Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931505

RESUMEN

In order to reduce the position errors of the Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) integrated navigation system during GPS denial, this paper proposes a method based on the Particle Swarm Optimization-Back Propagation Neural Network (PSO-BPNN) to replace the GPS for positioning. The model relates the position information, velocity information, attitude information output by the SINS, and the navigation time to the position errors between the position information output by the SINS and the actual position information. The performance of the model is compared with the BPNN through an actual ship experiment. The results show that the PSO-BPNN can obviously reduce the position errors in the case of GPS signal denial.

2.
Sensors (Basel) ; 24(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38733051

RESUMEN

This paper proposes an improved initial alignment method for a strap-down inertial navigation system/global navigation satellite system (SINS/GNSS) integrated navigation system with large misalignment angles. Its methodology is based on the three-dimensional special Euclidean group and extended Kalman filter (SE2(3)/EKF) and aims to overcome the challenges of achieving fast alignment under large misalignment angles using traditional methods. To accurately characterize the state errors of attitude, velocity, and position, these elements are constructed as elements of a Lie group. The nonlinear error on the Lie group can then be well quantified. Additionally, a group vector mixed error model is developed, taking into account the zero bias errors of gyroscopes and accelerometers. Using this new error definition, a GNSS-assisted SINS dynamic initial alignment algorithm is derived, which is based on the invariance of velocity and position measurements. Simulation experiments demonstrate that the alignment method based on SE2(3)/EKF can achieve a higher accuracy in various scenarios with large misalignment angles, while the attitude error can be rapidly reduced to a lower level.

3.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447870

RESUMEN

This research develops an integrated navigation system, which fuses the measurements of the inertial measurement unit (IMU), LiDAR, and monocular camera using an extended Kalman filter (EKF) to provide accurate positioning during prolonged GNSS signal outages. The system features the use of an integrated INS/monocular visual simultaneous localization and mapping (SLAM) navigation system that takes advantage of LiDAR depth measurements to correct the scale ambiguity that results from monocular visual odometry. The proposed system was tested using two datasets, namely, the KITTI and the Leddar PixSet, which cover a wide range of driving environments. The system yielded an average reduction in the root-mean-square error (RMSE) of about 80% and 92% in the horizontal and upward directions, respectively. The proposed system was compared with an INS/monocular visual SLAM/LiDAR SLAM integration and to some state-of-the-art SLAM algorithms.


Asunto(s)
Aprendizaje Profundo , Algoritmos
4.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687880

RESUMEN

Traditionally, navigation systems have relied solely on global navigation satellite system (GNSS)/inertial navigation system (INS) integration. When a temporal loss of GNSS signal lock is encountered, these systems would rely on INS, which can sustain short bursts of outages, albeit drift significantly in prolonged outages. In this study, an extended Kalman filter (EKF) is proposed to develop an integrated INS/LiDAR/Stereo simultaneous localization and mapping (SLAM) navigation system. The first update stage of the filter integrates the INS with the LiDAR, after which the resultant navigation solution is integrated with the stereo SLAM solution, which yields the final integrated navigation solution. The system was tested for different driving scenarios in urban and rural environments using the raw Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset in the complete absence of the GNSS signal. In addition, the selected KITTI drives covered low and high driving speeds in feature-rich and feature-poor environments. It is shown that the proposed INS/LiDAR/Stereo SLAM navigation system yielded better position estimations in comparison to using the INS without any assistance from onboard sensors. The accuracy improvement was expressed as a reduction of the root-mean-square error (RMSE) by 83% and 82% in the horizontal and up directions, respectively. In addition, the proposed system outperformed the positioning accuracy of some of the state-of-the-art algorithms.

5.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772732

RESUMEN

In view of the difficulties regarding that airborne navigation equipment relies on imports and the expensive domestic high-precision navigation equipment in the manufacturing field of Chinese navigable aircraft, a dual-antenna GNSS (global navigation satellite system)/MINS (micro-inertial navigation system) integrated navigation system was developed to implement high-precision and high-reliability airborne integrated navigation equipment. First, the state equation and measurement equation of the system were established based on the classical discrete Kalman filter principle. Second, according to the characteristics of the MEMS (micro-electric-mechanical system), the IMU (inertial measurement unit) is not sensitive to Earth rotation to realize self-alignment; the magnetometer, accelerometer and dual-antenna GNSS are utilized for reliable attitude initial alignment. Finally, flight status identification was implemented by the different satellite data, accelerometer and gyroscope parameters of the aircraft in different states. The test results shown that the RMS (root mean square) of the pitch angle and roll angle error of the testing system are less than 0.05° and the heading angle error RMS is less than 0.15° under the indoor static condition. A UAV flight test was carried out to test the navigation effect of the equipment upon aircraft take-off, climbing, turning, cruising and other states, and to verify the effectiveness of the system algorithm.

6.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112417

RESUMEN

Aiming at the problem of fast divergence of pure inertial navigation system without correction under the condition of GNSS restricted environment, this paper proposes a multi-mode navigation method with an intelligent virtual sensor based on long short-term memory (LSTM). The training mode, predicting mode, and validation mode for the intelligent virtual sensor are designed. The modes are switching flexibly according to GNSS rejecting situation and the status of the LSTM network of the intelligent virtual sensor. Then the inertial navigation system (INS) is corrected, and the availability of the LSTM network is also maintained. Meanwhile, the fireworks algorithm is adopted to optimize the learning rate and the number of hidden layers of LSTM hyperparameters to improve the estimation performance. The simulation results show that the proposed method can maintain the prediction accuracy of the intelligent virtual sensor online and shorten the training time according to the performance requirements adaptively. Under small sample conditions, the training efficiency and availability ratio of the proposed intelligent virtual sensor are improved significantly more than the neural network (BP) as well as the conventional LSTM network, improving the navigation performance in GNSS restricted environment effectively and efficiently.

7.
Sensors (Basel) ; 22(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890765

RESUMEN

An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability.

8.
Sensors (Basel) ; 22(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35746108

RESUMEN

Traditional navigation systems rely on GNSS/inertial navigation system (INS) integration, in which the INS can provide reliable positioning during short GNSS outages. However, if the GNSS outage persists for prolonged periods of time, the performance of the system will be solely dependent on the INS, which can lead to a significant drift over time. As a result, the need to integrate additional onboard sensors is essential. This study proposes a robust loosely coupled (LC) integration between the INS and LiDAR simultaneous mapping and localization (SLAM) using an extended Kalman filter (EKF). The proposed integrated navigation system was tested for three different driving scenarios and environments using the raw KITTI dataset. The first scenario used the KITTI residential datasets, totaling 48 min, while the second case study considered the KITTI highway datasets, totaling 7 min. For both case studies, a complete absence of the GNSS signal was assumed for the whole trajectory of the vehicle in all drives. In contrast, the third case study considered the use of minimal assistance from GNSS, which mimics the intermittent receipt and loss of GNSS signals for different driving environments. The positioning results of the proposed INS/LiDAR SLAM integrated system outperformed the performance of the INS for the residential datasets with an average reduction in the root mean square error (RMSE) in the horizontal and up directions of 88% and 32%, respectively. For the highway datasets, the RMSE reductions were 70% and 0.2% for the horizontal and up directions, respectively.

9.
Sensors (Basel) ; 22(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35746235

RESUMEN

The gravity-aided inertial navigation system is a technique using geophysical information, which has broad application prospects, and the gravity-map-matching algorithm is one of its key technologies. A novel gravity-matching algorithm based on the K-Nearest neighbor is proposed in this paper to enhance the anti-noise capability of the gravity-matching algorithm, improve the accuracy of gravity-aided navigation, and reduce the application threshold of the matching algorithm. This algorithm selects K sample labels by the Euclidean distance between sample datum and measurement, and then creatively determines the weight of each label from its spatial position using the weighted average of labels and the constraint conditions of sailing speed to obtain the continuous navigation results by gravity matching. The simulation experiments of post processing are designed to demonstrate the efficiency. The experimental results show that the algorithm reduces the INS positioning error effectively, and the position error in both longitude and latitude directions is less than 800 m. The computing time can meet the requirements of real-time navigation, and the average running time of the KNN algorithm at each matching point is 5.87s. This algorithm shows better stability and anti-noise capability in the continuously matching process.

10.
Sensors (Basel) ; 22(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36015743

RESUMEN

As a common integrated navigation system, the strapdown inertial navigation system (SINS)/global positioning system (GPS) can estimate velocity and position errors well. Many auxiliary attitude measurement systems can be used to improve the accuracy of attitude angle errors. In this paper, the in-flight alignment problem of the integrated SINS/GPS/Polarization/Geomagnetic navigation system is discussed. Firstly, the SINS/Geomagnetic subsystem is constructed to improve the estimation accuracy of horizontal attitude angles. Secondly, the polarization sensor is used to improve the estimation accuracy of heading angle. Then, a federal unscented Kalman filter (FUKF) with non-reset structure is applied to fuse the navigation data. Finally, simulation results for the integrated navigation system are provided based on experimental data. It can be shown that the proposed approach can improve not only the speed and position, but also the attitude error effectively.

11.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560277

RESUMEN

Unmanned aerial vehicle (UAV) navigation has recently been the focus of many studies. The most challenging aspect of UAV navigation is maintaining accurate and reliable pose estimation. In outdoor environments, global navigation satellite systems (GNSS) are typically used for UAV localization. However, relying solely on GNSS might pose safety risks in the event of receiver malfunction or antenna installation error. In this research, an unmanned aerial system (UAS) employing the Applanix APX15 GNSS/IMU board, a Velodyne Puck LiDAR sensor, and a Sony a7R II high-resolution camera was used to collect data for the purpose of developing a multi-sensor integration system. Unfortunately, due to a malfunctioning GNSS antenna, there were numerous prolonged GNSS signal outages. As a result, the GNSS/INS processing failed after obtaining an error that exceeded 25 km. To resolve this issue and to recover the precise trajectory of the UAV, a GNSS/INS/LiDAR integrated navigation system was developed. The LiDAR data were first processed using the optimized LOAM SLAM algorithm, which yielded the position and orientation estimates. Pix4D Mapper software was then used to process the camera images in the presence of ground control points (GCPs), which resulted in the precise camera positions and orientations that served as ground truth. All sensor data were timestamped by GPS, and all datasets were sampled at 10 Hz to match those of the LiDAR scans. Two case studies were considered, namely complete GNSS outage and assistance from GNSS PPP solution. In comparison to the complete GNSS outage, the results for the second case study were significantly improved. The improvement is described in terms of RMSE reductions of approximately 51% and 78% for the horizontal and vertical directions, respectively. Additionally, the RMSE of the roll and yaw angles was reduced by 13% and 30%, respectively. However, the RMSE of the pitch angle was increased by about 13%.

12.
Sensors (Basel) ; 22(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36298093

RESUMEN

In response to the lack of specific demonstration and analysis of the research on the necessity of the Lie group strapdown inertial integrated navigation error model based on the Euler angle, two common integrated navigation systems, strapdown inertial navigation system/global navigation satellite system (SINS/GNSS) and strapdown inertial navigation system/doppler velocity log (SINS/DVL), are used as subjects, and the piecewise constant system (PWCS) matrix, based on the Lie group error model, is established. From three aspects of variance estimation, the observability and performance of the system with large misalignment angles for low, medium, and high accuracy levels, traditional error model, Lie group left error model, and right error model are compared. The necessity of research on Lie group error model is analyzed quantitatively and qualitatively. The experimental results show that Lie group error model has better stability of variance estimation, estimation accuracy, and observability than traditional error model, as well as higher practical value.

13.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35062513

RESUMEN

This article examines the positioning effect of integrated navigation after adding an LEO constellation signal source and a 5G ranging signal source in the context of China's new infrastructure construction. The tightly coupled Kalman federal filters are used as the algorithm framework. Each signal source required for integrated navigation is simulated in this article. At the same time, by limiting the range of the azimuth angle and visible height angle, different experimental scenes are simulated to verify the contribution of the new signal source to the traditional satellite navigation, and the positioning results are analyzed. Finally, the article compares the distribution of different federal filtering information factors and reveals the method of assigning information factors when combining navigation with sensors with different precision. The experimental results show that the addition of LEO constellation and 5G ranging signals improves the positioning accuracy of the original INS/GNSS by an order of magnitude and ensures a high degree of positioning continuity. Moreover, the experiment shows that the federated filtering algorithm can adapt to the combined navigation mode in different scenarios by combining different precision sensors for navigation positioning.


Asunto(s)
Algoritmos , Proyectos de Investigación , Simulación por Computador , Registros
14.
Sensors (Basel) ; 22(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36433344

RESUMEN

Shipping performed by contemporary vessels is the backbone of global trade. Modern vessels are equipped with many computerized systems to enhance safety and operational efficiency. One such system developed is the integrated navigation system (INS), which combines information and functions for the bridge team onboard. An INS comprises many marine components involving cyber threats and vulnerabilities. This study aims to assess the cyber risks of such components. To this end, a methodology considering the MITRE ATT&CK framework, which provides adversarial tactics, techniques, and mitigation measures, was applied by modifying for cyber risks at sea. We assessed cyber risks of 25 components on the bridge by implementing the extended methodology in this study. As a result of the assessment, we found 1850 risks. We classified our results as 1805 low, 32 medium, 9 high, and 4 critical levels for 22 components. Three components did not include any cyber risks. Scientists, ship operators, and product developers could use the findings to protect navigation systems onboard from potential cyber threats and vulnerabilities.


Asunto(s)
Navíos
15.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616677

RESUMEN

This paper presents the implementation of a mutual-aided navigation system for an aerial vehicle. Employing all available sensors in navigation is effective at maintaining continuous and optimal results. The images offer a lot of information about the surrounding environment, but image processing is time-consuming and causes timing problems. While traditional fusion algorithms tend to reduce the delay errors or ignore them, this research depends on state estimation recalculation during the delay time and on sequential filtering. To reduce the image matching time, the map is processed offline, then key point clusters are stored to avoid feature recalculation online. The sensors' information is used to bound the search space for the matched features on the map, then they are reprojected on the captured images to exclude the unuseful part from processing. The suggested mutual-aided form compensates for the inertial system drift, which enhances the system's accuracy and independence. The system was tested using data collected from a real flight using a DJI drone. The measurements from an inertial measurement unit (IMU), camera, barometer, and magnetometer were fused using a sequential Kalman Filter. The final results prove the efficiency of the suggested system to navigate with high independency, with an RMS position error of less than 3.5 m.

16.
Sensors (Basel) ; 22(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36502180

RESUMEN

Navigation and positioning of autonomous underwater vehicles (AUVs) in the complex and changeable marine environment are crucial and challenging. For the positioning of AUVs, the integrated navigation of the strap-down inertial navigation system (SINS), Doppler velocity log (DVL), and pressure sensor (PS) has a common application. Nevertheless, in the complex underwater environment, the DVL performance is affected by the current and complex terrain environments. The outliers in sensor observations also have a substantial adverse effect on the AUV positioning accuracy. To address these issues, in this paper, a novel tightly integrated navigation model of the SINS, DVL, and PS is established. In contrast to the traditional SINS, DVL, and PS tightly integrated navigation methods, the proposed method in this paper is based on the velocity variation of the DVL beam by applying the DVL bottom-track and water-track models. Furthermore, a new robust interacting multiple models (RIMM) information fusion algorithm is proposed. In this algorithm, DVL beam anomaly is detected, and the Markov transfer probability matrix is accordingly updated to enable quick model matching. By simulating the motion of the AUV in a complex underwater environment, we also compare the performance of the traditional loosely integrated navigation (TLIN) model, the tightly integrated navigation (TTIN) model, and the IMM algorithm. The simulation results show that because of the PS, the velocity and height in the up-change amplitude of the four algorithms are small. Compared with the TLIN algorithm in terms of maximum deviation of latitude and longitude, the RIMM algorithm also improves the accuracy by 39.1243 m and 26.4364 m, respectively. Furthermore, compared with the TTIN algorithm, the RIMM algorithm improves latitude and longitude accuracy by 1.8913 m and 11.8274 m, respectively. A comparison with IMM also shows that RIMM improves the accuracy of latitude and longitude by 1.1506 m and 7.2301 m, respectively. The results confirm that the proposed algorithm suppresses the observed noise and outliers of DVL and further achieves quick conversion between different DVL models while making full use of the effective information of the DVL beams. The proposed method also improves the navigation accuracy of AUVs in complex underwater environments.


Asunto(s)
Algoritmos , Ultrasonografía Doppler , Movimiento (Física) , Simulación por Computador , Probabilidad
17.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557099

RESUMEN

In this paper, to address the problem of positioning accumulative errors of the inertial navigation system (INS), a bionic autonomous positioning mechanism integrating INS with a bioinspired polarization compass is proposed. In addition, the bioinspired positioning system hardware and the integration model are also presented. Concerned with the technical issue of the accuracy and environmental adaptability of the integrated positioning system, the sun elevation calculating method based on the degree of polarization (DoP) and direction of polarization (E-vector) is presented. Moreover, to compensate for the latitude and longitude errors of INS, the bioinspired positioning system model combining the polarization compass and INS is established. Finally, the positioning performance of the proposed bioinspired positioning system model was validated via outdoor experiments. The results indicate that the proposed system can compensate for the position errors of INS with satisfactory performance.

18.
Sensors (Basel) ; 21(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833554

RESUMEN

Due to the strong absorption and attenuation of electromagnetic waves by water, radio communications and global positioning systems are lacking in the deep-sea environment. Therefore, underwater long-distance communications, positioning, detection and other functions depend on acoustic technology. In order to realize the above functions, the acoustic system of the Fendouzhe human occupied vehicle (HOV) is composed of eight kinds of sonars and sensors, which is one of the core systems of manned submersible. Based on the Jiaolong/Shenhai Yongshi HOVs, the acoustic system of the Fendouzhe HOV has been developed. Compared with the previous technology, there are many technical improvements and innovations: 10,000-m underwater acoustic communication, 10,000-m underwater acoustic positioning, multi-beam forward-looking imaging sonar, an integrated navigation system, etc. This study introduces the structure of the acoustic system of the Fendouzhe HOV and the technical improvements compared with the Jiaolong/Shenhai Yongshi HOVs. The results of the acoustic system are illustrated by the 10,000-m sea trails in the Mariana Trench from October to December 2020.


Asunto(s)
Acústica , Sonido , Humanos , Agua
19.
Sensors (Basel) ; 21(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34300592

RESUMEN

The paper deals with performance enhancement of low-cost, consumer-grade inertial sensors realized by means of Micro Electro-Mechanical Systems (MEMS) technology. Focusing their attention on the reduction of bias instability and random walk-driven drift of cost-effective MEMS accelerometers and gyroscopes, the authors hereinafter propose a suitable method, based on a redundant configuration and complemented with a proper measurement procedure, to improve the performance of low-cost, consumer-grade MEMS sensors. The performance of the method is assessed by means of an adequate prototype and compared with that assured by a commercial, expensive, tactical-grade MEMS inertial measurement unit, taken as reference. Obtained results highlight the promising reliability and efficacy of the method in estimating position, velocity, and attitude of vehicles; in particular, bias instability and random walk reduction greater than 25% is, in fact, experienced. Moreover, differences as low as 0.025 rad and 0.89 m are obtained when comparing position and attitude estimates provided by the prototype and those granted by the tactical-grade MEMS IMU.


Asunto(s)
Sistemas Microelectromecánicos , Reproducibilidad de los Resultados , Caminata
20.
Sensors (Basel) ; 20(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023169

RESUMEN

As a growing number of exploration missions have successfully landed on the Moon in recent decades, ground infrastructures, such as radio beacons, have attracted a great deal of attention in the design of navigation systems. None of the available studies regarding integrating beacon measurements for pinpoint landing have considered uncertain initial beacon locations, which are quite common in practice. In this paper, we propose a radio beacon/inertial measurement unit (IMU)/altimeter localization scheme that is sufficiently robust regarding uncertain initial beacon locations. This scheme was designed based on the sparse extended information filter (SEIF) to locate the lander and update the beacon configuration at the same time. Then, an adaptive iterated sparse extended hybrid filter (AISEHF) was devised by modifying the prediction and update stage of SEIF with a hybrid-form propagation and a damping iteration algorithm, respectively. The simulation results indicated that the proposed method effectively reduced the error in the position estimations caused by uncertain beacon locations and made an effective trade-off between the estimation accuracy and the computational efficiency. Thus, this method is a potential candidate for future lunar exploration activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA