Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(10): 107753, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260692

RESUMEN

Chronic stress can have adverse consequences on human health by disrupting the hormonal balance in our body. Earlier, we observed elevated levels of cortisol, a primary stress hormone, and some exosomal microRNAs in the serum of patients with breast cancer. Here, we investigated the role of cortisol in microRNA induction and its functional consequences. We found that cortisol induced the expression of miR-143/145 cluster in human monocyte (THP1 and U937)-derived macrophages but not in breast cancer cells. In silico analysis identified glucocorticoid-response element in the upstream CARMN promoter utilized by the miR-143/145 cluster. Enhanced binding of glucocorticoid-receptor (GR) upon cortisol exposure and its regulatory significance was confirmed by chromatin-immunoprecipitation and promoter-reporter assays. Further, cortisol inhibited IFNγ-induced M1 polarization and promoted M2 polarization, and these effects were suppressed by miR-143-3p and miR-145-5p inhibitors pretreatment. Cortisol-treated macrophages exhibited increased oxygen-consumption rate (OCR) to extracellular-acidification rate (ECAR) ratio, and this change was neutralized by functional inhibition of miR-143-3p and miR-145-5p. HK2 and ADPGK were confirmed as the direct targets of miR-143-3p and miR-145-5p, respectively. Interestingly, silencing of HK2 and ADPGK inhibited IFNγ-induced M1 polarization but failed to induce M2 polarization, since it suppressed both ECAR and OCR, while OCR was largely sustained in cortisol-treated M2-polarized macrophages. We found that cortisol treatment sustained OCR by enhancing fatty acid and glutamine metabolism through upregulation of CPT2 and GLS, respectively, to support M2 polarization. Thus, our findings unfold a novel mechanism of immune suppression by cortisol and open avenues for preventive and therapeutic interventions.

2.
J Cell Mol Med ; 28(5): e18070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102848

RESUMEN

Cisplatin-based chemotherapy is often used in advanced gastric cancer (GC) treatment, yet resistance to cisplatin may lead to treatment failure. Mechanisms underlying cisplatin resistance remain unclear. Recent evidence highlighted the role of macrophages in cancer chemoresistance. Macrophage-derived exosomes were shown to facilitate intercellular communication. Here, we investigated the cisplatin resistance mechanism based on macrophage-derived exosomes in gastric cancer. Cell growth and apoptosis detection experiments revealed that M2-polarized macrophages increased the resistance of GC cells to cisplatin. qRT-PCR, RNAase R assay, actinomycin D assay and cell nucleo-cytoplasmic separation experiments confirmed the existence of circTEX2 in macrophage cytoplasm, with a higher expression level in M2 macrophages than that in M1 macrophages. Further experiments showed that circTEX2 acted as microRNA sponges for miR-145 and regulated the expression of ATP Binding Cassette Subfamily C Member 1 (ABCC1). Inhibition of the circTEX2/miR-145/ABCC1 axis blocked the cisplatin resistance of gastric cancer induced by M2 macrophages, as evidenced by in vitro and in vivo experiments. In conclusion, our research suggests that the exosomal transfer of M2 macrophage-derived circTEX2 enhances cisplatin resistance in gastric cancer through miR-145/ABCC1. Additionally, communication between macrophages and cancer cells via exosomes may be a promising therapeutic target for the treatment of cisplatin-resistant gastric cancer.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Exosomas , Regulación Neoplásica de la Expresión Génica , Macrófagos , MicroARNs , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , ARN Circular , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Animales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , ARN Circular/genética , Exosomas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Ratones Desnudos
3.
J Cell Mol Med ; 28(12): e18444, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924205

RESUMEN

The development of gemcitabine (GEM) resistance severely limits the treatment efficacy in pancreatic cancer (PC) and increasing evidence highlights the vital roles of circular RNAs (circRNAs) in the tumorigenesis, progression and drug resistance of PC. However, the circRNAs underlying GEM resistance development of PC remains to be clarified. The current research aims to unveil the roles of circ_0036627 in dictating the aggressiveness and GEM sensitivity in PC. We reported the increased expression of circ_0036627 in PC tissues and PC cell lines. Elevated circ_0036627 expression level was correlated with advanced tumour grade and poor overall survival in PC patients. Functional assays and in vivo experiments demonstrated that circ_0036627 overexpression was required for the proliferation, migration invasion and GEM resistance in PC cells. circ_0036627 knockdown suppressed tumour development in vivo. The molecular analysis further showed that circ_0036627 increased S100A16 expression by sponging microRNA-145 (miR-145), a tumour-suppressive miRNA that could significantly attenuate PC cell proliferation, migration, invasion and GEM resistance. Furthermore, our findings suggested that S100A16 acted as an oncogenic factor to promote aggressiveness and GEM resistance in PC cells. In conclusion, the current findings provide new mechanistic insights into PC aggressiveness and GEM resistance, suggesting the critical role of circ_0036627/miR-145/S100A16 axis in PC progression and drug resistance development and offering novel therapeutic targets for PC therapy.


Asunto(s)
Movimiento Celular , Proliferación Celular , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias Pancreáticas , ARN Circular , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , ARN Circular/genética , Resistencia a Antineoplásicos/genética , MicroARNs/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Animales , Movimiento Celular/genética , Movimiento Celular/efectos de los fármacos , Masculino , Proteínas S100/genética , Proteínas S100/metabolismo , Ratones , Femenino , Ratones Desnudos , Persona de Mediana Edad , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico
4.
J Transl Med ; 22(1): 724, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103885

RESUMEN

BACKGROUND: The traumatic spinal cord injury (SCI) can cause immediate multi-faceted function loss or paralysis. Microglia, as one of tissue resident macrophages, has been reported to play a critical role in regulating inflammation response during SCI processes. And transplantation with M2 microglia into SCI mice promotes recovery of motor function. However, the M2 microglia can be easily re-educated and changed their phenotype due to the stimuli of tissue microenvironment. This study aimed to find a way to maintain the function of M2 microglia, which could exert an anti-inflammatory and pro-repair role, and further promote the repair of spinal cord injury. METHODS: To establish a standard murine spinal cord clip compression model using Dumont tying forceps. Using FACS, to sort microglia from C57BL/6 mice or CX3CR1GFP mice, and further culture them in vitro with different macrophage polarized medium. Also, to isolate primary microglia using density gradient centrifugation with the neonatal mice. To transfect miR-145a-5p into M2 microglia by Lipofectamine2000, and inject miR-145a-5p modified M2 microglia into the lesion sites of spinal cord for cell transplanted therapy. To evaluate the recovery of motor function in SCI mice through behavior analysis, immunofluorescence or histochemistry staining, Western blot and qRT-PCR detection. Application of reporter assay and molecular biology experiments to reveal the mechanism of miR-145a-5p modified M2 microglia therapy on SCI mice. RESULTS: With in vitro experiments, we found that miR-145a-5p was highly expressed in M2 microglia, and miR-145a-5p overexpression could suppress M1 while promote M2 microglia polarization. And then delivery of miR-145a-5p overexpressed M2 microglia into the injured spinal cord area significantly accelerated locomotive recovery as well as prevented glia scar formation and neuron damage in mice, which was even better than M2 microglia transplantation. Further mechanisms showed that overexpressed miR-145a-5p in microglia inhibited the inflammatory response and maintained M2 macrophage phenotype by targeting TLR4/NF-κB signaling. CONCLUSIONS: These findings indicate that transplantation of miR-145a-5p modified M2 microglia has more therapeutic potential for SCI than M2 microglia transplantation from epigenetic perspective.


Asunto(s)
Ratones Endogámicos C57BL , MicroARNs , Microglía , Recuperación de la Función , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , MicroARNs/metabolismo , MicroARNs/genética , Microglía/metabolismo , Ratones
5.
BMC Cancer ; 24(1): 883, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039505

RESUMEN

BACKGROUND: The role of miR-145-5p in non-small cell lung cancer (NSCLC) has been studied, however, the regulation of hBMSCs-derived exosomes (Exo) transmitted miR-145-5p in NSCLC was still unknown. This study aimed to investigate the role of hBMSCs-derived exosomes (Exo) in the progression of NSCLC. METHODS: The Exo was extracted from hBMSCs and added to A549 and H1299 cell culture, followed by the detection of cell proliferation, migration, and invasion. The correlation between the expression of miR-145-5p and SOX9, as well as their binding relationship was determined by correlation analysis, luciferase gene reporter assay and RNA pull-down assays. The in vivo animal model was established to further verify the impact of hBMSCs-Exo. RESULTS: It showed that miR-145-5p was downregulated and SOX9 was upregulated in NSCLC tissues. HBMSCs-derived Exo, and hBMSCs-Exo with overexpression of miR-145-5p could inhibit cell proliferation, migration, and invasion of both A549 and H1299 cells, and prevent against tumor progression in vivo. MiR-145-5p and SOX9 were found to be able to bind to each other, and a negative correlation were observed between the expression of them in NSCLC tissues. Furthermore, inhibition of SOX9 could reversed the suppressed role of miR-145-5p in vitro and in vivo. CONCLUSION: Therefore, HBMSCs-Exo effectively transmitted miR-145-5p, leading to the suppression of malignant development in NSCLC through the regulation of SOX9.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Exosomas , Neoplasias Pulmonares , Células Madre Mesenquimatosas , MicroARNs , Factor de Transcripción SOX9 , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Exosomas/metabolismo , Exosomas/genética , Ratones , Proliferación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Movimiento Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Masculino , Femenino , Células A549 , Ensayos Antitumor por Modelo de Xenoinjerto
6.
FASEB J ; 37(4): e22839, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946075

RESUMEN

Nearly half a million women are diagnosed with cervical cancer (CC) each year, with the incidence of CC stabilizing or rising in low-income and middle-income countries. Cancer cells use metabolic reprogramming to meet the needs of rapid proliferation, known as the Warburg effect, but the mechanism of the Warburg effect in CC remains unclear. microRNAs (miRNAs) have a wide range of effects on gene expression and diverse modes of action, and they regulate genes for metabolic reprogramming. Dysregulation of miRNA expression leads to metabolic abnormalities in tumor cells and promotes tumorigenesis and tumor progression. In this study, we found that miR-145 was negatively correlated with metabolic reprogramming-related genes and prevented the proliferation and metastasis of CC cell lines by impeding aerobic glycolysis. A dual-luciferase reporter assay showed that miR-145 can bind to the 3'-untranslated region (3'-UTR) of MYC. Chromatin Immunoprecipitation-quantitative real-time PCR indicated that MYC was involved in the regulation of glycolysis-related genes. In addition, miR-145 mimics significantly suppressed the growth of CC cell xenograft tumor, prolonged the survival time of mice, and dramatically silenced the expression of tumor proliferation marker Ki-67. Therefore, the results suggested that miR-145 affects aerobic glycolysis through MYC, which may be a potential target for the treatment of CC.


Asunto(s)
MicroARNs , Neoplasias del Cuello Uterino , Humanos , Femenino , Animales , Ratones , Línea Celular Tumoral , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores de Tumor/metabolismo , Proliferación Celular/genética , Glucólisis/genética , Regulación Neoplásica de la Expresión Génica
7.
FASEB J ; 37(6): e22936, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37144417

RESUMEN

The tumor suppressor p53 has been implicated in the pathogenesis of liver fibrosis. HERC5-mediated posttranslational ISG modification of the p53 protein is critical for controlling its activity. Here, we demonstrated that the expression of HERC5 and ISG15 is highly elevated, whereas p53 is downregulated, in fibrotic liver tissues of mice and transforming growth factor-ß1 (TGF-ß1)-induced LX2 cells. HERC5 siRNA clearly increased the protein expression of p53, but the mRNA expression of p53 was not obviously changed. The inhibition of lincRNA-ROR (ROR) downregulated HERC5 expression and elevated p53 expression in TGF-ß1-stimulated LX-2 cells. Furthermore, the expression of p53 was almost unchanged after TGF-ß1-stimulated LX-2 cells were co-transfected with a ROR-expressing plasmid and HERC5 siRNA. We further confirmed that miR-145 is a target gene of ROR. In addition, we also showed that ROR regulates the HERC5-mediated ISGylation of p53 through mir-145/ZEB2. Together, we propose that ROR/miR-145/ZEB2 might be involved in the course of liver fibrosis by regulating ISGylation of the p53 protein.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , ARN Largo no Codificante/genética , Cirrosis Hepática/metabolismo , Fibrosis , ARN Interferente Pequeño , MicroARNs/genética , Péptidos y Proteínas de Señalización Intracelular , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
8.
Reprod Biomed Online ; 49(6): 104108, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-39293195

RESUMEN

RESEARCH QUESTION: Is the microRNA miR-145 involved in adenomyosis, and by what mechanisms does it affect disease development and is itself regulated? DESIGN: Fluorescence in-situ hybridization was used to observe the expression pattern of miR-145 in adenomyosis ectopic endometrium (n = 13), adenomyosis eutopic endometrium (n = 15) and non-adenomyosis eutopic endometrium (n = 14). RNA sequencing was used to screen target genes as well as downstream pathways of miR-145, which were validated by reporter gene assay, quantitative polymerase chain reaction and western blot, and further analysed using cell migration assay and chromatin immunoprecipitation assay. RESULTS: The fluorescence in-situ hybridization assay revealed a noteworthy elevation in miR-145 expression in adenomyosis tissue compared with non-adenomyosis tissue. Furthermore, RNA sequencing analysis revealed that overexpression of miR-145 resulted in heightened expression of genes associated with the cytokine signalling pathway, nucleotide-binding and oligomerization domain-like pathway and adhesion pathway, including IL-1ß and IL-6. Our study has identified CITED2 as a downstream direct target gene of miR-145, which is implicated in the inhibition of stromal cell migration induced by miR-145. Moreover, chromatin immunoprecipitation was used to validate the direct effect of oestradiol on the promoter region of miR-145, mediated by oestrogen receptor α, which facilitates the upregulation of miR-145 expression. CONCLUSION: Our findings provide evidence supporting the role of oestradiol, acting through its receptor α, in modulating the discovered miR-145-CITED2 signalling axis, thereby promoting the progression of adenomyosis.

9.
Mol Biol Rep ; 51(1): 588, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683237

RESUMEN

BACKGROUND: Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS: Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS: Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION: This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.


Asunto(s)
Fragmentación del ADN , Infertilidad Masculina , MicroARNs , Homólogo 1 de la Proteína MutL , Estrés Oxidativo , Espermatozoides , Varicocele , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Varicocele/genética , Varicocele/metabolismo , Varicocele/patología , Estrés Oxidativo/genética , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Espermatozoides/metabolismo , Adulto , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Antioxidantes/metabolismo
10.
Mol Biol Rep ; 51(1): 953, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230767

RESUMEN

BACKGROUND: Atherosclerosis, serving as the primary pathological mechanism at the core of cardiovascular disease, is now widely acknowledged to be associated with DNA damage and repair, contributing to atherosclerotic plaque formation. Therefore, molecules involved in the DNA repair process may play an important role in the progression of atherosclerosis. Our research endeavors to explore the contributions of specific and interrelated molecules involved in DNA repair (APE1, BRCA1, ERCC2, miR-221-3p, miR-145-5p, and miR-155-5p) to the development of atherosclerotic plaque and their interactions with each other. METHODS & RESULTS: Gene expression study was conducted using the real-time polymerase chain reaction (qRT-PCR) method on samples from carotid artery atherosclerotic plaques and nonatherosclerotic internal mammary arteries obtained from 50 patients diagnosed with coronary artery disease and carotid artery disease. Additionally, 50 healthy controls were included for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Although no difference was observed in mRNA gene expressions, we noted a decrease in miR-155-5p gene expression (p = 0.003) and an increase in miR-221-3p gene expression (p = 0.015) in plaque samples, while miR-145-5p gene expression remained unchanged (p = 0.57). Regarding serum 8-OHdG levels, patients exhibited significantly higher levels (1111.82 ± 28.64) compared to controls (636.23 ± 24.23) (p < 0.0001). CONCLUSIONS: In our study demonstrating the role of miR-155-5p and miR-221-3p in atherosclerosis, we propose that these molecules are potential biomarkers and therapeutic targets for coronary artery diseases and carotid artery disease.


Asunto(s)
Reparación del ADN , MicroARNs , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Reparación del ADN/genética , MicroARNs/genética , MicroARNs/metabolismo , Anciano , Estudios Transversales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Daño del ADN/genética , Regulación de la Expresión Génica/genética , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/metabolismo , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
11.
J Biochem Mol Toxicol ; 38(9): e23833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243199

RESUMEN

Osteosarcoma (OS) is the most frequent bone malignancy in humans. Previous evidence suggest that circ_0032463 is an oncogenic circular RNA (circRNA) in various cancers, including OS. However, the molecular mechanism of circ_0032463 involved in OS is still unclear. Circ_0032463, microRNA-145-5p (miR-145-5p), GDNF receptor alpha 1 (GFRA1), and Wilms tumor 1-associated protein (WTAP) levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, invasion, and angiogenesis were analyzed using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays. Western blot analysis was performed to measure matrix metalloproteinase 2 (MMP2), MMP9, GFRA1, and WTAP protein levels. Binding between miR-145-5p and circ_0032463 or GFRA1 was confirmed using a dual-luciferase reporter and pull-down assay. The biological role of circ_0032463 on OS cell growth was also analyzed using a xenograft tumor model in vivo. Methylated RNA immunoprecipitation assay validated the interaction between WTAP and circ_0032463. Circ_0032463, GFRA1, and WTAP levels were increased, and miR-145-5p was decreased in OS tissues and cells. Circ_0032463 deficiency might hinder OS cell proliferation, migration, invasion, angiogenesis, and promote apoptosis in vitro. Mechanically, circ_0032463 worked as a miR-145-5p sponge to increase GFRA1 expression. Repression of circ_0032463 knockdown on tumor cell growth was proved in vivo. Besides, N6-methyladenosine (m6A) modification facilitates the biogenesis of circ_0032463. Taken together, m6A-mediated biogenesis of circ_0032463 facilitates OS cell malignant biological behavior partly via regulating the miR-145-5p/GFRA1 axis, suggesting a promising molecular marker for OS treatment.


Asunto(s)
Neoplasias Óseas , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , MicroARNs , Osteosarcoma , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Animales , Línea Celular Tumoral , Ratones , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Regulación Neoplásica de la Expresión Génica , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Ratones Desnudos , Masculino , Ratones Endogámicos BALB C , Proliferación Celular/genética , Progresión de la Enfermedad , Femenino , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Adenosina/análogos & derivados , Proteínas de Ciclo Celular
12.
J Nanobiotechnology ; 22(1): 329, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858736

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.


Asunto(s)
Lentivirus , Liposomas , MicroARNs , Células Madre Neoplásicas , MicroARNs/genética , MicroARNs/metabolismo , Liposomas/química , Humanos , Animales , Ratones , Lentivirus/genética , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Ratones Desnudos , Neoplasias Hepáticas/terapia , Ratones Endogámicos BALB C , Movimiento Celular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , Vía de Señalización Wnt
13.
J Nanobiotechnology ; 22(1): 580, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304875

RESUMEN

Apoptotic vesicles (apoVs) play a vital role in various physiological and pathological conditions. However, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs). Here, we proved that systemic infusion of MSCs derived from wild-type (WT) mice rather than from ovariectomized (OVX) mice effectively improved the osteopenia phenotype and rescued the impaired recipient MSCs in osteoporotic mice. Meanwhile, apoVs derived from WT MSCs (WT apoVs) instead of OVX apoVs efficiently restored the impaired biological function of OVX MSCs and their ability to improve osteoporosis. Mechanistically, the reduced miR-145a-5p expression hindered the osteogenic differentiation and immunomodulatory capacity of OVX MSCs by affecting the TGF-ß/Smad 2/3-Wnt/ß-catenin signaling axis, resulting in the development of osteoporosis. WT apoVs directly transferred miR-145a-5p to OVX MSCs, which were then reused to restore their impaired biological functions. The differential expression of miR-145a-5p is responsible for the distinct efficacy between the two types of apoVs. Overall, our findings unveil the remarkable potential of apoVs, as a novel nongenetic engineering approach, in rescuing the biological function and therapeutic capability of MSCs derived from patients. This discovery offers a new avenue for exploring apoVs-based stem cell engineering and expands the application scope of stem cell therapy, contributing to the maintenance of bone homeostasis through a previously unrecognized mechanism.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , MicroARNs/genética , MicroARNs/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/terapia , Osteoporosis/genética , Ratones , Femenino , Osteogénesis , Ratones Endogámicos C57BL , Trasplante de Células Madre Mesenquimatosas/métodos , Apoptosis , Vesículas Extracelulares/metabolismo , Vía de Señalización Wnt , Células Cultivadas , Ovariectomía
14.
J Reprod Dev ; 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39313372

RESUMEN

MiR-145-5p has been implicated in the development and progression of various disorders, and it is primarily recognized as a tumor suppressor in numerous cancers types. Its expression has been reported to decrease in the granulosa cells of patients with polycystic ovarian syndrome (PCOS). This study aimed to investigate whether miR-145-5p plays a role in granulosa cell proliferation and to shed light on the underlying pathological mechanisms of follicular development in patients with PCOS. Follicular fluid samples were collected from patients with PCOS and healthy individuals. The Cell Counting Kit-8 and bromodeoxyuridine assays were performed to assess KGN cell proliferation. The expression of miR-145-5p was significantly decreased in PCOS granulosa cells than in control cells, whereas the expression of SET was increased. Furthermore, miR-145-5p suppressed the proliferation of KGN cells. SET was identified as a direct target of miR-145-5p. Additionally, SET promoted the proliferation of KGN cells, and knockdown of SET counteracted the effect of the miR-145-5p inhibitor. Therefore, miR-145-5p regulates granulosa cell proliferation by targeting the SET in KGN cells; this process may be a potential pathological pathway that contributes to follicular developmental disorders in PCOS.

15.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884718

RESUMEN

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Asunto(s)
Redes Reguladoras de Genes , Cardiopatías Congénitas , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Corazón/fisiología , Miocardio/metabolismo
16.
Immunopharmacol Immunotoxicol ; 46(2): 229-239, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38194243

RESUMEN

BACKGROUND: Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS: A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS: CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION: CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.


Asunto(s)
Glicoproteínas , MicroARNs , Psoriasis , Sapogeninas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Queratinocitos/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Proliferación Celular/genética
17.
J Liposome Res ; : 1-14, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101839

RESUMEN

Micro-145 down-regulation is frequently found in breast cancers, indicating its potential as a therapeutic target. The introduction of exogenous miR-145 directly to the tumor sites has been a hurdle due to limited delivery, low bioavailability, and hence lower therapeutic efficacy. Thus, this study aims to synthesize and characterize PEGylated liposome co-loaded with Dox-HCl and miR-145 mimics to investigate its in-vitro anti-proliferative activity against MDA-MB-231 cells. The formulations were developed using a composite central design to optimize nanoparticle size and encapsulation efficiency (EE%) of Dox-HCl and miR-145 mimics. The optimized formulation exhibited the highest desirability function (D = 0.814) and displayed excellent stability over 60 days at 4 °C, maintaining a stable nanoparticle size and zeta potential, with relative EE% of Dox-HCl and miR-145 mimics on the final incubation day 94.97 ± 0.53% and 51.96 ± 2.67%, respectively. The system displayed a higher rate of drug release within 4 h of incubation at an acidic condition. Additionally, the optimized formulation demonstrated a higher toxicity (IC50 = 0.58 µM) against MDA-MB-231 cells than the free Dox- HCl and miR-145 regimen (IC50 = 1.00 µM). Our findings suggest that PEGylated liposome is tunable for effective concurrent delivery of anticancer drugs and therapeutic miRNAs into tumor cells, necessitating further investigation.

18.
Int J Neurosci ; : 1-8, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512141

RESUMEN

OBJECTIVE: To analyze the significance of serum miR-145 and miR-210 expression levels in the diagnosis of carotid artery stenosis. METHODS: During the same period, 55 healthy individuals who received physical examination in the same hospital were recruited as controls and assigned to a non-stenosis group. Among the included patients, there were 45 cases of mild stenosis, 14 cases of moderate stenosis, and 6 cases of severe stenosis after carotid color Doppler ultrasonography. The expression levels of miR-145 and miR-210 in serum were measured using real-time fluorescence quantitative polymerase chain reaction (qPCR) technology. RESULTS: The expression levels of serum miR-145 and miR-210 in carotid artery stenosis group were significantly lower than those in non-stenosis group (p < 0.001). Multivariate Logistic regression analysis showed that smoking history, diabetes, hypertension and total cholesterol were positively correlated with the occurrence of carotid artery stenosis (p < 0.05). The expression levels of miR-145 and miR-210 were significantly negatively correlated with carotid artery stenosis (p < 0.001). In addition, patients with carotid artery stenosis and low expression levels of miR-145 and miR-210 had a greater risk of cerebral ischemia (p < 0.05). Cox regression analysis showed that the low expression of miR-145 and miR-210 were independent predictors of cerebral ischemic events. ROC analysis confirmed that miR-145 and miR-210 had good diagnostic efficacy in cerebral ischemia (p < 0.001). CONCLUSION: The decreased expression of miR-145 and miR-210 in serum is closely related to the diagnostic significance of carotid artery stenosis, and may be used to predict the occurrence of cerebral ischemic events.

19.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673886

RESUMEN

Aberrant expression of miR-145-5p has been observed in prostate cancer where is has been suggested to play a tumor suppressor role. In other cancers, miR-145-5p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key molecular process for tumor progression. However, the interaction between miR-145-5p and EMT remains to be elucidated in prostate cancer. In this paper the link between miR-145-5p and EMT in prostate cancer was investigated using a combination of in silico and in vitro analyses. miR-145-5p expression was significantly lower in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas prostate adenocarcinoma (TCGA PRAD) data showed significant downregulation of miR-145-5p in prostate cancer, correlating with disease progression. Functional enrichment analysis significantly associated miR-145-5p and its target genes with EMT. MYO6, an EMT-associated gene, was identified and validated as a novel target of miR-145-5p in prostate cancer cells. In vitro manipulation of miR-145-5p levels significantly altered cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Additional TCGA PRAD analysis suggested miR-145-5p tumor expression may be useful predictor of disease recurrence. In summary, this is the first study to report that miR-145-5p may inhibit EMT by targeting MYO6 in prostate cancer cells. The findings suggest miR-145-5p could be a useful diagnostic and prognostic biomarker for prostate cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs , Cadenas Pesadas de Miosina , Neoplasias de la Próstata , Humanos , Masculino , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , MicroARNs/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo
20.
Indian J Clin Biochem ; 39(3): 421-428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005871

RESUMEN

Inadequate management and control of hyperglycemia predisposes diabetic patients to a wide range of complications. Thus, this opens new windows for exploring and scrutinizing novel candidate biomarkers. This study was designed to scrutinize the relationship between HbA1c, osteocalcin, calcium, phosphorus, and expression levels of miR-143 and miR-145 in individuals with T1DM and explore their correlations and diagnostic potential for T1DM. 120 unrelated participants were included (i.e., 90 participants with type 1 diabetes mellitus and 30 healthy controls) and were allocated into two groups. Participants with T1DM were allocated into three subgroups (i.e., below 1 year, 1-8 years, and over 8 years) based on diabetic duration. Participants with T1DM experienced noticeable HbA1c elevation. However, osteocalcin, phosphorus, and calcium profiles notably declined in participants with diabetes compared with those in healthy controls. Moreover, the expression levels of miR-143 and miR-145 decreased in participants with diabetes with a significant difference between participants with diabetes and healthy controls. Additionally, significant alterations in HbA1c, osteocalcin, phosphorus, and calcium profiles and expression levels of miR-143 and miR-145 were observed with increasing diabetic duration (T1DM > 8 years compared with those with a diabetes duration of less than 1 year). This study suggests that miR-143 and miR-145 are prospective biomarkers of diabetes mellitus, which may help predict the progression of complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA