Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2203748119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279465

RESUMEN

Octopus cells are remarkable projection neurons of the mammalian cochlear nucleus, with extremely fast membranes and wide-frequency tuning. They are considered prime examples of coincidence detectors but are poorly characterized in vivo. We discover that octopus cells are selective to frequency sweep direction, a feature that is absent in their auditory nerve inputs. In vivo intracellular recordings reveal that direction selectivity does not derive from across-frequency coincidence detection but hinges on the amplitudes and activation sequence of auditory nerve inputs tuned to clusters of hot spot frequencies. A simple biophysical octopus cell model excited with real nerve spike trains recreates direction selectivity through interaction of intrinsic membrane conductances with the activation sequence of clustered excitatory inputs. We conclude that octopus cells are sequence detectors, sensitive to temporal patterns across cochlear frequency channels. The detection of sequences rather than coincidences is a much simpler but powerful operation to extract temporal information.


Asunto(s)
Núcleo Coclear , Octopodiformes , Animales , Núcleo Coclear/fisiología , Nervio Coclear/fisiología , Cóclea , Mamíferos
2.
Eur J Neurosci ; 53(8): 2511-2531, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33595869

RESUMEN

The inferior colliculus (IC) receives inputs from the ascending auditory pathway and helps localize the sound source by shaping neurons' responses. However, the contributions of excitatory or inhibitory synaptic inputs evoked by paired binaural stimuli with different inter-stimulus intervals to auditory responses of IC neurons remain unclear. Here, we firstly investigated the IC neuronal response to the paired binaural stimuli with different inter-stimulus intervals using in vivo loose-patch recordings in anesthetized C57BL/6 mice. It was found that the total acoustic evoked spikes remained unchanged under microsecond interval conditions, but persistent suppression would be observed when the time intervals were extended. We further studied the paired binaural stimuli evoked excitatory/inhibitory inputs using in vivo whole-cell voltage-clamp techniques and blockage of the auditory nerve. The amplitudes of the contralateral excitatory inputs could be suppressed, unaffected or facilitated as the interaural delay varied. In contrast, contralateral inhibitory inputs and ipsilateral synaptic inputs remained almost unchanged. Most IC neurons exhibited the suppression of contralateral excitatory inputs over the interval range of dozens of milliseconds. The facilitative effect was generated by the summation of contralateral and ipsilateral excitation. Suppression and facilitation were completely abolished when ipsilateral auditory nerve was blocked pharmacologically, indicating that these effects were exerted by ipsilateral stimulation. These results suggested that the IC would inherit the binaural inputs integrated at the brainstem as well as within the IC and synaptic excitations, modulated by ipsilateral stimulation, underlie the binaural acoustic response.


Asunto(s)
Colículos Inferiores , Estimulación Acústica , Animales , Vías Auditivas , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp
3.
J Neurosci ; 35(31): 11081-93, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26245969

RESUMEN

In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. SIGNIFICANCE STATEMENT: Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Orientación/fisiología , Sinapsis/fisiología , Corteza Visual/fisiología , Animales , Femenino , Ratones , Modelos Neurológicos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Vías Visuales/fisiología
4.
Hippocampus ; 26(12): 1570-1578, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27650674

RESUMEN

The CA2 region is unique in the hippocampus; it receives direct synaptic innervations from several hypothalamic nuclei and expresses various receptors of neuromodulators, including adenosine, vasopressin, and oxytocin. Furthermore, the CA2 region may have distinct brain functions, such as the control of instinctive and social behaviors; however, little is known about the dynamics of the subthreshold membrane potentials of CA2 neurons in vivo. We conducted whole-cell current-clamp recordings from CA2 pyramidal cells in urethane-anesthetized mice and monitored the intrinsic fluctuations in their membrane potentials. The CA2 pyramidal cells emitted spontaneous action potentials at mean firing rates of ∼0.8 Hz. In approximately half of the neurons, the subthreshold membrane potential oscillated at ∼3 Hz. In two neurons, we obtained simultaneous recordings of local field potentials from the CA1 stratum radiatum and demonstrated that the 3-Hz oscillations of CA2 neurons were not correlated with CA1 field potentials. In tetrodotoxin-perfused acute hippocampal slices, the membrane potentials of CA2 pyramidal cells were not preferentially entrained to 3-Hz sinusoidal current inputs, which suggest that intracellular 3-Hz oscillations reflect the neuronal dynamics of the surrounding networks. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Región CA2 Hipocampal/fisiología , Potenciales de la Membrana/fisiología , Células Piramidales/fisiología , Anestesia , Animales , Región CA1 Hipocampal/fisiología , Ratones Endogámicos ICR , Técnicas de Placa-Clamp , Periodicidad , Vigilia
5.
J Neurophysiol ; 113(5): 1358-68, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25475349

RESUMEN

In central auditory pathways, neurons exhibit a great diversity of temporal discharge patterns, which may contribute to the parallel processing of auditory signals. How such response diversity emerges in the central auditory circuits remains unclear. Here, we investigated whether synaptic mechanisms can contribute to the generation of the temporal response diversity at the first stage along the central auditory neuraxis. By in vivo whole-cell voltage-clamp recording in the dorsal cochlear nucleus of rats, we revealed excitatory and inhibitory synaptic inputs underlying three different firing patterns of fusiform/pyramidal neurons in response to auditory stimuli: "primary-like," "pauser," and "buildup" patterns. We found that primary-like neurons received strong, fast-rising excitation, whereas pauser and buildup neurons received accumulating excitation with a relatively weak fast-rising phase, followed by a slow-rising phase. Pauser neurons received stronger fast-rising excitation than buildup cells. On the other hand, inhibitory inputs to the three types of cells exhibited similar temporal patterns, all with a strong fast-rising phase. Dynamic-clamp recordings demonstrated that the differential temporal patterns of excitation could primarily account for the different discharge patterns. In addition, discharge pattern in a single neuron varied in a stimulus-dependent manner, which could be attributed to the modulation of excitation/inhibition balance by different stimuli. Further examination of excitatory inputs to vertical/tuberculoventral and cartwheel cells suggested that fast-rising and accumulating excitation might be conveyed by auditory nerve and parallel fibers, respectively. A differential summation of excitatory inputs from the two sources may thus contribute to the generation of response diversity.


Asunto(s)
Percepción Auditiva , Núcleo Coclear/fisiología , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Potenciales de Acción , Animales , Núcleo Coclear/citología , Femenino , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción
6.
Eur J Neurosci ; 39(10): 1624-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24666426

RESUMEN

Cerebellar parallel fiber-Purkinje cell (PF-PC) long-term synaptic plasticity is important for the formation and stability of cerebellar neuronal circuits, and provides substrates for motor learning and memory. We previously reported both presynaptic long-term potentiation (LTP) and long-term depression (LTD) in cerebellar PF-PC synapses in vitro. However, the expression and mechanisms of cerebellar PF-PC synaptic plasticity in the cerebellar cortex in vivo are poorly understood. In the present study, we studied the properties of 4 Hz stimulation-induced PF-PC presynaptic long-term plasticity using in vivo the whole-cell patch-clamp recording technique and pharmacological methods in urethane-anesthetised mice. Our results demonstrated that 4 Hz PF stimulation induced presynaptic LTD of PF-PC synaptic transmission in the intact cerebellar cortex in living mice. The PF-PC presynaptic LTD was attenuated by either the N-methyl-D-aspartate receptor antagonist, D-aminophosphonovaleric acid, or the group 1 metabotropic glutamate receptor antagonist, JNJ16259685, and was abolished by combined D-aminophosphonovaleric acid and JNJ16259685, but enhanced by inhibition of nitric oxide synthase. Blockade of cannabinoid type 1 receptor activity abolished the PF-PC LTD and revealed a presynaptic PF-PC LTP. These data indicate that both endocannabinoids and nitric oxide synthase are involved in the 4 Hz stimulation-induced PF-PC presynaptic plasticity, but the endocannabinoid-dependent PF-PC presynaptic LTD masked the nitric oxide-mediated PF-PC presynaptic LTP in the cerebellar cortex in urethane-anesthetised mice.


Asunto(s)
Corteza Cerebelosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Células de Purkinje/fisiología , Anestésicos Intravenosos/farmacología , Animales , Corteza Cerebelosa/efectos de los fármacos , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Ratones Endogámicos ICR , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Células de Purkinje/efectos de los fármacos , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Uretano/farmacología
7.
Behav Brain Res ; 437: 114160, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36257559

RESUMEN

Anxiety is a common emotional disorder in children. To understand its underlying mechanisms, chronic unpredictable stress (CUS) has been established as a stress model in zebrafish. By using the tall tank test, the stress response reliability could be improved in adult fish which has not been confirmed in larvae. In addition, the increasing evidences have shown that cerebellum plays important roles in anxiety. Whether CUS will affect cerebellar neuronal activity remains unknown. We found that CUS exposure to larvae (from 10 to 17 days post fertilization) induced anxiety-like behaviors and social cohesion impairments within 1-2 d after CUS, including a prolonged freezing time, an increased time spent at the bottom of tank, an increased thigmotaxis index, and an increased interindividual distance. Our results showed that the four behavioral tests were homogeneous, especially the tall tank test either anxiety-like behaviors or the basal locomotion. Furthermore, we found that CUS enhanced the excitability of cerebellar neurons, as the amplitude, frequency, time to peak and half-width of spontaneous firing significantly decreased, as well as the amplitude of excitatory post-synaptic current when compared with the control group. CUS also activated hyperpolarization-activated cyclic nucleotide-gated and potassium channels of cerebellar neurons. Multiple linear regression analysis showed that the total distance in bottom (tall tank test) was correlated positively with outward Na+-K+ currents (r = 0.848, P = 0.016), and the thigmotaxis index (open field test) correlated with action potential amplitude (r = 0.854, P = 0.030). Altogether, early life CUS transiently induced an anxiety-like behavior which could be more accurately assessed by combining the tall tank test with other behavior tests in young zebrafish. CUS increased the excitability of cerebellar neurons might provide new targets to treat emotional diseases such as anxiety.


Asunto(s)
Estrés Psicológico , Pez Cebra , Animales , Ansiedad , Conducta Animal , Larva , Neuronas , Reproducibilidad de los Resultados
8.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30993184

RESUMEN

A central transformation that occurs within mammalian visual cortex is the change from linear, polarity-sensitive responses to nonlinear, polarity-insensitive responses. These neurons are classically labelled as either simple or complex, respectively, on the basis of their response linearity (Skottun et al., 1991). While the difference between cell classes is clear when the stimulus strength is high, reducing stimulus strength diminishes the differences between the cell types and causes some complex cells to respond as simple cells (Crowder et al., 2007; van Kleef et al., 2010; Hietanen et al., 2013). To understand the synaptic basis for this shift in behavior, we used in vivo whole-cell recordings while systematically shifting stimulus contrast. We find systematic shifts in the degree of complex cell responses in mouse primary visual cortex (V1) at the subthreshold level, demonstrating that synaptic inputs change in concert with the shifts in response linearity and that the change in response linearity is not simply due to the threshold nonlinearity. These shifts are consistent with a visual cortex model in which the recurrent amplification acts as a critical component in the generation of complex cell responses (Chance et al., 1999).


Asunto(s)
Sensibilidad de Contraste/fisiología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp
9.
Front Cell Neurosci ; 13: 131, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024260

RESUMEN

Intensity and frequency are the two main properties of sound. The non-monotonic neurons in the auditory system are thought to represent sound intensity. The central nucleus of the inferior colliculus (ICC), as an important information integration nucleus of the auditory system, is also involved in the processing of intensity encoding. Although previous researchers have hinted at the importance of inhibitory effects on the formation of non-monotonic neurons, the specific underlying synaptic mechanisms in the ICC are still unclear. Therefore, we applied the in vivo whole-cell voltage-clamp technique to record the excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) in the ICC neurons, and compared the effects of excitation and inhibition on the membrane potential outputs. We found that non-monotonic neuron responses could not only be inherited from the lower nucleus but also be created in the ICC. By integrating with a relatively weak IPSC, approximately 35% of the monotonic excitatory inputs remained in the ICC. In the remaining cases, monotonic excitatory inputs were reshaped into non-monotonic outputs by the dominating inhibition at high intensity, which also enhanced the non-monotonic nature of the non-monotonic excitatory inputs.

10.
Front Neural Circuits ; 8: 128, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25386122

RESUMEN

We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT) and the dorsal spinocerebellar tract (DSCT), respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF) and the ipsilateral LF (iLF) at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e., that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn (dh) DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.


Asunto(s)
Corteza Cerebelosa/citología , Lateralidad Funcional/fisiología , Neuronas/fisiología , Tractos Espinocerebelares/fisiología , Potenciales de Acción/fisiología , Animales , Biofisica , Gatos , Estimulación Eléctrica , Electroencefalografía , Red Nerviosa/fisiología , Neuronas/clasificación , Médula Espinal/fisiología
11.
Front Neural Circuits ; 7: 103, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23754987

RESUMEN

Subcellular difference in the reversal potential of Cl(-) (ECl) has been found in many types of neurons. As local ECl largely determines the action of nearby GABAergic/glycinergic synapses, subcellular ECl difference can effectively regulate neuronal computation. The ON-OFF retinal ganglion cell (RGC) processes both ON and OFF visual signals via its ON and OFF dendrites, respectively. It is thus interesting to investigate whether the ON and OFF dendrites of single RGCs exhibit different local ECl. Here, using in vivo gramicidin-perforated patch recording in larval zebrafish ON-OFF RGCs, we examine local ECl at the ON and OFF dendrites, and soma through measuring light-evoked ON and OFF inhibitory responses, and GABA-induced response at the soma, respectively. We find there are subcellular ECl differences between the soma and dendrite, as well as between the ON and OFF dendrites of single RGCs. These somato-dendritic and inter-dendritic ECl differences are dependent on the Cl(-) extruder, K(+)/Cl(-) co-transporter (KCC2), because they are largely diminished by down-regulating kcc2 expression with morpholino oligonucleotides (MOs) or by blocking KCC2 function with furosemide. Thus, our findings indicate that there exists KCC2-dependent ECl difference between the ON and OFF dendrites of individual ON-OFF RGCs that may differentially affect visual processing in the ON and OFF pathways.


Asunto(s)
Cloruros/metabolismo , Células Ganglionares de la Retina/metabolismo , Simportadores/biosíntesis , Animales , Dendritas/fisiología , Técnicas de Silenciamiento del Gen/métodos , Larva , Fracciones Subcelulares/metabolismo , Pez Cebra , Cotransportadores de K Cl
12.
Commun Integr Biol ; 6(4): e24493, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23986803

RESUMEN

Microglia are the primary immune cells in the brain. Under pathological conditions, they become activated and participate in scavenging, inflammation and tissue repair in response to brain injury. While the function and underlying mechanism of activated microglia have been intensively studied in the past decades, physiological functions of resting microglia remain largely underestimated. In our recent work, by simultaneously monitoring both the motility of resting microglial processes and the activity of surrounding neurons in intact zebrafish optic tectum, we examined the interaction between resting microglia and neurons. Local increase in neuronal activity attracts resting microglial processes and drives them to contact neurons with high levels of activity. This process is mediated by neuronal release of "find-me" signals such as ATP via pannexin-1 hemichannels and requires small Rho GTPase Rac in microglia. Reciprocally, the microglia-neuron contact reduces both the spontaneous and visually evoked activities of contacted neurons. We here summarize and explain the key results in the context of our previous work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA