Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Gene Med ; 26(1): e3654, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282153

RESUMEN

BACKGROUND: The present study aimed to explore the biological role and underlying mechanism of the long non-coding RNA actin filament-associated protein 1-antisense RNA1 (lncRNA AFAP1-AS1) in the progression of tongue squamous cell carcinoma (TSCC). METHODS: A quantitative reverse transcriptase-PCR (RT-qPCR) was conducted to assess relative levels of the miR-133a-5p, lncRNAs AFAP1-AS1 and zinc finger family member 2 (ZIC2) in TSCC cell lines and specimens, whereas ZIC2 protein levels were measured using western blotting. After modifying the levels of expression of lncRNA AFP1-AS1, miR-133a-5p and ZIC2 using lentivirus or plasmid transfection, we examined AKT/epithelial-mesenchymal transition signaling pathway alterations, in vivo carcinogenesis of TSCC in nude mice and in vitro malignant phenotypes. A dual-luciferase reporter assay was conducted to confirm the targeting relationship between ZIC2 and miR-133a-5p, as well as between miR-133a-5p and lncRNA AFAP1-AS1. Based on The Cancer Genome Atlas (TCGA) database, we additionally validated AFP1-AS1. The potential biological pathway for AFP1-AS1 was investigated using gene set enrichment analysis (GSEA). We also evaluated the clinical diagnostic capacities of AFP1-AS1 and clustered the most potential biomarkers with the Mfuzz expression pattern. Finally, we also made relevant drug predictions for AFP1-AS1. RESULTS: In TSCC cell lines and specimens, lncRNA AFAP1-AS1 was upregulated. ZIC2 was upregulated in TSCC cells as a result of lncRNA AFAP1-AS1 overexpression, which also promoted TSCC cell migration, invasion, viability, and proliferation. Via the microRNA sponge effect, it was found that lncRNA AFAP1-AS1 could upregulate ZIC2 by competitively inhibiting miR-133a-5p. Interestingly, knockdown of ZIC2 reversed the biological roles of lncRNA AFAP1-AS1 with respect to inducing malignant phenotypes in TSCC cells. In addition, in vivo overexpression of lncRNA AFAP1-AS1 triggered subcutaneous tumor growth in nude mice implanted with TSCC cells and upregulated ZIC2 in the tumors. The TCGA database findings revealed that AFAP1-AS1 was significantly upregulated in TSCC specimens and had good clinical diagnostic value. The results of GSEA showed that peroxisome proliferator-activated receptor signaling pathway was significantly correlated with low expression of AFP1-AS1. Finally, the results of drug prediction indicated that the group with high AFAP1-AS1 expression was more sensitive to docetaxel, AZD4547, AZD7762 and nilotinib. CONCLUSIONS: The upregulation of lncRNA AFAP1-AS1, which increases TSCC cell viability, migration, proliferation and invasion via the AFAP1-AS1/miR-133a-5p/ZIC2 axis, aids in the progression of TSCC.


Asunto(s)
Carcinoma de Células Escamosas , MicroARNs , ARN sin Sentido , ARN Largo no Codificante , Neoplasias de la Lengua , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proteínas de Microfilamentos/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Lengua/genética , ARN sin Sentido/genética
2.
J Endocrinol Invest ; 47(3): 655-669, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37682493

RESUMEN

PURPOSE: Impairment of skeletal muscle mass and strength affects 40-70% of patients with active Cushing's syndrome (CS). Glucocorticoid excess sustains muscle atrophy and weakness, while muscle-specific microRNAs (myomiRs) level changes were associated with muscle organization and function perturbation. The aim of the current study is to explore changes in circulating myomiRs in CS patients compared to healthy controls and their involvement in IGFI/PI3K/Akt/mTOR pathway regulation in skeletal muscle. METHODS: C2C12, mouse myocytes, were exposed to hydrocortisone (HC), and atrophy-related gene expression was investigated by RT-qPCR, WB and IF to assess HC-mediated atrophic signalling. miRNAs were evaluated in HC-treated C2C12 by PCR Arrays. MyomiRs significantly overexpressed in C2C12 were investigated in 37 CS patients and 24 healthy controls serum by RT-qPCR. The anti-anabolic role of circulating miRNAs significantly upregulated in CS patients was explored in C2C12 by investigating the IGFI/PI3K/Akt/mTOR pathway regulation. RESULTS: HC induced higher expression of atrophy-related genes, miR-133a-3p, miR-122-5p and miR-200b-3p in C2C12 compared to untreated cells. Conversely, the anabolic IGFI/PI3K/Akt/mTOR signalling was reduced and this effect was mediated by miR-133a-3p. In CS patients miR-133a-3p and miR-200b-3p revealed higher circulating levels (p < 0.0001, respectively) compared to controls. ROC curves for miR-133a-3p (AUC 0.823, p < 0.0001) and miR-200b-3p (AUC 0.850, p < 0.0001) demonstrated that both myomiRs represent potential biomarkers to discriminate between CS and healthy subjects. Pearson's correlation analysis revealed that circulating levels of miR-133a-3p are directly correlated with 24 h urinary-free cortisol level (r = 0.468, p = 0.004) in CS patients. CONCLUSIONS: HC induces atrophic signals by miR-133a-3p overexpression in mouse myocytes and humans. Circulating miR-133a-3p is promising biomarkers of hypercortisolism.


Asunto(s)
Síndrome de Cushing , MicroARNs , Humanos , Animales , Ratones , Síndrome de Cushing/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , MicroARNs/genética , Atrofia , Biomarcadores , Hidrocortisona , Serina-Treonina Quinasas TOR
3.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884718

RESUMEN

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Asunto(s)
Redes Reguladoras de Genes , Cardiopatías Congénitas , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Corazón/fisiología , Miocardio/metabolismo
4.
Pak J Med Sci ; 40(4): 723-729, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544991

RESUMEN

Objective: To investigate the clinical value of the expression levels of tumor protein D52 (TPD52) and miR-133a on the prognosis assessment of pancreatic cancer surgery. Methods: This was a retrospective study. Ninety-seven patients who underwent radical surgery for pancreatic cancer in Cangzhou Central Hospital from January 2018 to January 2022 were selected and divided into four groups: TPD52 high expression group, TPD52 low expression group, miR-133a high expression group and miR-133a low expression group. The relationship between the expression levels of TPD52 and miR-133a and the clinicopathological features of patients with pancreatic cancer was analyzed. The COX regression model was used to analyze the risk factors affecting the prognosis of patients with pancreatic cancer. Results: The high expression rate of TPD52 and the low expression rate of miR-133a in pancreatic cancer tissues were higher than those in normal paracancerous tissues(P<0.05). Based on the comparison of prognosis and survival, the median survival time of patients with high expression of TPD52 and low expression of miR-133a was lower than that of patients with low expression of TPD52 and high expression of miR-133a, with a statistically significant difference(P<0.05). Moreover, multivariate Cox regression analysis showed that low differentiation of pancreatic cancer, III-IV stage of TNM, high expression of TPD52, as well as low expression of miR-133a were independent risk factors for postoperative survival of patients with pancreatic cancer(P<0.05). Conclusion: TPD52 is expressed at a high level whereas miR-133a at a low level in pancreatic cancer tissues, both of which together with low differentiation of pancreatic cancer and III-IV stage of TNM constitute independent risk factors affecting the surgical prognosis of patients with pancreatic cancer.

5.
Am J Physiol Heart Circ Physiol ; 324(5): H598-H609, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36827227

RESUMEN

Insulin resistance (IR) is one of the hallmarks of heart failure (HF). Abnormalities in skeletal muscle (SM) metabolism have been identified in patients with HF. However, the underlying mechanisms of IR development in SM in HF are poorly understood. Herein, we hypothesize that HF upregulates miR-133b in SM and in turn alters glucose metabolism and the propensity toward IR. Mitochondria isolated from SM of mice with HF induced by transverse aortic constriction (TAC) showed lower respiration and downregulation of muscle-specific components of the tricarboxylic acid (TCA) cycle, AMP deaminase 1 (AMPD1), and fumarate compared with those from control animals. RNA-Seq and subsequent qPCR validation confirmed upregulation of SM-specific microRNA (miRNA), miR-133b, in TAC versus sham animals. miR-133b overexpression alone resulted in significantly lower mitochondrial respiration, cellular glucose uptake, and glycolysis along with lower ATP production and cellular energy reserve compared with the scramble (Scr) in C2C12 cells. miR-133b binds to the 3'-untranslated region (UTR) of KLF15, the transcription factor for the insulin-sensitive glucose transporter, GLUT4. Overexpression of miR-133b lowers GLUT4 and lowers pAkt in presence of insulin in C2C12 cells. Finally, lowering miR-133b in primary skeletal myocytes isolated from TAC mice using antagomir-133b reversed the changes in KLF15, GLUT4, and AMPD1 compared with the scramble-transfected myocytes. Taken together, these data demonstrate a role for SM miR-133b in altered glucose metabolism in HF and suggest the therapeutic potential in HF to improve glucose uptake and glycolysis by restoring GLUT4 abundance. The data uncover a novel mechanism for IR and ultimately SM metabolic abnormalities in patients with HF.NEW & NOTEWORTHY Heart failure is associated with systemic insulin resistance and abnormalities in glucose metabolism but the underlying mechanisms are poorly understood. In the skeletal muscle, the major peripheral site of glucose utilization, we observe an increase in miR-133b in heart failure mice, which reduces the insulin-sensitive glucose transporter (GLUT4), glucose uptake, and metabolism in C2C12 and in myocytes. The antagomir for miR-133b restores GLUT4 protein and markers of metabolism in skeletal myocytes from heart failure mice demonstrating that miR-133b is an exciting target for systemic insulin resistance in heart failure and an important player in the cross talk between the heart and the periphery in the heart failure syndrome.


Asunto(s)
Insuficiencia Cardíaca , Resistencia a la Insulina , MicroARNs , Ratones , Animales , Resistencia a la Insulina/genética , Antagomirs/metabolismo , Músculo Esquelético/metabolismo , Glucosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Insulina/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo
6.
Mol Cell Biochem ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37522976

RESUMEN

Hsa_circ_0071589 can exacerbate the malignant behavior of colorectal cancer (CRC) cells. However, its function in stemness and oxaliplatin (OXP) resistance of CRC cells remains unclear. To assess the function of hsa_circ_0071589 in stemness and OXP resistance of CRC cells. Western blotting and qRT-PCR were applied to assess protein and mRNA levels. The association between hsa_circ_0071589, miR-133b and SOX13 was explored via a correlation analysis. Sphere formation was used to assess cell stemness. Meanwhile, the viability of CRC cells and OXP-resistant CRC cells was evaluated with the MTT assay. Cell stemness marker (CD133) levels and apoptosis of CRC cells and OXP-resistant CRC cells were tested using flow cytometry. The ALDH level was investigated using the related detection kit. In addition, the association between hsa_circ_0071589 and miR-133b and SOX13 was investigated using the RIP and dual luciferase assay. Finally, in vivo experiments were performed to detect the function of hsa_circ_0071589 in CRC, and the levels of SOX13, Ki67, and CD44 in mice were evaluated via immunohistochemistry staining. The expression of hsa_circ_0071589 and SOX13 was upregulated in CRC, whereas the expression of miR-133b was downregulated. Hsa_circ_0071589 knockdown significantly inhibited CRC stemness via the mediation of miR-133b. Moreover, hsa_circ_0071589 silencing significantly sensitized CRC cells to OXP by upregulating miR-133b. SOX13 was the direct target of miR-133b, and miR-133b could attenuate stemness and OXP resistance in CRC cells by targeting SOX13. Notably, hsa_circ_0071589 knockdown inhibited tumor growth and decreased OXP resistance in mice with CRC. Hsa_circ_0071589 aggravates stemness and OXP resistance by sponging miR-133b to indirectly target SOX13 in CRC. Thus, our study might present a novel treatment strategy against OXP-resistant CRC.

7.
BMC Cardiovasc Disord ; 23(1): 448, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697243

RESUMEN

BACKGROUND: The development of new-onset atrial fibrillation (NOAF) after acute myocardial infarction (AMI) is a clinical complication that requires a better understanding of the causative risk factors. This study aimed to explore the risk factors and the expression and function of miR-1 and miR-133a in new atrial fibrillation after AMI. METHODS: We collected clinical data from 172 patients with AMI treated with emergency percutaneous coronary intervention (PCI) between October 2021 and October 2022. Independent predictors of NOAF were determined using binary logistic univariate and multivariate regression analyses. The predictive value of NOAF was assessed using the area under the receiver operating characteristic (ROC) curve for related risk factors. In total, 172 venous blood samples were collected preoperatively and on the first day postoperatively; the expression levels of miR-1 and miR-133a were determined using the polymerase chain reaction. The clinical significance of miR-1 and miR-133a expression levels was determined by Spearman correlation analysis. RESULTS: The Glasgow prognostic score, left atrial diameter, and infarct area were significant independent risk factors for NOAF after AMI. We observed that the expression levels of miR-1 and miR-133a were significantly higher in the NOAF group than in the non-NOAF group. On postoperative day 1, strong associations were found between miR-133a expression levels and the neutrophil ratio and between miR-1 expression levels and an increased left atrial diameter. CONCLUSIONS: Our findings indicate that the mechanism of NOAF after AMI may include an inflammatory response associated with an increased miR-1-related mechanism. Conversely, miR-133a could play a protective role in this clinical condition.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , MicroARNs , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Fibrilación Atrial/etiología , Fibrilación Atrial/genética , MicroARNs/genética , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Intervención Coronaria Percutánea/efectos adversos
8.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1234-1246, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337633

RESUMEN

Obesity has been reported to promote disordered folliculogenesis, but the exact molecular mechanisms are still not fully understood. In this study, we find that miR-133a is involved in obesity-induced follicular development disorder. After feeding with a high-fat diet (HFD) and fructose water for nine weeks, the mouse body weight is significantly increased, accompanied by an inflammatory state and increased expression of miR-133a in the adipose tissues and ovaries as well as accelerated follicle depletion. Although miR-133a is increased in the fat and ovaries of HFD mice, the increased miR-133a in the HFD ovaries is not derived from exosome transferred from obese adipose tissues but is synthesized by ovarian follicular cells in response to HFD-induced inflammation. In vivo experiments show that intrabursal injection of miR-133a agomir induces a decrease in primordial follicles and an increase in antral follicles and atretic follicles, which is similar to HFD-induced abnormal folliculogenesis. Overexpression of miR-133a modestly promotes granulosa cell apoptosis by balancing the expression of anti-apoptotic proteins such as C1QL1 and XIAP and pro-apoptotic proteins such as PTEN. Overall, this study reveals the function of miR-133a in obesity-induced ovarian folliculogenesis dysfunction and sheds light on the etiology of female reproductive disorders.


Asunto(s)
Células de la Granulosa , MicroARNs , Femenino , Ratones , Animales , Folículo Ovárico/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Apoptosis , MicroARNs/genética , MicroARNs/metabolismo
9.
Anim Biotechnol ; 34(9): 4559-4568, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36752211

RESUMEN

The Yangtze River Delta white goats are the sole goat breed producing brush hair of high quality. Owing to the particularities of its wool production, a higher demand is placed on breeding efforts for this animal. Studies on the developmental mechanisms of the aligned hair follicle stem cells (HFSCs) provide a theoretical basis for molecular breeding. In the present study, HFSCs were isolated using the technique of immunohistochemistry from the cervical spinal skin tissue samples from the fetal sheep, and the miR-133a-3p expression was confirmed using quantitative reverse-transcription PCR (RT-qPCR) and western blotting experiments from the isolated HFSCs. Additionally, the effects on the proliferation and apoptosis of HFSCs were detected using flow cytometry and 5-ethynyl-2'-deoxyuridine assays, along with other methods, following the overexpression of miR-133a-3p or its inhibition. The experimental results revealed that miR-133a-3p overexpressed could inhibit the proliferation of HFSCs and promote apoptosis by specifically targeting DUSP6. While the miR-133a-3p knockdown could promote the proliferation but inhibit the apoptosis of the HFSCs. Meanwhile, the miR-133a-3p knockdown experiments showed opposite outcomes. These results illustrate the presence of a relevant network between DUSP6 and miR-133a-3p, which regulates the production of superior-quality brush hair.


Asunto(s)
Folículo Piloso , MicroARNs , Animales , Ovinos , Folículo Piloso/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cabras/genética , Cabras/metabolismo , Proliferación Celular/genética , Células Madre/metabolismo
10.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37762217

RESUMEN

Psoriasis is nowadays recognized as a multifactorial systemic disease with complex and not fully understood pathogenesis. In psoriatic patients, the increased cardiovascular disease (CVD) risk and frequent comorbidities like obesity are observed. The aim of this study was to investigate differences in miRNA (miR-22-3p, miR-133a-3p, miR-146a-5p, miR-369-3p, and Let-7b-5p) involved in CVD risk among psoriatic patients with overweight/obesity and with normal weight. The study comprised 28 male psoriatic patients and 16 male healthy controls. miRNA isolated from peripheral blood mononuclear cells was reverse-transcribed and RT-qPCR was performed. We have found decreased levels of miR-22, miR-133a, miR-146a, and miR-369 among the psoriatic patients. There was a statistically significant difference in miR-22 and miR-146a levels between psoriatic patients with overweight/obesity and with normal weight. There were positive correlations between miR-22 and miR-146a levels and psoriatic arthritis (PsA) in psoriatic patients with normal weight and between the miR-133a level and PsA in the overweight/obese patients. The decreased levels of selected miRNA are consistent with the levels observed in CVD indicating their impact on the CVD risk in psoriatic patients. miR-22 and miR-146 may be recognized as one of the contributing factors in the obesity-CVD-psoriasis network.

11.
J Cell Mol Med ; 26(13): 3636-3647, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35638462

RESUMEN

Studies have shown that SQLE is highly expressed in a variety of tumours and promotes tumour progression. However, the role of SQLE in pancreatic cancer (PC) has not been reported. Here, we aim to study the role and molecular mechanism of SQLE in PC. Immunohistochemistry and functional experiments showed that SQLE was highly expressed in PC tissues and promoted the proliferation and invasion of PC cells. Terbinafine, an inhibitor of SQLE, inhibited this effect. In order to further study the upstream mechanism that regulates SQLE, we used bioinformatics technology to lock miR-133b and lncRNA-TTN-AS. In situ hybridization was used to detect the expression of miR-133b and lncRNA-TTN-AS1 in PC tissues. The luciferase reporter gene experiment was used to confirm the binding of miR-133b and lncRNA-TTN-AS1. The results showed that miR-133b was down-regulated in PC tissues and negatively correlated with the expression of SQLE. LncRNA-TTN-AS1 was upregulated in pancreatic cancer tissues and positively correlated with the expression of SQLE. Luciferase gene reporter gene analysis confirmed lncRNA-TTN-AS1 directly binded to miR-133b. Therefore, we propose that targeting the lncRNA-TTN-AS1/miR-133b/SQLE axis is expected to provide new ideas for the clinical treatment of PC patients.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Escualeno-Monooxigenasa , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Conectina/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/genética , Escualeno-Monooxigenasa/genética , Neoplasias Pancreáticas
12.
J Cell Mol Med ; 26(17): 4678-4685, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35880500

RESUMEN

Becker muscular dystrophy (BMD) is an X-linked neuromuscular disorder due to mutation in the DMD gene, encoding dystrophin. Despite a wide clinical variability, BMD is characterized by progressive muscle degeneration and proximal muscle weakness. Interestingly, a dysregulated expression of muscle-specific microRNAs (miRNAs), called myomirs, has been found in patients affected with muscular dystrophies, although few studies have been conducted in BMD. We analysed the serum expression levels of a subset of myomirs in a cohort of 29 ambulant individuals affected by BMD and further classified according to the degree of alterations at muscle biopsy and in 11 age-matched healthy controls. We found a significant upregulation of serum miR-1, miR-133a, miR-133b and miR-206 in our cohort of BMD patients, supporting the role of these miRNAs in the pathophysiology of the disease, and we identified serum cut-off levels discriminating patients from healthy controls, confiming the potential of circulating miRNAs as promising noninvasive biomarkers. Moreover, serum levels of miR-133b were found to be associated with fibrosis at muscle biopsy and with patients' motor performances, suggesting that miR-133b might be a useful prognostic marker for BMD patients. Taken together, our data showed that these serum myomirs may represent an effective tool that may support stratification of BMD patients, providing the opportunity of both monitoring disease progression and assessing the treatment efficacy in the context of clinical trials.


Asunto(s)
MicroARN Circulante , MicroARNs , Distrofia Muscular de Duchenne , Biomarcadores , Progresión de la Enfermedad , Humanos , MicroARNs/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
13.
Mol Cancer ; 21(1): 140, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773744

RESUMEN

BACKGROUND: Aberrant expression of circular RNAs (circRNAs) contributes to the initiation and progression of human malignancies, but the underlying mechanisms remain largely elusive. METHODS: High-throughput sequencing was performed to screen aberrantly expressed circRNAs or miRNAs in colorectal cancer (CRC) and adjacent normal tissues. A series of gain- and loss-of-function studies were conducted to evaluate the biological behaviors of CRC cells. RNA pulldown, mass spectrometry, RIP, qRT-PCR, Western blot, luciferase reporter assays and MeRIP-seq analysis were further applied to dissect the detailed mechanisms. RESULTS: Here, a novel circRNA named circEZH2 (hsa_circ_0006357) was screened out by RNA-seq in CRC tissues, whose expression is closely related to the clinicpathological characteristics and prognosis of CRC patients. Biologically, circEZH2 facilitates the proliferation and migration of CRC cells in vitro and in vivo. Mechanistically, circEZH2 interacts with m6A reader IGF2BP2 and blocks its ubiquitination-dependent degradation. Meanwhile, circEZH2 could serve as a sponge of miR-133b, resulting in the upregulation of IGF2BP2. Particularly, circEZH2/IGF2BP2 enhances the stability of CREB1 mRNA, thus aggravating CRC progression. CONCLUSIONS: Our findings not only reveal the pivotal roles of circEZH2 in modulating CRC progression, but also advocate for attenuating circEZH2/miR-133b/IGF2BP2/ CREB1 regulatory axis to combat CRC.


Asunto(s)
Neoplasias Colorrectales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , MicroARNs , ARN Circular , Proteínas de Unión al ARN , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
14.
J Gene Med ; 24(11): e3453, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36181243

RESUMEN

BACKGROUND: The Warburg effect is a characteristic tumor cell behavior regarded as one of the cancer hallmarks and promotes tumor progression by promoting glucose uptake and lactate production. Long non-coding RNAs (lncRNAs) had been reported to emerge as a vital function in cancer development. The present research is designed to investigate the underlying molecular mechanism of lncRNA TMEM147 antisense RNA 1 (TMEM147-AS1) on aerobic glycolysis in prostatic carcinoma. METHODS: lncRNA TMEM147-AS1, miR-133b and ZNF587 levels in prostatic carcinoma tissues and cells were detected by a polymerase chain reaction or western blot assays. Cell viability or invasion was determined by Edu (i.e. 5-ethynyl-2'-deoxyuridine), MTT (i.e. 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) or transwell assays. Hematoxylin and eosin and immunohistochemical staining were applied for histopathological examination. Tumor xenograft model was employed to investigate tumor growth in vivo. The combinative relationship between TMEM147-AS1 or ZNF587 and miR-133b was confirmed by a luciferase reporter assay. RESULTS: TMEM147-AS1 and ZNF587 were up-regulated in prostatic carcinoma tissues and cells. Knockdown of TMEM147-AS1 or ZNF587 within prostate cancer cells significantly restrained cell viability, invasion and aerobic glycolysis in vitro and suppressed the neoplasia of prostatic carcinoma in vivo. miR-133b was directly targeted in both TMEM147-AS1 and ZNF587. Overexpression of miR-133b restrained prostate cancer cell viability, invasion and aerobic glycolysis. TMEM147-AS1 competitively targeted miR-133b, therefore counteracting miR-133b-mediated repression on ZNF587. CONCLUSIONS: TMEM147-AS1 plays a tumor-promoting action in prostatic carcinoma aerobic glycolysis via affecting the miR-133b/ZNF587 axis, therefore regulating prostatic carcinoma cells invasion and proliferation. These outcomes implied that TMEM147-AS1 could be an effective treatment strategy for further study of prostatic carcinoma.


Asunto(s)
Carcinoma , MicroARNs , Neoplasias de la Próstata , ARN Largo no Codificante , Humanos , Masculino , Carcinoma/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética
15.
Cancer Cell Int ; 22(1): 15, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012539

RESUMEN

BACKGROUND: Accumulating evidence has revealed that aberrant microRNA (miRNA) expression can affect the development of chemotherapy drug resistance by modulating the expression of relevant target proteins. Emerging evidence has demonstrated that miR-133a participates in the tumorigenesis of various cancers. However, whether miR-133a is associated with cisplatin resistance in ovarian cancer remains unclear. OBJECTIVE: To investigate the role of miR-133a in the development of cisplatin resistance in ovarian cancer. METHODS: MiR-133a expression in cisplatin-resistant ovarian cancer cell lines was assessed by reverse-transcription quantitative PCR (RT-qPCR). A cell counting kit-8 (CCK-8) assay was used to evaluate the viability of tumour cells treated with cisplatin in the presence or absence of miR-133a. A luciferase reporter assay was used to analyse the binding of miR-133a with the 3' untranslated region (3'UTR) of YES proto-oncogene 1 (YES1). The YES1 expression level was analysed using a dataset from the International Cancer Genome Consortium (ICGC) and assessed by RT-qPCR and western blotting in vitro. The roles and mechanisms of YES1 in cell functions were further probed via gain- and loss-of-function analysis. RESULTS: The expression of miR-133a was significantly decreased in cisplatin-resistant ovarian cancer cell lines (A2780-DDP and SKOV3-DDP), and the overexpression of the miR-133a mimic reduced cisplatin resistance in A2780-DDP and SKOV3-DDP cells. Treatment with the miR-133a inhibitor increased cisplatin sensitivity in normal A2780 and SKOV3 cells. MiR-133a binds the 3'UTR of YES1 and downregulates its expression. Bioinformatics analysis revealed that YES1 expression was upregulated in recurrent cisplatin-resistant ovarian cancer tissue, and in vitro experiments also verified its upregulation in cisplatin-resistant cell lines. Furthermore, we discovered that miR-133a downregulated the expression of YES1 and thus inhibited cell autophagy to reduce cisplatin resistance. Yes1 knockdown significantly suppressed the cisplatin resistance of ovarian cancer cells by inhibiting autophagy in vitro. Xenograft tumour implantation further demonstrated that Yes1 overexpression promoted ovarian tumour development and cisplatin resistance. CONCLUSIONS: Our results suggest that the miR-133a/YES1 axis plays a critical role in cisplatin resistance in human ovarian cancer by regulating cell autophagy, which might serve as a promising therapeutic target for ovarian cancer chemotherapy treatment in the future.

16.
Eur J Neurol ; 29(8): 2420-2430, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35510740

RESUMEN

BACKGROUND AND PURPOSE: The antisense oligonucleotide nusinersen (Spinraza) regulates splicing of the survival motor neuron 2 (SMN2) messenger RNA to increase SMN protein expression. Nusinersen has improved ventilator-free survival and motor function outcomes in infantile onset forms of spinal muscular atrophy (SMA), treated early in the course of the disease. However, the response in later onset forms of SMA is highly variable and dependent on symptom severity and disease duration at treatment initiation. Therefore, we aimed to identify novel noninvasive biomarkers that could predict the response to nusinersen in type II and III SMA patients. METHODS: Thirty-four SMA patients were included. We applied next generation sequencing to identify microRNAs in the cerebrospinal fluid (CSF) as candidate biomarkers predicting response to nusinersen. Hammersmith Functional Motor Scale Expanded (HFMSE) was conducted at baseline and 6 months after initiation of nusinersen therapy to assess motor function. Patients changing by ≥3 or ≤0 points in the HFMSE total score were considered to be responders or nonresponders, respectively. RESULTS: Lower baseline levels of two muscle microRNAs (miR-206 and miR-133a-3p), alone or in combination, predicted the clinical response to nusinersen after 6 months of therapy. Moreover, miR-206 levels were inversely correlated with the HFMSE score. CONCLUSIONS: Lower miR-206 and miR-133a-3p in the CSF predict more robust clinical response to nusinersen treatment in later onset SMA patients. These novel findings have high clinical relevance for identifying early treatment response to nusinersen in later onset SMA patients and call for testing the ability of miRNAs to predict more sustained long-term benefit.


Asunto(s)
Biomarcadores Farmacológicos , MicroARNs , Oligonucleótidos , Atrofias Musculares Espinales de la Infancia , Biomarcadores Farmacológicos/líquido cefalorraquídeo , Humanos , MicroARNs/líquido cefalorraquídeo , Músculos , Oligonucleótidos/uso terapéutico , Atrofias Musculares Espinales de la Infancia/líquido cefalorraquídeo , Atrofias Musculares Espinales de la Infancia/terapia
17.
BMC Cardiovasc Disord ; 22(1): 286, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751015

RESUMEN

BACKGROUND: Circulating microRNAs (miRNAs) are considered a hot spot of research that can be employed for monitoring and/or diagnostic purposes in coronary artery disease (CAD). Since different disease features might be reflected on altered profiles or plasma miRNAs concentrations, a combination of miRNAs can provide more reliable non-invasive biomarkers for CAD. SUBJECTS AND METHODS: We investigated a panel of 14-miRNAs selected using bioinformatics databases and current literature searching for miRNAs involved in CAD using quantitative real-time PCR technique in 73 CAD patients compared to 73 controls followed by function and pathway enrichment analysis for the 14-miRNAs. RESULTS: Our results revealed three out of the 14 circulating miRNAs understudy; miRNAs miR133a, miR155 and miR208a were downregulated. While 11 miRNAs were up-regulated in a descending order from highest fold change to lowest: miR-182, miR-145, miR-21, miR-126, miR-200b, miR-146A, miR-205, miR-135b, miR-196b, miR-140b and, miR-223. The ROC curve analysis indicated that miR-145, miR-182, miR-133a and, miR-205 were excellent biomarkers with the highest AUCs as biomarkers in CAD. All miRNAs under study except miR-208 revealed a statistically significant relation with dyslipidemia. MiR-126 and miR-155 showed significance with BMI grade, while only miR-133a showed significance with the obese patients in general. MiR-135b and miR-140b showed a significant correlation with the Wall Motion Severity Index. Pathway enrichment analysis for the miRNAS understudy revealed pathways relevant to the fatty acid biosynthesis, ECM-receptor interaction, proteoglycans in cancer, and adherens junction. CONCLUSION: The results of this study identified a differentially expressed circulating miRNAs signature that can discriminate CAD patients from normal subjects. These results provide new insights into the significant role of miRNAs expression associated with CAD pathogenesis.


Asunto(s)
MicroARN Circulante , Enfermedad de la Arteria Coronaria , MicroARNs , Biomarcadores , Estudios de Casos y Controles , MicroARN Circulante/genética , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Humanos
18.
BMC Womens Health ; 22(1): 412, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209087

RESUMEN

BACKGROUND: MicroRNAs are a type of non-coding single-stranded RNA, which is involved in the regulation of ovary insulin resistance (IR). This study aims to explore the underlying mechanisms of miR-133a-3p regulating ovary IR in obese polycystic ovary syndrome (PCOS). METHODS: Granulosa cells (GCs) were extracted from follicular fluids of PCOS patients (obese PCOS group and non-obese PCOS group) and healthy women (control group). The expression of miR-133a-3p in GCs was detected by qRT-PCR. The targets and pathways of miR-133a-3p were predicted by bioinformatics analyses. The protein levels of PI3K, p-AKT, GLUT4, p-GSK-3ß, and p-FOXO1 were measured by Western blotting. RESULTS: MiR-133a-3p was highly expressed in GCs from PCOS patients, especially in obese PCOS patients. The protein levels of PI3K and p-AKT was downregulated in GCs from PCOS patients. There were 11 target genes of miR-133a-3p enriching in PI3K/AKT signaling pathway. miR-133a-3p mimic downregulated the expression of PI3K, p-AKT, and GLUT4, and upregulated the protein levels of p-GSK-3ß and p-FOXO1. miR-133a-3p inhibitor presented the opposite effect of miR-133a-3p mimic. CONCLUSION: MiR-133a-3p promotes ovary IR on GCs of obese PCOS patients via inhibiting PI3K/AKT signaling pathway. This study lays a foundation for further research on the mechanism of ovary IR in obese PCOS patients.


Asunto(s)
Resistencia a la Insulina , MicroARNs , Síndrome del Ovario Poliquístico , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Células de la Granulosa/metabolismo , Humanos , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Transducción de Señal/fisiología , Regulación hacia Arriba
19.
Gynecol Obstet Invest ; 87(5): 305-315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36198257

RESUMEN

OBJECTIVE: Preeclampsia (PE) is the most common gestational disease related to various biomolecules, including circular RNA. Hsa_circ_0088196 (circ_0088196) was aberrantly upregulated in PE tissues. DESIGN: This study focused on the further exploration of circ_0088196 in PE. METHODS: Circ_0088196, microRNA-133b (miR-133b), and AHNAK Nucleoprotein (AHNAK) levels were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). EDU assay was used for proliferation detection. Cell cycle and apoptosis were analyzed using flow cytometry. Wound healing assay and transwell assay were performed to assess migration and invasion. The protein levels were determined via Western blot. Target analysis was conducted through dual-luciferase reporter assay and RNA pull-down assay. RESULTS: Circ_0088196 upregulation was detected in PE patients. The knockdown of circ_0088196 induced the promotion of proliferation, cell cycle, migration, and invasion but not the inhibition of apoptosis in trophoblastic cells. Then, circ_0088196 was found to act as a sponge of miR-133b in HTR-8/SVneo cells. The inhibition of miR-133b abolished the regulation of si-circ_0088196 in trophoblastic cells. In addition, miR-133b targeted AHNAK and circ_0088196 evoked the expression change of AHNAK by sponging miR-133b. The function of circ_0088196 was also achieved by regulating AHNAK in trophoblastic cells. LIMITATIONS: The role of circ_0088196 in PE was not verified by in vivo experiments. CONCLUSION: The current evidence demonstrated that circ_0088196 knockdown facilitated trophoblastic cell development by regulating the levels of miR-133b and AHNAK, suggesting that circ_0088196 promoted the PE progression via the miR-133b/AHNAK axis.


Asunto(s)
Proteínas de la Membrana , MicroARNs , Preeclampsia , ARN Circular , Femenino , Humanos , Embarazo , Apoptosis/genética , Proliferación Celular/genética , Regulación hacia Abajo , Proteínas de la Membrana/genética , MicroARNs/genética , Proteínas de Neoplasias , Preeclampsia/genética , Regulación hacia Arriba , ARN Circular/genética
20.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35456995

RESUMEN

It is well known that multiple microRNAs play crucial roles in cardiovascular development, including miR-133a. Additionally, retinoic acid regulates atrial marker expression. In order to analyse the role of miR-133a as a modulator of retinoic acid signalling during the posterior segment of heart tube formation, we performed functional experiments with miR-133a and retinoic acid by means of microinjections into the posterior cardiac precursors of both primitive endocardial tubes in chick embryos. Subsequently, we subjected embryos to whole mount in situ hybridisation, immunohistochemistry and qPCR analysis. Our results demonstrate that miR-133a represses RhoA and Cdc42, as well as Raldh2/Aldh1a2, and the specific atrial markers Tbx5 and AMHC1, which play a key role during differentiation. Furthermore, we observed that miR-133a upregulates p21 and downregulates cyclin A by repressing RhoA and Cdc42, respectively, thus functioning as a cell proliferation inhibitor. Additionally, retinoic acid represses miR-133a, while it increases Raldh2, Tbx5 and AMHC1. Given that RhoA and Cdc42 are involved in Raldh2 expression and that they are modulated by miR-133a, which is influenced by retinoic acid signalling, our results suggest the presence of a negative feedback mechanism between miR-133a and retinoic acid during early development of the posterior cardiac tube segment. Despite additional unexplored factors being possible contributors to this negative feedback mechanism, miR-133a might also be considered as a potential therapeutic tool for the diagnosis, therapy and prognosis of cardiac diseases.


Asunto(s)
MicroARNs , Tretinoina , Animales , Embrión de Pollo , Corazón , Hibridación in Situ , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Tretinoina/metabolismo , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA