation but promote HAPLN1 secretion. In this study, we confirmed the up-regulation of HAPLN1 in RA patients, and found the positive relationship between HAPLN1 expression and the AMPK level. Treatment with either si-HAPLN1 or HAPLN1OE down-regulated the expression of AMPK-É gene, although up-regulation of the level of p-AMPK-É was observed in RA-FLSs. si-HAPLN1 down-regulated the expression of proinflammatory factors like TNF-É, MMPs, and IL-6, while HAPLN1OE up-regulated their levels. qPCR assay indicated that the levels of TGF-ß, ACAN, fibronectin, collagen II, and Ki-67 were down-regulated upon si-HAPLN1 treatment, while HAPLN1OE treatment led to up-regulation of ACAN and Ki-67 and down-regulation of cyclin-D1. Proteomics of si-HAPLN1, rHAPLN1, and mRNA-Seq analysis of rHAPLN1 confirmed the functions of HAPLN1 in the activation of inflammation, proliferation, cell adhesion, and strengthening of ECM functions. Our results for the first time demonstrate the function of HAPLN1 in promoting the proliferation and pro-inflammatory phenotype of RA-FLSs, thereby contributing to RA pathogenesis. Future in-depth studies are required for better understanding the role of HAPLN1 in RA.
Asunto(s)
Artritis Reumatoide , Sinoviocitos , Proteínas Quinasas Activadas por AMP/metabolismo , Artritis Reumatoide/metabolismo , Proliferación Celular , Supervivencia Celular/genética , Proteínas de la Matriz Extracelular , Fibroblastos/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Fenotipo , Proteoglicanos , Sinoviocitos/metabolismoRESUMEN
We assessed the effect of 24-month anti-tumor necrosis factor alpha (TNF-α) treatment on the remodeling of the cartilage extracellular matrix (ECM) in patients with juvenile idiopathic arthritis (JIA). METHODS: Quantitative evaluation of keratan sulfate (KS), hyaluronic acid (HA), hyaluronan and proteoglycan link protein 1 (HAPLN1), as potential biomarkers of joint dysfunction, and the levels of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 4 and 5, total oxidative status (TOS) and transforming growth factor (TGF-ß1) was performed (using immunoenzymatic methods) in blood obtained from patients before and after 24 months of etanercept (ETA) treatment. RESULTS: When compared to the controls, KS, HA and HAPLN1 levels were significantly higher in patients with an aggressive course of JIA qualified for ETA treatment. An anti-cytokine therapy leading to clinical improvement promotes the normalization only of the HA level. Proteolytic and pro-oxidative factors, present in high concentrations in patients before the treatment, correlated with HAPLN1, but not with KS and HA levels. In these patients, negative correlations were found between the levels of TGF-ß1 and KS, HA and HAPLN1. CONCLUSION: The anti-TNF-α therapy used in patients with JIA has a beneficial effect on ECM cartilage metabolism, but it does not completely regenerate it. The changes in the plasma HA level during the anti-cytokine therapy suggest its potential diagnostic utility in monitoring of disease activity and may be used to assess the efficacy of ETA treatment.
RESUMEN
AMP-activated protein kinase (AMPK) is essential for maintaining energy balance and has a crucial role in various inflammatory pathways. In this study, AMPK levels positively correlated with many inflammatory indexes in rheumatoid arthritis (RA) patients, especially in the affected synovium. In RA sera, a positive correlation between phosphorylated (p-)AMPK-α1 levels and DAS28 (disease activity score 28) activity (r = 0.270, p < 0.0001) was found. Similarly, a positive correlation was observed between AMPK-α1 and tumor necrosis factor α (TNF-α) levels (r = 0.460, p = 0.0002). Differentially expressed genes between osteoarthritis (OA) and RA synovium from NCBI GEO profiles and our RNA sequencing data suggested activation of metabolic pathways specific to RA-fibroblast-like synoviocytes (FLSs). AMPK-α1 was highly expressed in the synovium of RA but not OA patients. An AMPK activator, metformin, inhibited FLS proliferation at higher but not lower concentrations, whereas the inhibitor dorsomorphin promoted the proliferation of RA-FLSs. Interestingly, both metformin and dorsomorphin inhibited the migration of RA-FLSs. After metformin treatment, expression of interleukin 6 (IL-6), TNF-α, and IL-1ß were significantly downregulated in RA-FLSs; however, increased expression of p-AMPK-α1, protein kinase A (PKA)-α1, and HAPLN1 (hyaluronan and proteoglycan link protein 1) was observed. Increased levels of HAPLN1 in RA-FLSs by an AMPK activator could potentially be beneficial in protecting the joints. Hence, our results demonstrate the potential of an AMPK activator as a therapeutic for RA.
RESUMEN
In the developing central nervous system (CNS), extracellular matrix (ECM) molecules have regulating roles such as in brain development, neural-circuit maturation, and synaptic-function control. However, excluding the perineuronal net (PNN) area, the distribution, constituent elements, and expression level of granular ECM molecules (diffuse ECM) present in the mature CNS remain unclear. Diffuse ECM molecules in the CNS share the components of PNNs and are likely functional. As cortical functions are greatly region-dependent, we hypothesized that ECM molecules would differ in distribution, expression level, and components in a region- and layer-dependent manner. We examined the layer-specific expression of several chondroitin sulfate proteoglycans (aggrecan, neurocan, and brevican), tenascin-R, Wisteria floribunda agglutinin (WFA)-positive molecules, hyaluronic acid, and link protein in the somatosensory and piriform cortices of mature mice. Furthermore, we investigated expression changes in WFA-positive molecules due to aging. In the somatosensory cortex, PNN density was particularly high at layer 4 (L4), but not all diffuse ECM molecules were highly expressed at L4 compared to the other layers. There was almost no change in tenascin-R and hyaluronic acid in any somatosensory-cortex layer. Neurocan showed high expression in L1 of the somatosensory cortex. In the piriform cortex, many ECM molecules showed higher expression in L1 than in the other layers. However, hyaluronic acid showed high expression in deep layers. Here, we clarified that ECM molecules differ in constituent elements and expression in a region- and layer-dependent manner. Region-specific expression of ECM molecules is possibly related to functions such as region-specific plasticity and vulnerability.